Grad Coach

Research Topics & Ideas: Education

170+ Research Ideas To Fast-Track Your Project

Topic Kickstarter: Research topics in education

If you’re just starting out exploring education-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from actual dissertations and theses..

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable education-related research topic, you’ll need to identify a clear and convincing research gap , and a viable plan of action to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Overview: Education Research Topics

  • How to find a research topic (video)
  • List of 50+ education-related research topics/ideas
  • List of 120+ level-specific research topics 
  • Examples of actual dissertation topics in education
  • Tips to fast-track your topic ideation (video)
  • Free Webinar : Topic Ideation 101
  • Where to get extra help

Education-Related Research Topics & Ideas

Below you’ll find a list of education-related research topics and idea kickstarters. These are fairly broad and flexible to various contexts, so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • The impact of school funding on student achievement
  • The effects of social and emotional learning on student well-being
  • The effects of parental involvement on student behaviour
  • The impact of teacher training on student learning
  • The impact of classroom design on student learning
  • The impact of poverty on education
  • The use of student data to inform instruction
  • The role of parental involvement in education
  • The effects of mindfulness practices in the classroom
  • The use of technology in the classroom
  • The role of critical thinking in education
  • The use of formative and summative assessments in the classroom
  • The use of differentiated instruction in the classroom
  • The use of gamification in education
  • The effects of teacher burnout on student learning
  • The impact of school leadership on student achievement
  • The effects of teacher diversity on student outcomes
  • The role of teacher collaboration in improving student outcomes
  • The implementation of blended and online learning
  • The effects of teacher accountability on student achievement
  • The effects of standardized testing on student learning
  • The effects of classroom management on student behaviour
  • The effects of school culture on student achievement
  • The use of student-centred learning in the classroom
  • The impact of teacher-student relationships on student outcomes
  • The achievement gap in minority and low-income students
  • The use of culturally responsive teaching in the classroom
  • The impact of teacher professional development on student learning
  • The use of project-based learning in the classroom
  • The effects of teacher expectations on student achievement
  • The use of adaptive learning technology in the classroom
  • The impact of teacher turnover on student learning
  • The effects of teacher recruitment and retention on student learning
  • The impact of early childhood education on later academic success
  • The impact of parental involvement on student engagement
  • The use of positive reinforcement in education
  • The impact of school climate on student engagement
  • The role of STEM education in preparing students for the workforce
  • The effects of school choice on student achievement
  • The use of technology in the form of online tutoring

Level-Specific Research Topics

Looking for research topics for a specific level of education? We’ve got you covered. Below you can find research topic ideas for primary, secondary and tertiary-level education contexts. Click the relevant level to view the respective list.

Research Topics: Pick An Education Level

Primary education.

  • Investigating the effects of peer tutoring on academic achievement in primary school
  • Exploring the benefits of mindfulness practices in primary school classrooms
  • Examining the effects of different teaching strategies on primary school students’ problem-solving skills
  • The use of storytelling as a teaching strategy in primary school literacy instruction
  • The role of cultural diversity in promoting tolerance and understanding in primary schools
  • The impact of character education programs on moral development in primary school students
  • Investigating the use of technology in enhancing primary school mathematics education
  • The impact of inclusive curriculum on promoting equity and diversity in primary schools
  • The impact of outdoor education programs on environmental awareness in primary school students
  • The influence of school climate on student motivation and engagement in primary schools
  • Investigating the effects of early literacy interventions on reading comprehension in primary school students
  • The impact of parental involvement in school decision-making processes on student achievement in primary schools
  • Exploring the benefits of inclusive education for students with special needs in primary schools
  • Investigating the effects of teacher-student feedback on academic motivation in primary schools
  • The role of technology in developing digital literacy skills in primary school students
  • Effective strategies for fostering a growth mindset in primary school students
  • Investigating the role of parental support in reducing academic stress in primary school children
  • The role of arts education in fostering creativity and self-expression in primary school students
  • Examining the effects of early childhood education programs on primary school readiness
  • Examining the effects of homework on primary school students’ academic performance
  • The role of formative assessment in improving learning outcomes in primary school classrooms
  • The impact of teacher-student relationships on academic outcomes in primary school
  • Investigating the effects of classroom environment on student behavior and learning outcomes in primary schools
  • Investigating the role of creativity and imagination in primary school curriculum
  • The impact of nutrition and healthy eating programs on academic performance in primary schools
  • The impact of social-emotional learning programs on primary school students’ well-being and academic performance
  • The role of parental involvement in academic achievement of primary school children
  • Examining the effects of classroom management strategies on student behavior in primary school
  • The role of school leadership in creating a positive school climate Exploring the benefits of bilingual education in primary schools
  • The effectiveness of project-based learning in developing critical thinking skills in primary school students
  • The role of inquiry-based learning in fostering curiosity and critical thinking in primary school students
  • The effects of class size on student engagement and achievement in primary schools
  • Investigating the effects of recess and physical activity breaks on attention and learning in primary school
  • Exploring the benefits of outdoor play in developing gross motor skills in primary school children
  • The effects of educational field trips on knowledge retention in primary school students
  • Examining the effects of inclusive classroom practices on students’ attitudes towards diversity in primary schools
  • The impact of parental involvement in homework on primary school students’ academic achievement
  • Investigating the effectiveness of different assessment methods in primary school classrooms
  • The influence of physical activity and exercise on cognitive development in primary school children
  • Exploring the benefits of cooperative learning in promoting social skills in primary school students

Secondary Education

  • Investigating the effects of school discipline policies on student behavior and academic success in secondary education
  • The role of social media in enhancing communication and collaboration among secondary school students
  • The impact of school leadership on teacher effectiveness and student outcomes in secondary schools
  • Investigating the effects of technology integration on teaching and learning in secondary education
  • Exploring the benefits of interdisciplinary instruction in promoting critical thinking skills in secondary schools
  • The impact of arts education on creativity and self-expression in secondary school students
  • The effectiveness of flipped classrooms in promoting student learning in secondary education
  • The role of career guidance programs in preparing secondary school students for future employment
  • Investigating the effects of student-centered learning approaches on student autonomy and academic success in secondary schools
  • The impact of socio-economic factors on educational attainment in secondary education
  • Investigating the impact of project-based learning on student engagement and academic achievement in secondary schools
  • Investigating the effects of multicultural education on cultural understanding and tolerance in secondary schools
  • The influence of standardized testing on teaching practices and student learning in secondary education
  • Investigating the effects of classroom management strategies on student behavior and academic engagement in secondary education
  • The influence of teacher professional development on instructional practices and student outcomes in secondary schools
  • The role of extracurricular activities in promoting holistic development and well-roundedness in secondary school students
  • Investigating the effects of blended learning models on student engagement and achievement in secondary education
  • The role of physical education in promoting physical health and well-being among secondary school students
  • Investigating the effects of gender on academic achievement and career aspirations in secondary education
  • Exploring the benefits of multicultural literature in promoting cultural awareness and empathy among secondary school students
  • The impact of school counseling services on student mental health and well-being in secondary schools
  • Exploring the benefits of vocational education and training in preparing secondary school students for the workforce
  • The role of digital literacy in preparing secondary school students for the digital age
  • The influence of parental involvement on academic success and well-being of secondary school students
  • The impact of social-emotional learning programs on secondary school students’ well-being and academic success
  • The role of character education in fostering ethical and responsible behavior in secondary school students
  • Examining the effects of digital citizenship education on responsible and ethical technology use among secondary school students
  • The impact of parental involvement in school decision-making processes on student outcomes in secondary schools
  • The role of educational technology in promoting personalized learning experiences in secondary schools
  • The impact of inclusive education on the social and academic outcomes of students with disabilities in secondary schools
  • The influence of parental support on academic motivation and achievement in secondary education
  • The role of school climate in promoting positive behavior and well-being among secondary school students
  • Examining the effects of peer mentoring programs on academic achievement and social-emotional development in secondary schools
  • Examining the effects of teacher-student relationships on student motivation and achievement in secondary schools
  • Exploring the benefits of service-learning programs in promoting civic engagement among secondary school students
  • The impact of educational policies on educational equity and access in secondary education
  • Examining the effects of homework on academic achievement and student well-being in secondary education
  • Investigating the effects of different assessment methods on student performance in secondary schools
  • Examining the effects of single-sex education on academic performance and gender stereotypes in secondary schools
  • The role of mentoring programs in supporting the transition from secondary to post-secondary education

Tertiary Education

  • The role of student support services in promoting academic success and well-being in higher education
  • The impact of internationalization initiatives on students’ intercultural competence and global perspectives in tertiary education
  • Investigating the effects of active learning classrooms and learning spaces on student engagement and learning outcomes in tertiary education
  • Exploring the benefits of service-learning experiences in fostering civic engagement and social responsibility in higher education
  • The influence of learning communities and collaborative learning environments on student academic and social integration in higher education
  • Exploring the benefits of undergraduate research experiences in fostering critical thinking and scientific inquiry skills
  • Investigating the effects of academic advising and mentoring on student retention and degree completion in higher education
  • The role of student engagement and involvement in co-curricular activities on holistic student development in higher education
  • The impact of multicultural education on fostering cultural competence and diversity appreciation in higher education
  • The role of internships and work-integrated learning experiences in enhancing students’ employability and career outcomes
  • Examining the effects of assessment and feedback practices on student learning and academic achievement in tertiary education
  • The influence of faculty professional development on instructional practices and student outcomes in tertiary education
  • The influence of faculty-student relationships on student success and well-being in tertiary education
  • The impact of college transition programs on students’ academic and social adjustment to higher education
  • The impact of online learning platforms on student learning outcomes in higher education
  • The impact of financial aid and scholarships on access and persistence in higher education
  • The influence of student leadership and involvement in extracurricular activities on personal development and campus engagement
  • Exploring the benefits of competency-based education in developing job-specific skills in tertiary students
  • Examining the effects of flipped classroom models on student learning and retention in higher education
  • Exploring the benefits of online collaboration and virtual team projects in developing teamwork skills in tertiary students
  • Investigating the effects of diversity and inclusion initiatives on campus climate and student experiences in tertiary education
  • The influence of study abroad programs on intercultural competence and global perspectives of college students
  • Investigating the effects of peer mentoring and tutoring programs on student retention and academic performance in tertiary education
  • Investigating the effectiveness of active learning strategies in promoting student engagement and achievement in tertiary education
  • Investigating the effects of blended learning models and hybrid courses on student learning and satisfaction in higher education
  • The role of digital literacy and information literacy skills in supporting student success in the digital age
  • Investigating the effects of experiential learning opportunities on career readiness and employability of college students
  • The impact of e-portfolios on student reflection, self-assessment, and showcasing of learning in higher education
  • The role of technology in enhancing collaborative learning experiences in tertiary classrooms
  • The impact of research opportunities on undergraduate student engagement and pursuit of advanced degrees
  • Examining the effects of competency-based assessment on measuring student learning and achievement in tertiary education
  • Examining the effects of interdisciplinary programs and courses on critical thinking and problem-solving skills in college students
  • The role of inclusive education and accessibility in promoting equitable learning experiences for diverse student populations
  • The role of career counseling and guidance in supporting students’ career decision-making in tertiary education
  • The influence of faculty diversity and representation on student success and inclusive learning environments in higher education

Research topic idea mega list

Education-Related Dissertations & Theses

While the ideas we’ve presented above are a decent starting point for finding a research topic in education, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses in the education space to see how this all comes together in practice.

Below, we’ve included a selection of education-related research projects to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • From Rural to Urban: Education Conditions of Migrant Children in China (Wang, 2019)
  • Energy Renovation While Learning English: A Guidebook for Elementary ESL Teachers (Yang, 2019)
  • A Reanalyses of Intercorrelational Matrices of Visual and Verbal Learners’ Abilities, Cognitive Styles, and Learning Preferences (Fox, 2020)
  • A study of the elementary math program utilized by a mid-Missouri school district (Barabas, 2020)
  • Instructor formative assessment practices in virtual learning environments : a posthumanist sociomaterial perspective (Burcks, 2019)
  • Higher education students services: a qualitative study of two mid-size universities’ direct exchange programs (Kinde, 2020)
  • Exploring editorial leadership : a qualitative study of scholastic journalism advisers teaching leadership in Missouri secondary schools (Lewis, 2020)
  • Selling the virtual university: a multimodal discourse analysis of marketing for online learning (Ludwig, 2020)
  • Advocacy and accountability in school counselling: assessing the use of data as related to professional self-efficacy (Matthews, 2020)
  • The use of an application screening assessment as a predictor of teaching retention at a midwestern, K-12, public school district (Scarbrough, 2020)
  • Core values driving sustained elite performance cultures (Beiner, 2020)
  • Educative features of upper elementary Eureka math curriculum (Dwiggins, 2020)
  • How female principals nurture adult learning opportunities in successful high schools with challenging student demographics (Woodward, 2020)
  • The disproportionality of Black Males in Special Education: A Case Study Analysis of Educator Perceptions in a Southeastern Urban High School (McCrae, 2021)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic within education, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Research topics and ideas in psychology

66 Comments

Watson Kabwe

This is an helpful tool 🙏

Musarrat Parveen

Special education

Akbar khan

Really appreciated by this . It is the best platform for research related items

Trishna Roy

Research title related to school of students

Nasiru Yusuf

How are you

Oyebanji Khadijat Anike

I think this platform is actually good enough.

Angel taña

Research title related to students

My field is research measurement and evaluation. Need dissertation topics in the field

Saira Murtaza

Assalam o Alaikum I’m a student Bs educational Resarch and evaluation I’m confused to choose My thesis title please help me in choose the thesis title

Ngirumuvugizi Jaccques

Good idea I’m going to teach my colleagues

Anangnerisia@gmail.com

You can find our list of nursing-related research topic ideas here: https://gradcoach.com/research-topics-nursing/

FOSU DORIS

Write on action research topic, using guidance and counseling to address unwanted teenage pregnancy in school

Samson ochuodho

Thanks a lot

Johaima

I learned a lot from this site, thank you so much!

Rhod Tuyan

Thank you for the information.. I would like to request a topic based on school major in social studies

Mercedes Bunsie

parental involvement and students academic performance

Abshir Mustafe Cali

Science education topics?

alina

plz tell me if you got some good topics, im here for finding research topic for masters degree

Karen Joy Andrade

How about School management and supervision pls.?

JOHANNES SERAME MONYATSI

Hi i am an Deputy Principal in a primary school. My wish is to srudy foe Master’s degree in Education.Please advice me on which topic can be relevant for me. Thanks.

NKWAIN Chia Charles

Every topic proposed above on primary education is a starting point for me. I appreciate immensely the team that has sat down to make a detail of these selected topics just for beginners like us. Be blessed.

Nkwain Chia Charles

Kindly help me with the research questions on the topic” Effects of workplace conflict on the employees’ job performance”. The effects can be applicable in every institution,enterprise or organisation.

Kelvin Kells Grant

Greetings, I am a student majoring in Sociology and minoring in Public Administration. I’m considering any recommended research topic in the field of Sociology.

Sulemana Alhassan

I’m a student pursuing Mphil in Basic education and I’m considering any recommended research proposal topic in my field of study

Cristine

Research Defense for students in senior high

Kupoluyi Regina

Kindly help me with a research topic in educational psychology. Ph.D level. Thank you.

Project-based learning is a teaching/learning type,if well applied in a classroom setting will yield serious positive impact. What can a teacher do to implement this in a disadvantaged zone like “North West Region of Cameroon ( hinterland) where war has brought about prolonged and untold sufferings on the indegins?

Damaris Nzoka

I wish to get help on topics of research on educational administration

I wish to get help on topics of research on educational administration PhD level

Sadaf

I am also looking for such type of title

Afriyie Saviour

I am a student of undergraduate, doing research on how to use guidance and counseling to address unwanted teenage pregnancy in school

wysax

the topics are very good regarding research & education .

William AU Mill

Can i request your suggestion topic for my Thesis about Teachers as an OFW. thanx you

ChRISTINE

Would like to request for suggestions on a topic in Economics of education,PhD level

Aza Hans

Would like to request for suggestions on a topic in Economics of education

George

Hi 👋 I request that you help me with a written research proposal about education the format

Cynthia abuabire

Am offering degree in education senior high School Accounting. I want a topic for my project work

Sarah Moyambo

l would like to request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

Ernest Gyabaah

I would to inquire on research topics on Educational psychology, Masters degree

Aron kirui

I am PhD student, I am searching my Research topic, It should be innovative,my area of interest is online education,use of technology in education

revathy a/p letchumanan

request suggestion on topic in masters in medical education .

D.Newlands PhD.

Look at British Library as they keep a copy of all PhDs in the UK Core.ac.uk to access Open University and 6 other university e-archives, pdf downloads mostly available, all free.

Monica

May I also ask for a topic based on mathematics education for college teaching, please?

Aman

Please I am a masters student of the department of Teacher Education, Faculty of Education Please I am in need of proposed project topics to help with my final year thesis

Ellyjoy

Am a PhD student in Educational Foundations would like a sociological topic. Thank

muhammad sani

please i need a proposed thesis project regardging computer science

also916

Greetings and Regards I am a doctoral student in the field of philosophy of education. I am looking for a new topic for my thesis. Because of my work in the elementary school, I am looking for a topic that is from the field of elementary education and is related to the philosophy of education.

shantel orox

Masters student in the field of curriculum, any ideas of a research topic on low achiever students

Rey

In the field of curriculum any ideas of a research topic on deconalization in contextualization of digital teaching and learning through in higher education

Omada Victoria Enyojo

Amazing guidelines

JAMES MALUKI MUTIA

I am a graduate with two masters. 1) Master of arts in religious studies and 2) Master in education in foundations of education. I intend to do a Ph.D. on my second master’s, however, I need to bring both masters together through my Ph.D. research. can I do something like, ” The contribution of Philosophy of education for a quality religion education in Kenya”? kindly, assist and be free to suggest a similar topic that will bring together the two masters. thanks in advance

betiel

Hi, I am an Early childhood trainer as well as a researcher, I need more support on this topic: The impact of early childhood education on later academic success.

TURIKUMWE JEAN BOSCO

I’m a student in upper level secondary school and I need your support in this research topics: “Impact of incorporating project -based learning in teaching English language skills in secondary schools”.

Fitsum Ayele

Although research activities and topics should stem from reflection on one’s practice, I found this site valuable as it effectively addressed many issues we have been experiencing as practitioners.

Lavern Stigers

Your style is unique in comparison to other folks I’ve read stuff from. Thanks for posting when you have the opportunity, Guess I will just book mark this site.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Open access
  • Published: 10 March 2020

Research and trends in STEM education: a systematic review of journal publications

  • Yeping Li 1 ,
  • Ke Wang 2 ,
  • Yu Xiao 1 &
  • Jeffrey E. Froyd 3  

International Journal of STEM Education volume  7 , Article number:  11 ( 2020 ) Cite this article

172k Accesses

5 Altmetric

Metrics details

With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments in STEM education scholarship. We examined those selected journal publications both quantitatively and qualitatively, including the number of articles published, journals in which the articles were published, authorship nationality, and research topic and methods over the years. The results show that research in STEM education is increasing in importance internationally and that the identity of STEM education journals is becoming clearer over time.

Introduction

A recent review of 144 publications in the International Journal of STEM Education ( IJ - STEM ) showed how scholarship in science, technology, engineering, and mathematics (STEM) education developed between August 2014 and the end of 2018 through the lens of one journal (Li, Froyd, & Wang, 2019 ). The review of articles published in only one journal over a short period of time prompted the need to review the status and trends in STEM education research internationally by analyzing articles published in a wider range of journals over a longer period of time.

With global recognition of the growing importance of STEM education, we have witnessed the urgent need to support research and scholarship in STEM education (Li, 2014 , 2018a ). Researchers and educators have responded to this on-going call and published their scholarly work through many different publication outlets including journals, books, and conference proceedings. A simple Google search with the term “STEM,” “STEM education,” or “STEM education research” all returned more than 450,000,000 items. Such voluminous information shows the rapidly evolving and vibrant field of STEM education and sheds light on the volume of STEM education research. In any field, it is important to know and understand the status and trends in scholarship for the field to develop and be appropriately supported. This applies to STEM education.

Conducting systematic reviews to explore the status and trends in specific disciplines is common in educational research. For example, researchers surveyed the historical development of research in mathematics education (Kilpatrick, 1992 ) and studied patterns in technology usage in mathematics education (Bray & Tangney, 2017 ; Sokolowski, Li, & Willson, 2015 ). In science education, Tsai and his colleagues have conducted a sequence of reviews of journal articles to synthesize research trends in every 5 years since 1998 (i.e., 1998–2002, 2003–2007, 2008–2012, and 2013–2017), based on publications in three main science education journals including, Science Education , the International Journal of Science Education , and the Journal of Research in Science Teaching (e.g., Lin, Lin, Potvin, & Tsai, 2019 ; Tsai & Wen, 2005 ). Erduran, Ozdem, and Park ( 2015 ) reviewed argumentation in science education research from 1998 to 2014 and Minner, Levy, and Century ( 2010 ) reviewed inquiry-based science instruction between 1984 and 2002. There are also many literature reviews and syntheses in engineering and technology education (e.g., Borrego, Foster, & Froyd, 2015 ; Xu, Williams, Gu, & Zhang, 2019 ). All of these reviews have been well received in different fields of traditional disciplinary education as they critically appraise and summarize the state-of-art of relevant research in a field in general or with a specific focus. Both types of reviews have been conducted with different methods for identifying, collecting, and analyzing relevant publications, and they differ in terms of review aim and topic scope, time period, and ways of literature selection. In this review, we systematically analyze journal publications in STEM education research to overview STEM education scholarship development broadly and globally.

The complexity and ambiguity of examining the status and trends in STEM education research

A review of research development in a field is relatively straight forward, when the field is mature and its scope can be well defined. Unlike discipline-based education research (DBER, National Research Council, 2012 ), STEM education is not a well-defined field. Conducting a comprehensive literature review of STEM education research require careful thought and clearly specified scope to tackle the complexity naturally associated with STEM education. In the following sub-sections, we provide some further discussion.

Diverse perspectives about STEM and STEM education

STEM education as explicated by the term does not have a long history. The interest in helping students learn across STEM fields can be traced back to the 1990s when the US National Science Foundation (NSF) formally included engineering and technology with science and mathematics in undergraduate and K-12 school education (e.g., National Science Foundation, 1998 ). It coined the acronym SMET (science, mathematics, engineering, and technology) that was subsequently used by other agencies including the US Congress (e.g., United States Congress House Committee on Science, 1998 ). NSF also coined the acronym STEM to replace SMET (e.g., Christenson, 2011 ; Chute, 2009 ) and it has become the acronym of choice. However, a consensus has not been reached on the disciplines included within STEM.

To clarify its intent, NSF published a list of approved fields it considered under the umbrella of STEM (see http://bit.ly/2Bk1Yp5 ). The list not only includes disciplines widely considered under the STEM tent (called “core” disciplines, such as physics, chemistry, and materials research), but also includes disciplines in psychology and social sciences (e.g., political science, economics). However, NSF’s list of STEM fields is inconsistent with other federal agencies. Gonzalez and Kuenzi ( 2012 ) noted that at least two US agencies, the Department of Homeland Security and Immigration and Customs Enforcement, use a narrower definition that excludes social sciences. Researchers also view integration across different disciplines of STEM differently using various terms such as, multidisciplinary, interdisciplinary, and transdisciplinary (Vasquez, Sneider, & Comer, 2013 ). These are only two examples of the ambiguity and complexity in describing and specifying what constitutes STEM.

Multiple perspectives about the meaning of STEM education adds further complexity to determining the extent to which scholarly activity can be categorized as STEM education. For example, STEM education can be viewed with a broad and inclusive perspective to include education in the individual disciplines of STEM, i.e., science education, technology education, engineering education, and mathematics education, as well as interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines (English, 2016 ; Li, 2014 ). On the other hand, STEM education can be viewed by others as referring only to interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines (Honey, Pearson, & Schweingruber, 2014 ; Johnson, Peters-Burton, & Moore, 2015 ; Kelley & Knowles, 2016 ; Li, 2018a ). These multiple perspectives allow scholars to publish articles in a vast array and diverse journals, as long as journals are willing to take the position as connected with STEM education. At the same time, however, the situation presents considerable challenges for researchers intending to locate, identify, and classify publications as STEM education research. To tackle such challenges, we tried to find out what we can learn from prior reviews related to STEM education.

Guidance from prior reviews related to STEM education

A search for reviews of STEM education research found multiple reviews that could suggest approaches for identifying publications (e.g., Brown, 2012 ; Henderson, Beach, & Finkelstein, 2011 ; Kim, Sinatra, & Seyranian, 2018 ; Margot & Kettler, 2019 ; Minichiello, Hood, & Harkness, 2018 ; Mizell & Brown, 2016 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ). The review conducted by Brown ( 2012 ) examined the research base of STEM education. He addressed the complexity and ambiguity by confining the review with publications in eight journals, two in each individual discipline, one academic research journal (e.g., the Journal of Research in Science Teaching ) and one practitioner journal (e.g., Science Teacher ). Journals were selected based on suggestions from some faculty members and K-12 teachers. Out of 1100 articles published in these eight journals from January 1, 2007, to October 1, 2010, Brown located 60 articles that authors self-identified as connected to STEM education. He found that the vast majority of these 60 articles focused on issues beyond an individual discipline and there was a research base forming for STEM education. In a follow-up study, Mizell and Brown ( 2016 ) reviewed articles published from January 2013 to October 2015 in the same eight journals plus two additional journals. Mizell and Brown used the same criteria to identify and include articles that authors self-identified as connected to STEM education, i.e., if the authors included STEM in the title or author-supplied keywords. In comparison to Brown’s findings, they found that many more STEM articles were published in a shorter time period and by scholars from many more different academic institutions. Taking together, both Brown ( 2012 ) and Mizell and Brown ( 2016 ) tended to suggest that STEM education mainly consists of interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines, but their approach consisted of selecting a limited number of individual discipline-based journals and then selecting articles that authors self-identified as connected to STEM education.

In contrast to reviews on STEM education, in general, other reviews focused on specific issues in STEM education (e.g., Henderson et al., 2011 ; Kim et al., 2018 ; Margot & Kettler, 2019 ; Minichiello et al., 2018 ; Schreffler, Vasquez III, Chini, & James, 2019 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ). For example, the review by Henderson et al. ( 2011 ) focused on instructional change in undergraduate STEM courses based on 191 conceptual and empirical journal articles published between 1995 and 2008. Margot and Kettler ( 2019 ) focused on what is known about teachers’ values, beliefs, perceived barriers, and needed support related to STEM education based on 25 empirical journal articles published between 2000 and 2016. The focus of these reviews allowed the researchers to limit the number of articles considered, and they typically used keyword searches of selected databases to identify articles on STEM education. Some researchers used this approach to identify publications from journals only (e.g., Henderson et al., 2011 ; Margot & Kettler, 2019 ; Schreffler et al., 2019 ), and others selected and reviewed publications beyond journals (e.g., Minichiello et al., 2018 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ).

The discussion in this section suggests possible reasons contributing to the absence of a general literature review of STEM education research and development: (1) diverse perspectives in existence about STEM and STEM education that contribute to the difficulty of specifying a scope of literature review, (2) its short but rapid development history in comparison to other discipline-based education (e.g., science education), and (3) difficulties in deciding how to establish the scope of the literature review. With respect to the third reason, prior reviews have used one of two approaches to identify and select articles: (a) identifying specific journals first and then searching and selecting specific articles from these journals (e.g., Brown, 2012 ; Erduran et al., 2015 ; Mizell & Brown, 2016 ) and (b) conducting selected database searches with keywords based on a specific focus (e.g., Margot & Kettler, 2019 ; Thibaut et al., 2018 ). However, neither the first approach of selecting a limited number of individual discipline-based journals nor the second approach of selecting a specific focus for the review leads to an approach that provides a general overview of STEM education scholarship development based on existing journal publications.

Current review

Two issues were identified in setting the scope for this review.

What time period should be considered?

What publications will be selected for review?

Time period

We start with the easy one first. As discussed above, the acronym STEM did exist until the early 2000s. Although the existence of the acronym does not generate scholarship on student learning in STEM disciplines, it is symbolic and helps focus attention to efforts in STEM education. Since we want to examine the status and trends in STEM education, it is reasonable to start with the year 2000. Then, we can use the acronym of STEM as an identifier in locating specific research articles in a way as done by others (e.g., Brown, 2012 ; Mizell & Brown, 2016 ). We chose the end of 2018 as the end of the time period for our review that began during 2019.

Focusing on publications beyond individual discipline-based journals

As mentioned before, scholars responded to the call for scholarship development in STEM education with publications that appeared in various outlets and diverse languages, including journals, books, and conference proceedings. However, journal publications are typically credited and valued as one of the most important outlets for research exchange (e.g., Erduran et al., 2015 ; Henderson et al., 2011 ; Lin et al., 2019 ; Xu et al., 2019 ). Thus, in this review, we will also focus on articles published in journals in English.

The discourse above on the complexity and ambiguity regarding STEM education suggests that scholars may publish their research in a wide range of journals beyond individual discipline-based journals. To search and select articles from a wide range of journals, we thought about the approach of searching selected databases with keywords as other scholars used in reviewing STEM education with a specific focus. However, existing journals in STEM education do not have a long history. In fact, IJ-STEM is the first journal in STEM education that has just been accepted into the Social Sciences Citation Index (SSCI) (Li, 2019a ). Publications in many STEM education journals are practically not available in several important and popular databases, such as the Web of Science and Scopus. Moreover, some journals in STEM education were not normalized due to a journal’s name change or irregular publication schedule. For example, the Journal of STEM Education was named as Journal of SMET Education when it started in 2000 in a print format, and the journal’s name was not changed until 2003, Vol 4 (3 and 4), and also went fully on-line starting 2004 (Raju & Sankar, 2003 ). A simple Google Scholar search with keywords will not be able to provide accurate information, unless you visit the journal’s website to check all publications over the years. Those added complexities prevented us from taking the database search as a viable approach. Thus, we decided to identify journals first and then search and select articles from these journals. Further details about the approach are provided in the “ Method ” section.

Research questions

Given a broader range of journals and a longer period of time to be covered in this review, we can examine some of the same questions as the IJ-STEM review (Li, Froyd, & Wang, 2019 ), but we do not have access to data on readership, articles accessed, or articles cited for the other journals selected for this review. Specifically, we are interested in addressing the following six research questions:

What were the status and trends in STEM education research from 2000 to the end of 2018 based on journal publications?

What were the patterns of publications in STEM education research across different journals?

Which countries or regions, based on the countries or regions in which authors were located, contributed to journal publications in STEM education?

What were the patterns of single-author and multiple-author publications in STEM education?

What main topics had emerged in STEM education research based on the journal publications?

What research methods did authors tend to use in conducting STEM education research?

Based on the above discussion, we developed the methods for this literature review to follow careful sequential steps to identify journals first and then identify and select STEM education research articles published in these journals from January 2000 to the end of 2018. The methods should allow us to obtain a comprehensive overview about the status and trends of STEM education research based on a systematic analysis of related publications from a broad range of journals and over a longer period of time.

Identifying journals

We used the following three steps to search and identify journals for inclusion:

We assumed articles on research in STEM education have been published in journals that involve more than one traditional discipline. Thus, we used Google to search and identify all education journals with their titles containing either two, three, or all four disciplines of STEM. For example, we did Google search of all the different combinations of three areas of science, mathematics, technology Footnote 1 , and engineering as contained in a journal’s title. In addition, we also searched possible journals containing the word STEAM in the title.

Since STEM education may be viewed as encompassing discipline-based education research, articles on STEM education research may have been published in traditional discipline-based education journals, such as the Journal of Research in Science Teaching . However, there are too many such journals. Yale’s Poorvu Center for Teaching and Learning has listed 16 journals that publish articles spanning across undergraduate STEM education disciplines (see https://poorvucenter.yale.edu/FacultyResources/STEMjournals ). Thus, we selected from the list some individual discipline-based education research journals, and also added a few more common ones such as the Journal of Engineering Education .

Since articles on research in STEM education have appeared in some general education research journals, especially those well-established ones. Thus, we identified and selected a few of those journals that we noticed some publications in STEM education research.

Following the above three steps, we identified 45 journals (see Table  1 ).

Identifying articles

In this review, we will not discuss or define the meaning of STEM education. We used the acronym STEM (or STEAM, or written as the phrase of “science, technology, engineering, and mathematics”) as a term in our search of publication titles and/or abstracts. To identify and select articles for review, we searched all items published in those 45 journals and selected only those articles that author(s) self-identified with the acronym STEM (or STEAM, or written as the phrase of “science, technology, engineering, and mathematics”) in the title and/or abstract. We excluded publications in the sections of practices, letters to editors, corrections, and (guest) editorials. Our search found 798 publications that authors self-identified as in STEM education, identified from 36 journals. The remaining 9 journals either did not have publications that met our search terms or published in another language other than English (see the two separate lists in Table 1 ).

Data analysis

To address research question 3, we analyzed authorship to examine which countries/regions contributed to STEM education research over the years. Because each publication may have either one or multiple authors, we used two different methods to analyze authorship nationality that have been recognized as valuable from our review of IJ-STEM publications (Li, Froyd, & Wang, 2019 ). The first method considers only the corresponding author’s (or the first author, if no specific indication is given about the corresponding author) nationality and his/her first institution affiliation, if multiple institution affiliations are listed. Method 2 considers every author of a publication, using the following formula (Howard, Cole, & Maxwell, 1987 ) to quantitatively assign and estimate each author’s contribution to a publication (and thus associated institution’s productivity), when multiple authors are included in a publication. As an example, each publication is given one credit point. For the publication co-authored by two, the first author would be given 0.6 and the second author 0.4 credit point. For an article contributed jointly by three authors, the three authors would be credited with scores of 0.47, 0.32, and 0.21, respectively.

After calculating all the scores for each author of each paper, we added all the credit scores together in terms of each author’s country/region. For brevity, we present only the top 10 countries/regions in terms of their total credit scores calculated using these two different methods, respectively.

To address research question 5, we used the same seven topic categories identified and used in our review of IJ-STEM publications (Li, Froyd, & Wang, 2019 ). We tested coding 100 articles first to ensure the feasibility. Through test-coding and discussions, we found seven topic categories could be used to examine and classify all 798 items.

K-12 teaching, teacher, and teacher education in STEM (including both pre-service and in-service teacher education)

Post-secondary teacher and teaching in STEM (including faculty development, etc.)

K-12 STEM learner, learning, and learning environment

Post-secondary STEM learner, learning, and learning environments (excluding pre-service teacher education)

Policy, curriculum, evaluation, and assessment in STEM (including literature review about a field in general)

Culture and social and gender issues in STEM education

History, epistemology, and perspectives about STEM and STEM education

To address research question 6, we coded all 798 publications in terms of (1) qualitative methods, (2) quantitative methods, (3) mixed methods, and (4) non-empirical studies (including theoretical or conceptual papers, and literature reviews). We assigned each publication to only one research topic and one method, following the process used in the IJ-STEM review (Li, Froyd, & Wang, 2019 ). When there was more than one topic or method that could have been used for a publication, a decision was made in choosing and assigning a topic or a method. The agreement between two coders for all 798 publications was 89.5%. When topic and method coding discrepancies occurred, a final decision was reached after discussion.

Results and discussion

In the following sections, we report findings as corresponding to each of the six research questions.

The status and trends of journal publications in STEM education research from 2000 to 2018

Figure  1 shows the number of publications per year. As Fig.  1 shows, the number of publications increased each year beginning in 2010. There are noticeable jumps from 2015 to 2016 and from 2017 to 2018. The result shows that research in STEM education had grown significantly since 2010, and the most recent large number of STEM education publications also suggests that STEM education research gained its own recognition by many different journals for publication as a hot and important topic area.

figure 1

The distribution of STEM education publications over the years

Among the 798 articles, there were 549 articles with the word “STEM” (or STEAM, or written with the phrase of “science, technology, engineering, and mathematics”) included in the article’s title or both title and abstract and 249 articles without such identifiers included in the title but abstract only. The results suggest that many scholars tended to include STEM in the publications’ titles to highlight their research in or about STEM education. Figure  2 shows the number of publications per year where publications are distinguished depending on whether they used the term STEM in the title or only in the abstract. The number of publications in both categories had significant increases since 2010. Use of the acronym STEM in the title was growing at a faster rate than using the acronym only in the abstract.

figure 2

The trends of STEM education publications with vs. without STEM included in the title

Not all the publications that used the acronym STEM in the title and/or abstract reported on a study involving all four STEM areas. For each publication, we further examined the number of the four areas involved in the reported study.

Figure  3 presents the number of publications categorized by the number of the four areas involved in the study, breaking down the distribution of these 798 publications in terms of the content scope being focused on. Studies involving all four STEM areas are the most numerous with 488 (61.2%) publications, followed by involving one area (141, 17.7%), then studies involving both STEM and non-STEM (84, 10.5%), and finally studies involving two or three areas of STEM (72, 9%; 13, 1.6%; respectively). Publications that used the acronym STEAM in either the title or abstract were classified as involving both STEM and non-STEM. For example, both of the following publications were included in this category.

Dika and D’Amico ( 2016 ). “Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors.” Journal of Research in Science Teaching , 53 (3), 368–383. (Note: this article focused on early experience in both STEM and Non-STEM majors.)

Sochacka, Guyotte, and Walther ( 2016 ). “Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the Arts) education.” Journal of Engineering Education , 105 (1), 15–42. (Note: this article focused on STEAM (both STEM and Arts).)

figure 3

Publication distribution in terms of content scope being focused on. (Note: 1=single subject of STEM, 2=two subjects of STEM, 3=three subjects of STEM, 4=four subjects of STEM, 5=topics related to both STEM and non-STEM)

Figure  4 presents the number of publications per year in each of the five categories described earlier (category 1, one area of STEM; category 2, two areas of STEM; category 3, three areas of STEM; category 4, four areas of STEM; category 5, STEM and non-STEM). The category that had grown most rapidly since 2010 is the one involving all four areas. Recent growth in the number of publications in category 1 likely reflected growing interest of traditional individual disciplinary based educators in developing and sharing multidisciplinary and interdisciplinary scholarship in STEM education, as what was noted recently by Li and Schoenfeld ( 2019 ) with publications in IJ-STEM.

figure 4

Publication distribution in terms of content scope being focused on over the years

Patterns of publications across different journals

Among the 36 journals that published STEM education articles, two are general education research journals (referred to as “subject-0”), 12 with their titles containing one discipline of STEM (“subject-1”), eight with journal’s titles covering two disciplines of STEM (“subject-2”), six covering three disciplines of STEM (“subject-3”), seven containing the word STEM (“subject-4”), and one in STEAM education (“subject-5”).

Table  2 shows that both subject-0 and subject-1 journals were usually mature journals with a long history, and they were all traditional subscription-based journals, except the Journal of Pre - College Engineering Education Research , a subject-1 journal established in 2011 that provided open access (OA). In comparison to subject-0 and subject-1 journals, subject-2 and subject-3 journals were relatively newer but still had quite many years of history on average. There are also some more journals in these two categories that provided OA. Subject-4 and subject-5 journals had a short history, and most provided OA. The results show that well-established journals had tended to focus on individual disciplines or education research in general. Multidisciplinary and interdisciplinary education journals were started some years later, followed by the recent establishment of several STEM or STEAM journals.

Table 2 also shows that subject-1, subject-2, and subject-4 journals published approximately a quarter each of the publications. The number of publications in subject-1 journals is interested, because we selected a relatively limited number of journals in this category. There are many other journals in the subject-1 category (as well as subject-0 journals) that we did not select, and thus it is very likely that we did not include some STEM education articles published in subject-0 or subject-1 journals that we did not include in our study.

Figure  5 shows the number of publications per year in each of the five categories described earlier (subject-0 through subject-5). The number of publications per year in subject-5 and subject-0 journals did not change much over the time period of the study. On the other hand, the number of publications per year in subject-4 (all 4 areas), subject-1 (single area), and subject-2 journals were all over 40 by the end of the study period. The number of publications per year in subject-3 journals increased but remained less than 30. At first sight, it may be a bit surprising that the number of publications in STEM education per year in subject-1 journals increased much faster than those in subject-2 journals over the past few years. However, as Table 2 indicates these journals had long been established with great reputations, and scholars would like to publish their research in such journals. In contrast to the trend in subject-1 journals, the trend in subject-4 journals suggests that STEM education journals collectively started to gain its own identity for publishing and sharing STEM education research.

figure 5

STEM education publication distribution across different journal categories over the years. (Note: 0=subject-0; 1=subject-1; 2=subject-2; 3=subject-3; 4=subject-4; 5=subject-5)

Figure  6 shows the number of STEM education publications in each journal where the bars are color-coded (yellow, subject-0; light blue, subject-1; green, subject-2; purple, subject-3; dark blue, subject-4; and black, subject-5). There is no clear pattern shown in terms of the overall number of STEM education publications across categories or journals, but very much individual journal-based performance. The result indicates that the number of STEM education publications might heavily rely on the individual journal’s willingness and capability of attracting STEM education research work and thus suggests the potential value of examining individual journal’s performance.

figure 6

Publication distribution across all 36 individual journals across different categories with the same color-coded for journals in the same subject category

The top five journals in terms of the number of STEM education publications are Journal of Science Education and Technology (80 publications, journal number 25 in Fig.  6 ), Journal of STEM Education (65 publications, journal number 26), International Journal of STEM Education (64 publications, journal number 17), International Journal of Engineering Education (54 publications, journal number 12), and School Science and Mathematics (41 publications, journal number 31). Among these five journals, two journals are specifically on STEM education (J26, J17), two on two subjects of STEM (J25, J31), and one on one subject of STEM (J12).

Figure  7 shows the number of STEM education publications per year in each of these top five journals. As expected, based on earlier trends, the number of publications per year increased over the study period. The largest increase was in the International Journal of STEM Education (J17) that was established in 2014. As the other four journals were all established in or before 2000, J17’s short history further suggests its outstanding performance in attracting and publishing STEM education articles since 2014 (Li, 2018b ; Li, Froyd, & Wang, 2019 ). The increase was consistent with the journal’s recognition as the first STEM education journal for inclusion in SSCI starting in 2019 (Li, 2019a ).

figure 7

Publication distribution of selected five journals over the years. (Note: J12: International Journal of Engineering Education; J17: International Journal of STEM Education; J25: Journal of Science Education and Technology; J26: Journal of STEM Education; J31: School Science and Mathematics)

Top 10 countries/regions where scholars contributed journal publications in STEM education

Table  3 shows top countries/regions in terms of the number of publications, where the country/region was established by the authorship using the two different methods presented above. About 75% (depending on the method) of contributions were made by authors from the USA, followed by Australia, Canada, Taiwan, and UK. Only Africa as a continent was not represented among the top 10 countries/regions. The results are relatively consistent with patterns reported in the IJ-STEM study (Li, Froyd, & Wang, 2019 )

Further examination of Table 3 reveals that the two methods provide not only fairly consistent results but also yield some differences. For example, Israel and Germany had more publication credit if only the corresponding author was considered, but South Korea and Turkey had more publication credit when co-authors were considered. The results in Table 3 show that each method has value when analyzing and comparing publications by country/region or institution based on authorship.

Recognizing that, as shown in Fig. 1 , the number of publications per year increased rapidly since 2010, Table  4 shows the number of publications by country/region over a 10-year period (2009–2018) and Table 5 shows the number of publications by country/region over a 5-year period (2014–2018). The ranks in Tables  3 , 4 , and 5 are fairly consistent, but that would be expected since the larger numbers of publications in STEM education had occurred in recent years. At the same time, it is interesting to note in Table 5 some changes over the recent several years with Malaysia, but not Israel, entering the top 10 list when either method was used to calculate author's credit.

Patterns of single-author and multiple-author publications in STEM education

Since STEM education differs from traditional individual disciplinary education, we are interested in determining how common joint co-authorship with collaborations was in STEM education articles. Figure  8 shows that joint co-authorship was very common among these 798 STEM education publications, with 83.7% publications with two or more co-authors. Publications with two, three, or at least five co-authors were highest, with 204, 181, and 157 publications, respectively.

figure 8

Number of publications with single or different joint authorship. (Note: 1=single author; 2=two co-authors; 3=three co-authors; 4=four co-authors; 5=five or more co-authors)

Figure  9 shows the number of publications per year using the joint authorship categories in Fig.  8 . Each category shows an increase consistent with the increase shown in Fig. 1 for all 798 publications. By the end of the time period, the number of publications with two, three, or at least five co-authors was the largest, which might suggest an increase in collaborations in STEM education research.

figure 9

Publication distribution with single or different joint authorship over the years. (Note: 1=single author; 2=two co-authors; 3=three co-authors; 4=four co-authors; 5=five or more co-authors)

Co-authors can be from the same or different countries/regions. Figure  10 shows the number of publications per year by single authors (no collaboration), co-authors from the same country (collaboration in a country/region), and co-authors from different countries (collaboration across countries/regions). Each year the largest number of publications was by co-authors from the same country, and the number increased dramatically during the period of the study. Although the number of publications in the other two categories increased, the numbers of publications were noticeably fewer than the number of publications by co-authors from the same country.

figure 10

Publication distribution in authorship across different categories in terms of collaboration over the years

Published articles by research topics

Figure  11 shows the number of publications in each of the seven topic categories. The topic category of goals, policy, curriculum, evaluation, and assessment had almost half of publications (375, 47%). Literature reviews were included in this topic category, as providing an overview assessment of education and research development in a topic area or a field. Sample publications included in this category are listed as follows:

DeCoito ( 2016 ). “STEM education in Canada: A knowledge synthesis.” Canadian Journal of Science , Mathematics and Technology Education , 16 (2), 114–128. (Note: this article provides a national overview of STEM initiatives and programs, including success, criteria for effective programs and current research in STEM education.)

Ring-Whalen, Dare, Roehrig, Titu, and Crotty ( 2018 ). “From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units.” International Journal of Education in Mathematics Science and Technology , 6 (4), 343–362. (Note: this article investigates the conceptions of integrated STEM education held by in-service science teachers through the use of photo-elicitation interviews and examines how those conceptions were reflected in teacher-created integrated STEM curricula.)

Schwab et al. ( 2018 ). “A summer STEM outreach program run by graduate students: Successes, challenges, and recommendations for implementation.” Journal of Research in STEM Education , 4 (2), 117–129. (Note: the article details the organization and scope of the Foundation in Science and Mathematics Program and evaluates this program.)

figure 11

Frequencies of publications’ research topic distributions. (Note: 1=K-12 teaching, teacher and teacher education; 2=Post-secondary teacher and teaching; 3=K-12 STEM learner, learning, and learning environment; 4=Post-secondary STEM learner, learning, and learning environments; 5=Goals and policy, curriculum, evaluation, and assessment (including literature review); 6=Culture, social, and gender issues; 7=History, philosophy, Epistemology, and nature of STEM and STEM education)

The topic with the second most publications was “K-12 teaching, teacher and teacher education” (103, 12.9%), followed closely by “K-12 learner, learning, and learning environment” (97, 12.2%). The results likely suggest the research community had a broad interest in both teaching and learning in K-12 STEM education. The top three topics were the same in the IJ-STEM review (Li, Froyd, & Wang, 2019 ).

Figure  11 also shows there was a virtual tie between two topics with the fourth most cumulative publications, “post-secondary STEM learner & learning” (76, 9.5%) and “culture, social, and gender issues in STEM” (78, 9.8%), such as STEM identity, students’ career choices in STEM, and inclusion. This result is different from the IJ-STEM review (Li, Froyd, & Wang, 2019 ), where “post-secondary STEM teacher & teaching” and “post-secondary STEM learner & learning” were tied as the fourth most common topics. This difference is likely due to the scope of journals and the length of the time period being reviewed.

Figure  12 shows the number of publications per year in each topic category. As expected from the results in Fig.  11 the number of publications in topic category 5 (goals, policy, curriculum, evaluation, and assessment) was the largest each year. The numbers of publications in topic category 3 (K-12 learner, learning, and learning environment), 1 (K-12 teaching, teacher, and teacher education), 6 (culture, social, and gender issues in STEM), and 4 (post-secondary STEM learner and learning) were also increasing. Although Fig.  11 shows the number of publications in topic category 1 was slightly more than the number of publications in topic category 3 (see Fig.  11 ), the number of publications in topic category 3 was increasing more rapidly in recent years than its counterpart in topic category 1. This may suggest a more rapidly growing interest in K-12 STEM learner, learning, and learning environment. The numbers of publications in topic categories 2 and 7 were not increasing, but the number of publications in IJ-STEM in topic category 2 was notable (Li, Froyd, & Wang, 2019 ). It will be interesting to follow trends in the seven topic categories in the future.

figure 12

Publication distributions in terms of research topics over the years

Published articles by research methods

Figure  13 shows the number of publications per year by research methods in empirical studies. Publications with non-empirical studies are shown in a separate category. Although the number of publications in each of the four categories increased during the study period, there were many more publications presenting empirical studies than those without. For those with empirical studies, the number of publications using quantitative methods increased most rapidly in recent years, followed by qualitative and then mixed methods. Although there were quite many publications with non-empirical studies (e.g., theoretical or conceptual papers, literature reviews) during the study period, the increase of the number of publications in this category was noticeably less than empirical studies.

figure 13

Publication distributions in terms of research methods over the years. (Note: 1=qualitative, 2=quantitative, 3=mixed, 4=Non-empirical)

Concluding remarks

The systematic analysis of publications that were considered to be in STEM education in 36 selected journals shows tremendous growth in scholarship in this field from 2000 to 2018, especially over the past 10 years. Our analysis indicates that STEM education research has been increasingly recognized as an important topic area and studies were being published across many different journals. Scholars still hold diverse perspectives about how research is designated as STEM education; however, authors have been increasingly distinguishing their articles with STEM, STEAM, or related words in the titles, abstracts, and lists of keywords during the past 10 years. Moreover, our systematic analysis shows a dramatic increase in the number of publications in STEM education journals in recent years, which indicates that these journals have been collectively developing their own professional identity. In addition, the International Journal of STEM Education has become the first STEM education journal to be accepted in SSCI in 2019 (Li, 2019a ). The achievement may mark an important milestone as STEM education journals develop their own identity for publishing and sharing STEM education research.

Consistent with our previous reviews (Li, Froyd, & Wang, 2019 ; Li, Wang, & Xiao, 2019 ), the vast majority of publications in STEM education research were contributed by authors from the USA, where STEM and STEAM education originated, followed by Australia, Canada, and Taiwan. At the same time, authors in some countries/regions in Asia were becoming very active in the field over the past several years. This trend is consistent with findings from the IJ-STEM review (Li, Froyd, & Wang, 2019 ). We certainly hope that STEM education scholarship continues its development across all five continents to support educational initiatives and programs in STEM worldwide.

Our analysis has shown that collaboration, as indicated by publications with multiple authors, has been very common among STEM education scholars, as that is often how STEM education distinguishes itself from the traditional individual disciplinary based education. Currently, most collaborations occurred among authors from the same country/region, although collaborations across cross-countries/regions were slowly increasing.

With the rapid changes in STEM education internationally (Li, 2019b ), it is often difficult for researchers to get an overall sense about possible hot topics in STEM education especially when STEM education publications appeared in a vast array of journals across different fields. Our systematic analysis of publications has shown that studies in the topic category of goals, policy, curriculum, evaluation, and assessment have been the most prevalent, by far. Our analysis also suggests that the research community had a broad interest in both teaching and learning in K-12 STEM education. These top three topic categories are the same as in the IJ-STEM review (Li, Froyd, & Wang, 2019 ). Work in STEM education will continue to evolve and it will be interesting to review the trends in another 5 years.

Encouraged by our recent IJ-STEM review, we began this review with an ambitious goal to provide an overview of the status and trends of STEM education research. In a way, this systematic review allowed us to achieve our initial goal with a larger scope of journal selection over a much longer period of publication time. At the same time, there are still limitations, such as the decision to limit the number of journals from which we would identify publications for analysis. We understand that there are many publications on STEM education research that were not included in our review. Also, we only identified publications in journals. Although this is one of the most important outlets for scholars to share their research work, future reviews could examine publications on STEM education research in other venues such as books, conference proceedings, and grant proposals.

Availability of data and materials

The data and materials used and analyzed for the report are publicly available at the various journal websites.

Journals containing the word "computers" or "ICT" appeared automatically when searching with the word "technology". Thus, the word of "computers" or "ICT" was taken as equivalent to "technology" if appeared in a journal's name.

Abbreviations

Information and Communications Technology

International Journal of STEM Education

Kindergarten–Grade 12

Science, Mathematics, Engineering, and Technology

Science, Technology, Engineering, Arts, and Mathematics

Science, Technology, Engineering, and Mathematics

Borrego, M., Foster, M. J., & Froyd, J. E. (2015). What is the state of the art of systematic review in engineering education? Journal of Engineering Education, 104 (2), 212–242. https://doi.org/10.1002/jee.20069 .

Article   Google Scholar  

Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research – a systematic review of recent trends. Computers & Education, 114 , 255–273.

Brown, J. (2012). The current status of STEM education research. Journal of STEM Education: Innovations & Research, 13 (5), 7–11.

Google Scholar  

Christenson, J. (2011). Ramaley coined STEM term now used nationwide . Winona Daily News Retrieved from http://www.winonadailynews.com/news/local/article_457afe3e-0db3-11e1-abe0-001cc4c03286.html Accessed on 16 Jan 2018.

Chute, E. (2009). STEM education is branching out . Pittsburgh Post-Gazette Feb 9, 2009. https://www.post-gazette.com/news/education/2009/02/10/STEM-education-is-branching-out/stories/200902100165 Accessed on 2 Jan 2020.

DeCoito, I. (2016). STEM education in Canada: A knowledge synthesis. Canadian Journal of Science, Mathematics and Technology Education, 16 (2), 114–128.

Dika, S. L., & D'Amico, M. M. (2016). Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors. Journal of Research in Science Teaching, 53 (3), 368–383.

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3 , 3. https://doi.org/10.1186/s4059%204-016-0036-1 .

Erduran, S., Ozdem, Y., & Park, J.-Y. (2015). Research trends on argumentation in science education: A journal content analysis from 1998-2014. International Journal of STEM Education, 2 , 5. https://doi.org/10.1186/s40594-015-0020-1 .

Gonzalez, H. B. & Kuenzi, J. J. (2012). Science, technology, engineering, and mathematics (STEM) education: A primer. CRS report for congress, R42642, https://fas.org/sgp/crs/misc/R42642.pdf Accessed on 2 Jan 2020.

Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 48 (8), 952–984.

Honey, M., Pearson, G., & Schweingruber, A. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research . Washington: National Academies Press.

Howard, G. S., Cole, D. A., & Maxwell, S. E. (1987). Research productivity in psychology based on publication in the journals of the American Psychological Association. American Psychologist, 42 (11), 975–986.

Johnson, C. C., Peters-Burton, E. E., & Moore, T. J. (2015). STEM roadmap: A framework for integration . London: Taylor & Francis.

Book   Google Scholar  

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3 , 11. https://doi.org/10.1186/s40594-016-0046-z .

Kilpatrick, J. (1992). A history of research in mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 3–38). New York: Macmillan.

Kim, A. Y., Sinatra, G. M., & Seyranian, V. (2018). Developing a STEM identity among young women: A social identity perspective. Review of Educational Research, 88 (4), 589–625.

Li, Y. (2014). International journal of STEM education – a platform to promote STEM education and research worldwide. International Journal of STEM Education, 1 , 1. https://doi.org/10.1186/2196-7822-1-1 .

Li, Y. (2018a). Journal for STEM education research – promoting the development of interdisciplinary research in STEM education. Journal for STEM Education Research, 1 (1–2), 1–6. https://doi.org/10.1007/s41979-018-0009-z .

Li, Y. (2018b). Four years of development as a gathering place for international researchers and readers in STEM education. International Journal of STEM Education, 5 , 54. https://doi.org/10.1186/s40594-018-0153-0 .

Li, Y. (2019a). Five years of development in pursuing excellence in quality and global impact to become the first journal in STEM education covered in SSCI. International Journal of STEM Education, 6 , 42. https://doi.org/10.1186/s40594-019-0198-8 .

Li, Y. (2019b). STEM education research and development as a rapidly evolving and international field. 数学教育学报(Journal of Mathematics Education), 28 (3), 42–44.

Li, Y., Froyd, J. E., & Wang, K. (2019). Learning about research and readership development in STEM education: A systematic analysis of the journal’s publications from 2014 to 2018. International Journal of STEM Education, 6 , 19. https://doi.org/10.1186/s40594-019-0176-1 .

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as ‘given’ in STEM education. International Journal of STEM Education, 6 , 44. https://doi.org/10.1186/s40594-019-0197-9 .

Li, Y., Wang, K., & Xiao, Y. (2019). Exploring the status and development trends of STEM education research: A review of research articles in selected journals published between 2000 and 2018. 数学教育学报(Journal of Mathematics Education), 28 (3), 45–52.

Lin, T.-J., Lin, T.-C., Potvin, P., & Tsai, C.-C. (2019). Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. International Journal of Science Education, 41 (3), 367–387.

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM Education, 6 , 2. https://doi.org/10.1186/s40594-018-0151-2 .

Minichiello, A., Hood, J. R., & Harkness, D. S. (2018). Bring user experience design to bear on STEM education: A narrative literature review. Journal for STEM Education Research, 1 (1–2), 7–33.

Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction – what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47 (4), 474–496.

Mizell, S., & Brown, S. (2016). The current status of STEM education research 2013-2015. Journal of STEM Education: Innovations & Research, 17 (4), 52–56.

National Research Council. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering . Washington DC: National Academies Press.

National Science Foundation (1998). Information technology: Its impact on undergraduate education in science, mathematics, engineering, and technology. (NSF 98–82), April 18–20, 1996. http://www.nsf.gov/cgi-bin/getpub?nsf9882 Accessed 16 Jan 2018.

Raju, P. K., & Sankar, C. S. (2003). Editorial. Journal of STEM Education: Innovations & Research, 4 (3&4), 2.

Ring-Whalen, E., Dare, E., Roehrig, G., Titu, P., & Crotty, E. (2018). From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units. International Journal of Education in Mathematics, Science and Technology, 6 (4), 343–362.

Schreffler, J., Vasquez III, E., Chini, J., & James, W. (2019). Universal design for learning in postsecondary STEM education for students with disabilities: A systematic literature review. International Journal of STEM Education, 6 , 8. https://doi.org/10.1186/s40594-019-0161-8 .

Schwab, D. B., Cole, L. W., Desai, K. M., Hemann, J., Hummels, K. R., & Maltese, A. V. (2018). A summer STEM outreach program run by graduate students: Successes, challenges, and recommendations for implementation. Journal of Research in STEM Education, 4 (2), 117–129.

Sochacka, N. W., Guyotte, K. W., & Walther, J. (2016). Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the Arts) education. Journal of Engineering Education, 105 (1), 15–42.

Sokolowski, A., Li, Y., & Willson, V. (2015). The effects of using exploratory computerized environments in grades 1 to 8 mathematics: A meta-analysis of research. International Journal of STEM Education, 2 , 8. https://doi.org/10.1186/s40594-015-0022-z .

Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., Pauw, J. B., Dehaene, W., Deprez, J., De Cock, M., Hellinckx, L., Knipprath, H., Langie, G., Struyven, K., Van de Velde, D., Van Petegem, P., & Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3 (1), 2.

Tsai, C. C., & Wen, L. M. C. (2005). Research and trends in science education from 1998 to 2002: A content analysis of publication in selected journals. International Journal of Science Education, 27 (1), 3–14.

United States Congress House Committee on Science. (1998). The state of science, math, engineering, and technology (SMET) education in America, parts I-IV, including the results of the Third International Mathematics and Science Study (TIMSS): hearings before the Committee on Science, U.S. House of Representatives, One Hundred Fifth Congress, first session, July 23, September 24, October 8 and 29, 1997. Washington: U.S. G.P.O.

Vasquez, J., Sneider, C., & Comer, M. (2013). STEM lesson essentials, grades 3–8: Integrating science, technology, engineering, and mathematics . Portsmouth, NH: Heinemann.

Wu, S. P. W., & Rau, M. A. (2019). How students learn content in science, technology, engineering, and mathematics (STEM) through drawing activities. Educational Psychology Review . https://doi.org/10.1007/s10648-019-09467-3 .

Xu, M., Williams, P. J., Gu, J., & Zhang, H. (2019). Hotspots and trends of technology education in the International Journal of Technology and Design Education: 2000-2018. International Journal of Technology and Design Education . https://doi.org/10.1007/s10798-019-09508-6 .

Download references

Not applicable

Author information

Authors and affiliations.

Texas A&M University, College Station, TX, 77843-4232, USA

Yeping Li & Yu Xiao

Nicholls State University, Thibodaux, LA, 70310, USA

Ohio State University, Columbus, OH, 43210, USA

Jeffrey E. Froyd

You can also search for this author in PubMed   Google Scholar

Contributions

YL conceptualized the study and drafted the manuscript. KW and YX contributed with data collection, coding, and analyses. JEF reviewed drafts and contributed to manuscript revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yeping Li .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Li, Y., Wang, K., Xiao, Y. et al. Research and trends in STEM education: a systematic review of journal publications. IJ STEM Ed 7 , 11 (2020). https://doi.org/10.1186/s40594-020-00207-6

Download citation

Received : 10 February 2020

Accepted : 12 February 2020

Published : 10 March 2020

DOI : https://doi.org/10.1186/s40594-020-00207-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Journal publication
  • Literature review
  • STEM education research

research topics about science education

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Education articles from across Nature Portfolio

Latest research and reviews.

research topics about science education

Exploring the impact of web-based inquiry on elementary school students’ science identity development in a STEM learning unit

  • Xinning Pei

research topics about science education

Forming a new prospective memory intention can reduce prospective memory commission errors

research topics about science education

Predictive analysis of college students’ academic procrastination behavior based on a decision tree model

  • Xiangwei Liu
  • Xiangmei Zhu

research topics about science education

Design and validation of a scale for the assessment of educational competencies in traditional musical games

  • Carmen Fernández Amat
  • Francisco Javier Zarza-Alzugaray
  • Luis del Barrio Aranda

research topics about science education

Grade inflation effects of capacity expansion in higher education: a longitudinal study in undergraduate teacher education programs from 2003 to 2022

  • S. Koza Ciftci
  • Engin Karadag

research topics about science education

Medium- and long-term outcomes of early childhood education: experiences from Turkish large-scale assessments

  • H. Eren Suna
  • Mahmut Ozer

Advertisement

News and Comment

research topics about science education

I want universities to put breastfeeding on their gender pay gap agenda

Unsupportive university policies force parents to make choices about how to feed their baby. Ernestine Gheyoh Ndzi, an expert in employment law and advocate for parental rights in the UK, tells us why this needs to change.

  • Ernestine Gheyoh Ndzi

research topics about science education

All STEM students should learn inclusive science communication

Science communication often assumes a ‘deficit’ in knowledge on behalf of the recipient, but this deficit-based approach is inequitable and ineffective. We must train all STEM (science, technology, engineering and mathematics) students in inclusive science communication, which uses collaboration with diverse people to address misinformation and solve socioscientific issues.

  • Nicole C. Kelp
  • Ashley A. Anderson
  • Joy C. Enyinnaya

research topics about science education

Securing your science: the researcher’s guide to financial management

Lab money management is an important, yet overlooked, professional skill for researchers.

Advancing computational sustainability in higher education

  • Mayank Kejriwal
  • Victoria Petryshyn

research topics about science education

Why female students at an inner London school are seeing scientists in a different light

Julie Gould describes what happened after showing 50 images of working scientists to a bunch of 12–13 year-olds.

  • Julie Gould

research topics about science education

Improving academic mentorship practices

Mentorship from experienced peers critically improves individual career development and satisfaction in academia, but we have little information on how researchers are supported. We identify and recommend strategies for faculty members, departments, institutions and funders to ensure sustained excellence in academic mentorship.

  • Sarvenaz Sarabipour
  • Paul Macklin
  • Natalie M. Niemi

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research topics about science education

Innovations and Technologies in Science/STEM Education: Opportunities, Challenges and Sustainable Practices

Cover image for research topic "Innovations and Technologies in Science/STEM Education: Opportunities, Challenges and Sustainable Practices"

Loading... Editorial 21 March 2024 Editorial: Innovations and technologies in science/STEM education: opportunities, challenges and sustainable practices Wang-Kin Chiu , Hon-Ming Lam  and  Morris Siu-Yung Jong 965 views 0 citations

research topics about science education

Original Research 14 February 2024 Co-making the future: judges’ insights on transdisciplinary creativity and global collaboration in the China-U.S. young maker competition Wei Liu ,  6 more  and  Min Liu 751 views 0 citations

Original Research 07 September 2023 Catalyst for co-construction: the role of AI-directed speech recognition technology in the self-organization of knowledge Niina Halonen ,  3 more  and  Kirsti Lonka 1,572 views 0 citations

Original Research 25 July 2023 3D Printing as an element of teaching—perceptions and perspectives of teachers at German schools Christoph Thyssen  and  Monique Meier 3,229 views 0 citations

Curriculum, Instruction, and Pedagogy 02 June 2023 Teaching beginner-level computational social science: interactive open education resources with learnr and shiny apps Manyu Li 1,305 views 0 citations

Original Research 31 May 2023 The impact of effective study strategy use in an introductory anatomy and physiology class Carla M. Firetto ,  5 more  and  Jon-Philippe K. Hyatt 2,351 views 2 citations

Loading... Original Research 20 April 2023 Insights on mapping Industry 4.0 and Education 4.0 Sourojeet Chakraborty ,  2 more  and  Daniela Galatro 5,144 views 8 citations

Original Research 17 April 2023 The student response on the use of renewable energy graphical interface simulator in learning environment Lavaniya Gopabala Krishnan ,  7 more  and  Mohd Zamri Ibrahim 943 views 0 citations

Original Research 11 April 2023 Multimodality as universality: Designing inclusive accessibility to graphical information Stacy A. Doore ,  3 more  and  Nicholas A. Giudice 2,437 views 2 citations

Review 31 March 2023 Learning from physical and virtual investigation: A meta-analysis of conceptual knowledge acquisition Sifra E. Muilwijk  and  Ard W. Lazonder 2,599 views 1 citations

Curriculum, Instruction, and Pedagogy 17 March 2023 SynBio in 3D: The first synthetic genetic circuit as a 3D printed STEM educational resource Heloísa Oss Boll ,  7 more  and  Cíntia Marques Coelho 3,488 views 1 citations

Loading... Original Research 16 March 2023 Using Minecraft to cultivate student interest in STEM Christine Lourrine S. Tablatin ,  1 more  and  Maria Mercedes T. Rodrigo 5,151 views 3 citations

Original Research 09 December 2022 Measuring the impact of student success retention initiatives for engineering students at a private research university David P. Wick ,  5 more  and  John C. Moosbrugger 1,576 views 0 citations

Trends on Science Education Research Topics in Education Journals

  • January 2021

Konstantinos Karampelas at University of the Aegean

  • University of the Aegean

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Dr. Janet R. Valdez
  • Rosalie Nunag
  • Educ Inform Tech

Endang Widi Winarni

  • Fadhli Omi Raharjo
  • Ratih Komala Dewi

Darmanella Dian Eka Wati

  • Oria Lasmana
  • Heffi Alberida

İsmail Dönmez

  • Fatmana ÖZCAN

Selda Bakır

  • Nadi Suprapto
  • Nurazmi Nurazmi
  • Hartono Bancong

W. Boden Robertson

  • Yueh-Hsia Chang

Chun-Yen C.Y. Chang

  • Kristin Nyberg

Susanne Koerber

  • Gordon Reddiford

Tzung-Jin Lin

  • R. A. Driver

Robin Millar

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up
  • Our Program Divisions
  • Our Three Academies
  • Government Affairs
  • Statement on Diversity and Inclusion
  • Our Study Process
  • Conflict of Interest Policies and Procedures
  • Project Comments and Information
  • Read Our Expert Reports and Published Proceedings
  • Explore PNAS, the Flagship Scientific Journal of NAS
  • Access Transportation Research Board Publications
  • Coronavirus Disease 2019 (COVID-19)
  • Diversity, Equity, and Inclusion
  • Economic Recovery
  • Fellowships and Grants
  • Publications by Division
  • Division of Behavioral and Social Sciences and Education
  • Division on Earth and Life Studies
  • Division on Engineering and Physical Sciences
  • Gulf Research Program
  • Health and Medicine Division
  • Policy and Global Affairs Division
  • Transportation Research Board
  • National Academy of Sciences
  • National Academy of Engineering
  • National Academy of Medicine
  • Publications by Topic
  • Agriculture
  • Behavioral and Social Sciences
  • Biography and Autobiography
  • Biology and Life Sciences
  • Computers and Information Technology
  • Conflict and Security Issues
  • Earth Sciences
  • Energy and Energy Conservation
  • Engineering and Technology
  • Environment and Environmental Studies
  • Food and Nutrition
  • Health and Medicine
  • Industry and Labor
  • Math, Chemistry, and Physics
  • Policy for Science and Technology
  • Space and Aeronautics
  • Surveys and Statistics
  • Transportation and Infrastructure
  • Searchable Collections
  • New Releases

Scientific Research in Education

VIEW LARGER COVER

Scientific Research in Education

Researchers, historians, and philosophers of science have debated the nature of scientific research in education for more than 100 years. Recent enthusiasm for "evidence-based" policy and practice in education—now codified in the federal law that authorizes the bulk of elementary and secondary education programs—have brought a new sense of urgency to understanding the ways in which the basic tenets of science manifest in the study of teaching, learning, and schooling.

Scientific Research in Education describes the similarities and differences between scientific inquiry in education and scientific inquiry in other fields and disciplines and provides a number of examples to illustrate these ideas. Its main argument is that all scientific endeavors share a common set of principles, and that each field—including education research—develops a specialization that accounts for the particulars of what is being studied. The book also provides suggestions for how the federal government can best support high-quality scientific research in education.

RESOURCES AT A GLANCE

  • Press Release
  • Education — Education Research and Theory
  • Education — Math and Science Education

Suggested Citation

National Research Council. 2002. Scientific Research in Education . Washington, DC: The National Academies Press. https://doi.org/10.17226/10236. Import this citation to: Bibtex EndNote Reference Manager

Publication Info

  • Paperback:  978-0-309-08291-4
  • Ebook:  978-0-309-13309-8
Chapters skim
i-xvi
1-10
11-27
28-49
50-79
80-96
97-126
127-157
158-180
181-188

What is skim?

The Chapter Skim search tool presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter. You may select key terms to highlight them within pages of each chapter.

Copyright Information

The National Academies Press (NAP) has partnered with Copyright Clearance Center's Marketplace service to offer you a variety of options for reusing NAP content. Through Marketplace, you may request permission to reprint NAP content in another publication, course pack, secure website, or other media. Marketplace allows you to instantly obtain permission, pay related fees, and print a license directly from the NAP website. The complete terms and conditions of your reuse license can be found in the license agreement that will be made available to you during the online order process. To request permission through Marketplace you are required to create an account by filling out a simple online form. The following list describes license reuses offered by the NAP through Marketplace:

  • Republish text, tables, figures, or images in print
  • Post on a secure Intranet/Extranet website
  • Use in a PowerPoint Presentation
  • Distribute via CD-ROM

Click here to obtain permission for the above reuses. If you have questions or comments concerning the Marketplace service, please contact:

Marketplace Support International +1.978.646.2600 US Toll Free +1.855.239.3415 E-mail: [email protected] marketplace.copyright.com

To request permission to distribute a PDF, please contact our Customer Service Department at [email protected] .

What is a prepublication?

What is a prepublication image

An uncorrected copy, or prepublication, is an uncorrected proof of the book. We publish prepublications to facilitate timely access to the committee's findings.

What happens when I pre-order?

The final version of this book has not been published yet. You can pre-order a copy of the book and we will send it to you when it becomes available. We will not charge you for the book until it ships. Pricing for a pre-ordered book is estimated and subject to change. All backorders will be released at the final established price. As a courtesy, if the price increases by more than $3.00 we will notify you. If the price decreases, we will simply charge the lower price. Applicable discounts will be extended.

Downloading and Using eBooks from NAP

What is an ebook.

An ebook is one of two file formats that are intended to be used with e-reader devices and apps such as Amazon Kindle or Apple iBooks.

Why is an eBook better than a PDF?

A PDF is a digital representation of the print book, so while it can be loaded into most e-reader programs, it doesn't allow for resizable text or advanced, interactive functionality. The eBook is optimized for e-reader devices and apps, which means that it offers a much better digital reading experience than a PDF, including resizable text and interactive features (when available).

Where do I get eBook files?

eBook files are now available for a large number of reports on the NAP.edu website. If an eBook is available, you'll see the option to purchase it on the book page.

View more FAQ's about Ebooks

Types of Publications

Consensus Study Report: Consensus Study Reports published by the National Academies of Sciences, Engineering, and Medicine document the evidence-based consensus on the study’s statement of task by an authoring committee of experts. Reports typically include findings, conclusions, and recommendations based on information gathered by the committee and the committee’s deliberations. Each report has been subjected to a rigorous and independent peer-review process and it represents the position of the National Academies on the statement of task.

Change Password

Your password must have 8 characters or more and contain 3 of the following:.

  • a lower case character, 
  • an upper case character, 
  • a special character 

Password Changed Successfully

Your password has been changed

  • Sign in / Register

Request Username

Can't sign in? Forgot your username?

Enter your email address below and we will send you your username

If the address matches an existing account you will receive an email with instructions to retrieve your username

Recent Research in Science Teaching and Learning

  • Sarah L. Eddy

*Address correspondence to: Sarah L. Eddy ( E-mail Address: [email protected] ).

Department of Biological Sciences, STEM Transformation Institute, Florida International University, Miami, FL 33199

Search for more papers by this author

The Current Insights feature is designed to introduce life science educators and researchers to current articles of interest in other social science and education journals. In this installment, I highlight three diverse research studies: one addresses the relationships between active learning and teaching evaluations; one presents an observation tool for documenting metacognition in the classroom; and the last explores things teachers can say to encourage students to employ scientific reasoning during class discussions.

STUDENT EVALUATIONS AND ACTIVE LEARNING

Henderson, C., Khan, R., & Dancy, M. (2018). Will my student evaluations decrease if I adopt an active learning instructional strategy? American Journal of Physics , 86 (12), 934–942. https://doi.org/10.1119/1.5065907

Student evaluations are widely used and are often the sole source for the evaluation of faculty teaching. As described in the Introduction, fear that one’s student evaluations may decrease is one of the oft-cited reasons for faculty not adopting active-learning techniques. Yet this phenomenon has not been studied on a large scale. Henderson and colleagues test the hypothesis that active learning lowers student evaluations in a population of physics and astronomy instructors who participated in a long-running faculty development workshop. Forty percent (40%) of new physics and astronomy faculty attended this workshop. Of the more than 1300 workshop participants, 431 responded to a follow-up survey. Participants were asked about their use of active-learning methods in their most recent quantitative physics class; whether their student evaluations were impacted by the use of active learning; and whether students complained about the inclusion of active learning. If a faculty member reported a change in student evaluations, he or she was given an opportunity to provide an explanation for that change.

The majority of respondents saw either an increase (48%) or no change in their student evaluations (32%). The subset of instructors who reported receiving lower teaching evaluations also reported substantially less time lecturing than instructors who reported better evaluations. This pattern seemed driven by people using interactive methods for more than 80% of a class period, as this population was more likely to report reduced evaluations. Student complaints followed a similar pattern, with an increase in complaints becoming the most common outcome for instructors using active methods more than 80% of class time.

The reasons shared by instructors for why their evaluations changed were varied. For those who reported their evaluations improving, more than 20% of the instructors thought this increase was due to each of the following: students believing they were learning more, students enjoying class more, students enjoying interacting with one another, or students enjoying using technology. For those who reported lower evaluations, 40% reported that the students felt that the instructor was not teaching. Interestingly, many of these instructors also confessed as part of this comment that they were not good at “selling” the active learning. They next most common explanation given for lower evaluations was that students did not like working during class time; they would rather be listeners.

The results of this study suggest that, for the majority of faculty, adopting active learning will not negatively impact student evaluations. The study also suggests that those instructors concerned about student evaluations could incorporate active-learning activities for as much as 80% of class time and still not be likely to see a negative impact on their evaluations. This could be useful information to share with departmental colleagues and anyone mentoring new faculty who are deciding how to teach. As always, though, some caution should be taken in applying these results in a new context. Specifically, the authors acknowledge that they did not account for what types of active learning instructors implemented. It may be that some methods are more accepted by students than others.

TEACHERS TALKING METACOGNITION

Zepeda, C. D., Hlutkowsky, C. O., Partika, A. C., & Nokes-­Malach, T. J. (2018, October 29). Identifying teachers’ supports of metacognition through classroom talk and its relation to growth in conceptual learning. Journal of Educational Psychology (advance online publication). https://doi.org/10.1037/edu0000300

Metacognition refers to one’s knowledge and awareness of one’s own thought processes. As reviewed in the Introduction, metacognition is considered highly desirable for students, because it has been linked to many positive outcomes in experimental and classroom studies, including achievement, transfer of knowledge from one context to another, and motivation. Although many studies have focused on the use of planned interventions for metacognition, few have looked at what teachers are saying and doing spontaneously in the classroom that might influence student metacognition.

Zepeda and colleagues developed an observation protocol to detect classroom talk directed toward metacognitive growth in middle school students in math classrooms. They identified both the metacognitive content of the talk and the delivery method by documenting four dimensions, each with three possible states: the type of metacognitive knowledge being promoted; the metacognitive skill being worked on; the manner in which the teacher delivered this content; and how specific the metacognitive skill is frame d (from specific to the question being worked on to a more global approach to problem solving). For example, a teacher might say, “Alright, so explain to us what you are doing right now.” This would be coded as personal knowledge, because the student is asked about his or her own process. The skill being worked on would be monitoring, (i.e., being aware of why they are doing what they are doing). The manner in which the teacher delivers the content would be directive, because the teacher is telling the student to do something. The framing could be domain general, because the prompt could be used with any type of problem. I am not going to go further into the individual states for each dimension due to space, but there are lengthy descriptions of them within the original paper.

The authors use this observation tool with one class session from 39 middle school math instructors. The classes were selected from a larger national data set of middle school classrooms. Every class included in this larger data set had math knowledge assessments. The current authors created a smaller data set that included instructors who had the most student growth on the math assessment over a year and a set of instructors who had the least growth after accounting for various student- and instructor-level factors. Each video was transcribed and each teacher statement was examined for metacognitive talk. Any instance of metacognitive talk was coded for the four dimensions in the observation tool.

Overall, there were very few metacognitive statements made by teachers (∼7% of teacher statements), but even with this low overall percentage, there were some interesting patterns. The odds of teachers engaging in metacognitive talk were 4.75 times greater during whole-class activities than during activities done individually by students. In addition, in high math growth classes, the odds of instructors engaging in metacognitive talk were 1.5 times higher than in low math growth classes.

The content of the metacognitive talk differed between these two class types as well. In terms of the knowledge dimension, teachers in the high math growth classes elicited more personal knowledge statements in which students shared their own understanding of what they were doing in class than teachers in the low math growth classes. The high math growth class also had more statements focused on the skills of monitoring and evaluating their own work. In terms of how the metacognitive content was delivered (manner), the high math growth class had more directive statements. Finally, the high math growth classes had more domain-general framing of the metacognitive statements.

This study demonstrates that classroom observations can be used to explore metacognition and that the same methods that work most effectively in interventions designed to promote metacognition may also work more informally during teach talk in class. Although the authors cannot rule out that teachers who are more effective in other ways are also more likely to engage in metacognitive talk, the results do suggest that certain ways and certain content of metacognitive talk is more effective than others.

BUILDING STUDENT’S SCIENTIFIC REASONING IN CONVERSATIONS

Grinath, A. S., & Southerland, S. A. (2018). Applying the ambitious science teaching framework in undergraduate biology: Responsive talk moves that support explanatory rigor. Science Education ,  103 (1), 92–122. https://doi.org/10.1002/sce.21484

Active learning is centered around the idea that it encourages students to engage in their own learning, often through conversations about course content. Yet the quality of these conversations can vary. In this paper, Grinath and Southerland explore how instructors can influence in-class student discussions.

To explore the question of facilitation effects without confounding variables of differences between lessons, content, and students, the authors chose to work with 26 teaching assistants (TAs) instructing sections of the same introductory biology lab for nonmajors at the same university. This controlled both the content being presented to students across instructors and the structure of the lessons, as each TA was provided the same slides and the same training in how to conduct the lab. The laboratory lessons were designed around the Ambitious Science Teaching framework described in the Introduction, which is meant to help students engage in the meaningful practices of their discipline, including scientific dialogue. One aspect of this framework is helping students connect their everyday explanations of their experiences to the scientific principles underlying them, that is, bridging their everyday way of talking and science talk. This initial conversation is thought to help them meaningfully engage in the subsequent lesson. This study focuses on these initial conversations.

Grinath and Southerland recorded the 8- to 22-minute–long class discussions that opened a lab class exploring how organisms respond to stimuli. At the start of class, students were asked to describe how they experience stress and explain what is driving this response. The authors transcribed the recordings and characterized each TA discourse “move,” a statement made by a TA that served a specific communication function. These moves were coded as conservative or ambitious . Conservative patterns follow the traditional classroom pattern, in which the expertise lies with the instructor only. These moves include the instructor asking questions that only have one correct answer, usually about recalling facts or procedures; evaluating a student response as right or wrong; and explaining the connection between the student response and the scientific concept rather than having students make the connection. Ambitious patterns of discourse allow students to be experts, and the instructor is the facilitator. These instructor moves include asking questions with many possible reasonable answers, probing student responses, and pressing students to supply explanations for their answers. Finally, observers also coded TA moves as inclusive or not inclusive . Inclusive moves could include providing opportunities for multiple students to respond to a question, acknowledging a contribution without indicating correctness, and repeating student responses out loud.

The discourse moves were correlated with student talk. Grinath and Southerland used a framework for explanatory rigor of scientific talk to code student responses in the initial class discussion. There were three codes for student answers: fact , observation , and explanation . A turn of student talk was coded as fact if it was short and a vocabulary word or scientific definition not grounded in personal experience. Observations were what a student thought was happening based on personal experience. Finally, explanations were students’ ideas of why something was happening. The goal of ambitious science teaching is to help students start making their own explanations of phenomena grounded in science and their own experiences. Thus, TA discourse moves that promoted student explanations were considered the most important in this study.

Using linear regressions with a Bonferroni correction for multiple comparisons, Grinath and Southerland found that conservative discourse moves by TAs were related to an increase in student responses being simply fact statements. Ambitious questions (with multiple possible answers) did not predict student responses, but ambitious responses in which TAs deliberately probed student response and pressed students to expand on their answers did relate to increased explanations. Finally, inclusive moves together related to increased observations given by students.

This work highlights several interesting principles that could be expanded beyond labs. First, it seems that, without deliberately pressing for it (and removing the instructor’s explanations), students are not making explanations themselves. They offer facts or observations and wait for the instructor to put them together. Yet explaining phenomena is a key scientific practice and one students should develop. Second, how instructors respond to student answers is critical for creating meaningful conversations in the classroom, maybe even more critical than the qualities of the initial question itself.

  • A Critical Feminist Approach for Equity and Inclusion in Undergraduate Biology Education 22 April 2021

research topics about science education

© 2019 S. L. Eddy. CBE—Life Sciences Education © 2019 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  • Browse Works
  • Science Education

Science Education Research Papers/Topics

Technologically-driven education: uncovering the two sides through article analysis.

In this paper, we undertake an article analysis approach to examine the profound shift in education towards a technologically-driven curriculum. We explore the positives and negatives of this transformative phenomenon, while placing particular emphasis on the prescient warnings articulated by Goldin and Katz in "The Race Between Education and Technology." Additionally, we delve into the thought-provoking insights presented by Vidal in "Digital Education: The Approach of a Modern Teacher," spe...

Demographic Aspects In The Use Of Music- Action Integration In Teaching Mitosis

 Music and action integration have been used in a lot of pedagogical studies in the field of science education. This study sought to situate demographic factors such as sex and educational background to teach mitosis. Using the experimental-correlational design, the level of significance was identified using a t-test for the performance based on the pre and post-tests.  Results showed that music-action integration was an effective tool in teaching mitosis compared to the traditional lecture...

ASSESSMENT OF OUTDOOR LEARNING ACTIVITIES IN THE TEACHING OF BASIC SCIENCE AND TECHNOLOGY IN JUNIOR SECONDARY SCHOOLS IN EKITI STATE, NIGERIA

The study identified the outdoor learning activities in Basic Science and Technology (BST) curriculum. The study assessed the extent of the use of outdoor science learning activities in teaching BST in the junior secondary schools in the study area. It further examined the perceived influence of teachers’ use of outdoor learning activities on students’ learning in the study area. This was with a view to providing information on the outdoor science learning activities in BST Curriculum tha...

Effects Of Poverty On The Academic Performance Of Learners In The Selected Secondary Schools Of Manga Division, Manga District Kenya

ABSTRACT The purpose of this study was to establish the effects of poverty on learners' academic performance of the selected schools in Manga Division Manga District Kenya. To specific objectives of the study were to investigate the relationship between the effects mentioned and academic performance in Manga division, and to investigate the role of the community in alleviating poverty and improving education in Manga Division. The methods used for data collection were questionnaires to the st...

Parental Illiteracy And Learners' Academic Perfomance In Ntugi Zone, Abothuguchi Central Division, Merv Central District, Kenya

ABSTRACT Generally, various researcher report have revealed that more highly educated mothers have greater success in providing their children with the cognitive and language skills that contribute to early success in school (Sticht & McDonald, 1990). Also, children of mothers with high levels of education stay in school longer than children of mothers ·with low levels of education. Parental iY(f/uence on the intellectual, social, economic, psychological and moral .formation of children in s...

Effects Of Teaching Learning Resources On Chemistry Performance At "0" Level. Case Study Of Bumuli Division, Bungoma District, Kenya

ABSTRACT This case study was an investigation into the effects of teaching learning resources on chemistry performance at "0" level. The general aim of the study was to find out the impact of teaching learning resources on performance of chemistry in "0" Level. The objectives of the study were to find out the teaching learning resources for chemistry, to determine the effects of lack of teaching learning resources on chemist!)' performance, to find out the attitude of students towards chemis...

IMPACT OF UNIVERSAL PRIMARY EDUCATION ON ACADEMIC PERFORMANCE OF LEARNERS IN THE YEARS OF 2003-2006

TABLE OF CONTENTS Declaration ................................................................................................................................ ii Approval ................................................................................................................................... iii Dedication ................................................................................................................................. .iv Acknowledgement ................................

Impact Of Urbanisation On Wetland Degradation A Case Study Of Nakivubo -Luzira Urban Wetland, Nakawa Division, Kampala City, Uganda

TABLE OF CONTENTSDECLARATION IIIAPPROVAL VDEDICATIONS ViACKNOWLEDGEMENT viiLIST OF ACRONYNIMS viiiABSTRACT ixCHAPTER ONE 11.0 INTRODUCTION 11.1 BAcKGROuND TO THE STUDY 11.2 STATEMENT OF THE PROBLEM 31.3 OBJECTIVES OF THE STUDY 41.4 RESEARCH QUESTIONS 41.5 SCOPE OF THE STUDY 4CHAPTER TWO 52.0 LITERATURE REVIEW 52.1 VALUES AND NATURAL FUNCTIONS OF WETLANDS 52.1.1 Major economic uses 62.1.2 Ecological Functions 72.1.3 Socio~Economic Functions 82.1.4 How valuable are Uganda~ wetlands? 92.2 HuMAN ...

Factors Affecting Physics Performance In Secondary Schools In Buikwe Sub-county, Mu.Kono District

ABSTRACT The researcher, set out to investigate the factors affecting physics performance in Secondary school in Buikwe sub-county, Mukono District, Uganda. The researcher has set out to investigate the background of the study, statement of the problem, hypothesis significance of the study, and scope of the study. The study will benefit all government officials, teachers, parents and especially students m secondary schools. In chapter two relevant study literature has been identified which gu...

The Effects Of Discipline On Students After The Prohibition Of Corporal Punishment In Kenya: A Case Study Of Kiruri Secondary School, Murang’a District -Central Province Kenya

TABLE OF CONTENTS CHAPTER ONE I 1 .0 Introduction 1.1 Background to the study 1 1 .2 Statement of the problem 4 1.3 Purpose of the study 5 1 .4 Objectives of the study 5 1 .5 Research questions 5 1.6 Significance of the study 6 1.7 Scope of the study 6 Definition of Key terms 7 1.9 List of Acronyms 8 CHAPTER TWO 9 LITERATURE REVIEW 9 2.0 Introduction 9 2.2 Historical perspective of students discipline in Kenya 9 2.2 A legal perspective of students discipline in Kenya 12 2,3 Effective of disci...

The Impact Of Students' Poor Performance In Psychics Subject In Kenyan Secondary Schools A Case Study Of Mogotio District-kenya

ABSTRACT The major objective was to find out on the impact of students' poor performance in physics subject in Mogotio district. A total of 60 (sixty) participants, 30 teachers, 10 parents, 15 students and 10 political leaders were involved in the study. The study question was 'nvestigated in line with the research questions of the study. The first research 1uestion sought to find out the causes of poor performance of physics subject if students. The study discovered that; Poor feeding ,Poor ...

A Comparative Study Between Male And Female Students’ Performance In Mathematics In Selected Secondary Schools In Western Uganda. (Hoima District)

ABSTRACT This study was designed to diagnose students’ performance in Mathematics in senior secondary schools in Hoima district. The study centered its review of related literature on task factor on gender difference in mathematics performance, environmental factor as well as process factors in teaching mathematics. Average, percentage and measures of relationship were used as approach to data analysis. The study revealed that task factors, process factors, environmental factors and process...

Home Background And Students’ Academic Performance, A Case Of Selected Secondary Schools In Munarya Sub-county, Kapchorwa District

ABSTRACT This study intended to establish the relationship between home background and academic performance of secondary school students in Munarya sub county, Kapchorwa District. During the study, the data was collected using documentary analysis, already existing literature (secondary and primary data) in comparison with primary sources of data. The study was guided by the following specific aims, To find out the relationship between parental marital status and academic performance, to esta...

Teaching Strategies And Performance Of Teachers in Secondary Schools of Toroma County, Katakwi District, Uganda.

ABSTRACT This research examined teaching strategies and performance of teachers in secondary schools in a sample of Toroma County schools. The research was specifically working on; teaching strategies and relationship between teaching strategies and performance of teachers. The study employed descriptive survey design. Questionnaires were used to get responses from the respondents and researchers observation to confirm already given information. Random sampling was used where four schools wer...

The Effects Of Gender Issues On The Academic Performance Of Learners In Secondary Schools.

ABSTRACT The purpose of the study was to determine the impact of the gender issues on the academic performance of learners in selected schools of Central division , Trans-Nzoia West west district, Kenya. Specific objectives of the study were to: examine the impact of gender on academic performance of learners Central division , Kiambu, Kenya and to examine strategies used by schools to improve on the academic performance of the girls and boys in Waitaluk Secondary School west division. The me...

Popular Papers/Topics

Causes of pupils‟ poor performance in integrated science in selected junior high schools., biology topics perceived as difficult to learn by senior high school biology students in the mampong and ejura-sekyedumase municipalities, the effect of practical work on shs students’ understanding of some selected topics in physics, the impact of using multimedia on students' academic performance in genetics in the brong ahafo region, pre-service science teachers’ competence, self-efficacy believes and readiness levels in ict integration in teaching science, teaching methods and students’ academic performance in genetics., using activity method of teaching to improve upon the performance of shs two home economic students in integrated science at diabene secondary technical school in the western region., using model to teach double indicator titration based on the constructivist approach, using concept maps to enhance the learning of cell biology by first year students of nifa and h’mount sinai senior high schools, the status of the teaching and learning of biology in selected senior high schools in the volta region of ghana, the perception of ict on the teaching and learning of kinematics graphs: a case study, chemistry topic-difficulties perceived by shs students and how they are addressed by their teachers and the prescribed textbooks, using cooperative teaching and learning approach to improve students’ attitudes and achievement in biology: a case study of tamale business senior high school in the northern region of ghana, using jigsaw model to enhance s.h.s chemistry students’ performance in organic compounds’ classification and nomenclature, an investigation into factors that militate against teaching and learning of integrated science at the junior high school level, a survey of ten (10) selected schools in the juaboso district.

Privacy Policy | Refund Policy | Terms | Copyright | © 2024, Afribary Limited. All rights reserved.

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

collage imagery of diverse women working in the field

NSF awards $35M for networks to transform research capacity and competitiveness

The U.S. National Science Foundation has awarded $35 million through the Established Program to Stimulate Competitive Research (EPSCoR) Research Incubators for STEM Excellence Research Infrastructure Improvement (E-RISE RII) to boost research competitiveness, build partnerships across academic institutions and non-academic sectors and create workforce development opportunities. 

E-RISE RII is a new program that aims to further EPSCoR's programmatic goals by developing and implementing sustainable networks of diverse research teams to collaborate on critical jurisdictional research priorities. The program is a response to the 2022 Study of the Established Program to Stimulate Competitive Research , the Envisioning the Future of NSF EPSCoR report and the "CHIPS and Science Act of 2022."

"This investment from NSF's E-RISE RII program powers scientific progress through broad networks of researchers, institutions and organizations that will significantly enhance STEM research capacity in our EPSCoR jurisdictions,” said NSF Director Sethuraman Panchanathan. "We are investing in a future where EPSCoR jurisdictions are even more competitive in the scientific enterprise, both nationally and internationally."

The networks will leverage their partnerships by developing innovative educational plans that address their jurisdictional priorities and help prepare a skilled technical workforce. They will broaden participation in science, technology, engineering and mathematics by requiring the inclusion of members of traditionally underrepresented groups. The teams aim to make sustainable improvements in science for the betterment and economic impact of their jurisdictions’ research and development enterprise.

The awardees and a summary of each project are listed below: 

Enhancing maine forest economy, sustainability, and technology (maine-forest) ecosystem to accelerate innovation.

Led by the University of Maine, this project will build strategic R&D capacity to fuel the dramatic growth of Maine’s forest-based economy and the rural communities it supports. The project will employ innovative and inclusive approaches to participatory system dynamics modeling to leverage stakeholder networks, while yielding new information regarding convergent science. The project’s framework will nurture adaptive community resilience and strengthen the capacity of rural and Indigenous communities to respond to current and future socio-ecological threats and opportunities. 

Collaborating institutions: Bates College, Colby College, University of Maine Fort Kent, University of Maine at Presque Isle, University of Southern Maine, Maine Development Foundation and Maine Mathematics and Science Alliance.

Establishment of the Mississippi Nano-bio and ImmunoEngineering Consortium (NIEC)

This project, spearheaded by the University of Mississippi, will build capacity in Mississippi for use-inspired R&D of advanced polymer materials and for addressing the scientific, engineering and educational training needs of the nano- and biotechnology industries at a time when these industries are experiencing unprecedented growth. The project proposes to create a robust pipeline for next-generation materials by fostering multidisciplinary research teams to iteratively design, synthesize and characterize new materials, while evaluating their impact on delivery efficacy in relevant disease models. In addition to advancing scientific knowledge in biomaterials research — with a focus on pioneering innovations applicable to healthcare, bioengineering and materials science — this project will establish a comprehensive biomaterials research network across Mississippi.

Collaborating institutions: Mississippi State University, Jackson State University, Tougaloo College, Alcorn State University, University of Southern Mississippi and University of Mississippi Medical Center. 

BioNitrogen Economy Research Center (BNERC)

South Dakota State University is leading this project to build sustainable capacity to leverage abundant atmospheric nitrogen gas and solar energy to create a commercially viable, solar-powered "bionitrogen economy" in South Dakota, relying in part on the knowledge and resources of Native communities about agricultural and medicinal indigenous plants. While alleviating environmental issues of nitrogen pollution in a largely agricultural state, the project will also provide alternatives for the commercial production of nitrogen- and carbon-rich biological products, including fertilizers, nutritional proteins and bioplastics. The project will promote workforce development by integrating K-12 outreach, undergraduate and graduate research programs and partnering with tribal communities. 

Collaborating institutions and organizations: Oglala Lakota College, South Dakota School of Mines and Technology, University of South Dakota and Houdek.

Research Center for Distributed Resilient and Emergent-Intelligence-Based Additive Manufacturing (DREAM)

This project, led by New Mexico State University, will enhance New Mexico’s competitive edge in the global manufacturing sector by establishing the groundwork for an advanced distributed intelligent additive manufacturing infrastructure. The project will contribute to fundamental knowledge in advance manufacturing, cybersecurity and machine learning while spurring economic growth in New Mexico and contributing to national efforts to onshore manufacturing. The project will provide an integrated pathway for workforce development in additive manufacturing from middle school to doctoral and postdoctoral levels by intertwining classroom activities with research experience and pedagogical models that promote diversity, inclusion and belonging.

Collaborating institutions: Navajo Technical University, University of New Mexico and New Mexico Institute of Mining and Technology.

Driving AgTech Research and Education in Kentucky (DARE-KY) through Inclusive Network Building, Impactful Research, and Workforce Development for Soilless Food Systems

Led by Kentucky State University, this project will establish an unprecedented, cross-sector research incubator to improve nutrient management, food safety, and sustainability of soilless agriculture in Kentucky, which will lead more diverse and inclusive STEM research and several approaches to understand how nutrient flow through aquaponic systems influences microbial communities and its potential impact on biofilm formation and food safety. The project will enhance workforce development in Kentucky by creating new curricula, integrating research into student learning and developing new work-and-learn opportunities. 

Collaborating institutions: Bluegrass Community and Technical College, University of Pikeville, Kentucky Science and Technology Corporation and FoodChain Inc.

  • Learn more about the E-RISE RII program.

Research areas

Science, technology and innovation

International co-operation on science, technology and innovation pushes the knowledge frontier and accelerates progress towards tackling shared global challenges like climate change and biodiversity loss. The OECD provides data and evidence-based analysis on supporting research and innovation and fostering policies that promote responsible innovation and technology governance for resilient and inclusive societies.

Select a language

Policy issues.

  • Chemical safety and biosafety The chemical industry is one of the largest industrial sectors in the world and is expected to quadruple by 2060. Governments and industry share the responsibility for ensuring safe chemical production and use. The OECD helps countries develop and implement policies for safeguarding human health and the environment, and in making their systems for managing chemicals as efficient as possible. Learn more
  • Science policy Science policy focuses on actions to improve the efficiency and effectiveness of public investment in research. Publicly funded research in universities and research institutes plays an essential role in generating the knowledge that supports evidence-based decision making and underpins technological development. There is increasing policy emphasis on “open science” and the mobilisation of public research to address urgent and complex societal challenges. Learn more
  • Space economy The space economy encompasses all activities and resources that contribute to human progress through the exploration, research, understanding, management, and utilisation of space. The sector provides critical infrastructure on Earth, contributes fundamental scientific data for decision-making, and supports societal well-being. Learn more
  • Technology policy Technological innovation is an engine of human well-being and economic activity, but also raises concerns for individuals and society. Governments use a mix of policies targeting specific technologies to steer their responsible development and use. This includes national plans that provide strategic orientation and support measures for research, innovation and diffusion activities. Policies also promote ethical practice through regulations and guidelines. Learn more

Programmes of work

  • OECD Eurasia Competitiveness Programme Enhancing regional dialogue, competitiveness and improving the business climate. Learn more
  • AI in Work, Innovation, Productivity and Skills The OECD is working with governments around the world to measure and analyse the impact of AI on training needs and labour markets. We aim to help governments to create AI-related policies that are both responsible and human-centred, and that improve the wellbeing of individuals and society as a whole. Learn more

Related publications

research topics about science education

Subscribe to our science, technology and innovation newsletter

Advertisement

Advertisement

Trends and Hot Topics of STEM and STEM Education: a Co-word Analysis of Literature Published in 2011–2020

  • Published: 23 February 2023
  • Volume 33 , pages 1069–1092, ( 2024 )

Cite this article

research topics about science education

  • Ying-Shao Hsu   ORCID: orcid.org/0000-0002-1635-8213 1 , 2 ,
  • Kai-Yu Tang   ORCID: orcid.org/0000-0002-3965-3055 3 &
  • Tzu-Chiang Lin   ORCID: orcid.org/0000-0003-3842-3749 4 , 5  

1090 Accesses

Explore all metrics

This study explored research trends in science, technology, engineering, and mathematics (STEM) education. Descriptive analysis and co-word analysis were used to examine articles published in Social Science Citation Index journals from 2011 to 2020. From a search of the Web of Science database, a total of 761 articles were selected as target samples for analysis. A growing number of STEM-related publications were published after 2016. The most frequently used keywords in these sample papers were also identified. Further analysis identified the leading journals and most represented countries among the target articles. A series of co-word analyses were conducted to reveal word co-occurrence according to the title, keywords, and abstract. Gender moderated engagement in STEM learning and career selection. Higher education was critical in training a STEM workforce to satisfy societal requirements for STEM roles. Our findings indicated that the attention of STEM education researchers has shifted to the professional development of teachers. Discussions and potential research directions in the field are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

research topics about science education

Similar content being viewed by others

research topics about science education

An Integrative Review with Word Cloud Analysis of STEM Education

research topics about science education

A review of STEM education with the support of visualizing its structure through the CiteSpace software

research topics about science education

A systematic review of STEM education research in the GCC countries: trends, gaps and barriers

Data availability.

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Akgunduz, D. (2016). A Research about the placement of the top thousand students placed in STEM fields in Turkey between the years 2000 and 2014. EURASIA Journal of Mathematics, Science and Technology Education, 12 (5), 1365–1377.

Google Scholar  

Appianing, J., & Van Eck, R. N. (2018). Development and validation of the Value-Expectancy STEM Assessment Scale for students in higher education. International Journal of STEM Education , 5 , article 24.

Assefa, S. G., & Rorissa, A. (2013). A bibliometric mapping of the structure of STEM education using co-word analysis. Journal of the American Society for Information Science and Technology, 64 (12), 2513–2536.

Belland, B. R., Walker, A. E., Kim, N. J., & Lefler, M. (2017). Synthesizing results from empirical research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational Research, 87 (2), 309–344.

Brotman, J. S., & Moore, F. M. (2008). Girls and science: A review of four themes in the science education literature. Journal of Research in Science Teaching, 45 (9), 971–1002.

Brown, R. E., & Bogiages, C. A. (2019). Professional development through STEM integration: How early career math and science teachers respond to experiencing integrated STEM tasks. International Journal of Science and Mathematics Education, 17 (1), 111–128.

Burt, B. A., Williams, K. L., & Palmer, G. J. M. (2019). It takes a village: The role of emic and etic adaptive strengths in the persistence of black men in engineering graduate programs. American Educational Research Journal, 56 (1), 39–74.

Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scientometrics, 22 (1), 155–205.

Carlisle, D. L. & Weaver, G. C. (2018). STEM education centers: Catalyzing the improvement of undergraduate STEM education. International Journal of STEM Education, 5 , article 47.

Chang, D. F., & ChangTzeng, H. C. (2020). Patterns of gender parity in the humanities and STEM programs: The trajectory under the expanded higher education system. Studies in Higher Education, 45 (6), 1108–1120.

Charleston, L. J. (2012). A qualitative investigation of African Americans’ decision to pursue computing science degrees: Implications for cultivating career choice and aspiration. Journal of Diversity in Higher Education, 5 (4), 222–243.

Charleston, L. J., George, P. L., Jackson, J. F. L., Berhanu, J., & Amechi, M. H. (2014). Navigating underrepresented STEM spaces: Experiences of black women in US computing science higher education programs who actualize success. Journal of Diversity in Higher Education, 7 (3), 166–176.

Chien, Y. H., & Chu, P. Y. (2018). The different learning outcomes of high school and college students on a 3D-printing STEAM engineering design curriculum. International Journal of Science and Mathematics Education, 16 (6), 1047–1064.

Dehdarirad, T., Villarroya, A., & Barrios, M. (2014). Research trends in gender differences in higher education and science: A co-word analysis. Scientometrics, 101 (1), 273–290.

Dickerson, D. L., Eckhoff, A., Stewart, C. O., Chappell, S., & Hathcock, S. (2014). The examination of a pullout STEM program for urban upper elementary students. Research in Science Education, 44 (3), 483–506.

Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J., & Midgley, C. (1983). Expectancies, values and academic behaviors. In J. T. Spence (Ed.), Achievement and Achievement Motives . W. San Francisco: H. Freeman.

Ellison, S., & Allen, B. (2018). Disruptive innovation, labor markets, and Big Valley STEM School: Network analysis in STEM education. Cultural Studies of Science Education, 13 (1), 267–298.

Erdogan, N., Navruz, B., Younes, R., & Capraro, R. M. (2016). Viewing how STEM project-based learning influences students’ science achievement through the implementation lens: A latent growth modeling. Eurasia Journal of Mathematics, Science and Technology Education, 12 (8), 2139–2154.

European Commission, Directorate-General for Education, Youth, Sport and Culture (2016). Does the EU need more STEM graduates? Final report . Retrieve from https://data.europa.eu/doi/10.2766/000444

Fredricks, J. A., Hofkens, T., Wang, M. T., Mortenson, E., & Scott, P. (2018). Supporting girls’ and boys’ engagement in math and science learning: A mixed methods study. Journal of Research in Science Teaching, 55 (2), 271–298.

Fry, R., Kennedy, B., & Funk, C. (2021). Stem jobs see uneven progress in increasing gender, racial and ethnic diversity. Retrieve from https://www.pewresearch.org/science/wp-content/uploads/sites/16/2021/03/PS_2021.04.01_diversity-in-STEM_REPORT.pdf

Ganley, C. M., George, C. E., Cimpian, J. R., & Makowski, M. B. (2018). Gender equity in college majors: Looking beyond the STEM/non-STEM dichotomy for answers regarding female participation. American Educational Research Journal, 55 (3), 453–487.

Gehrke, S., & Kezar, A. (2019). Perceived outcomes associated with engagement in and design of faculty communities of practice focused on STEM reform. Research in Higher Education, 60 (4), 844–869.

Gilmore, J., Vieyra, M., Timmerman, B., Feldon, D., & Maher, M. (2015). The relationship between undergraduate research participation and subsequent research performance of early career STEM graduate students. Journal of Higher Education, 86 (6), 834–863.

Godwin, A., Potvin, G., Hazari, Z., & Lock, R. (2016). Identity, critical agency, and engineering: An affective model for predicting engineering as a career choice. Journal of Engineering Education, 105 (2), 312–340.

Han, S., Yalvac, B., Capraro, M. M., & Capraro, R. M. (2015). In-service teachers’ implementation and understanding of STEM project based learning. Eurasia Journal of Mathematics Science and Technology Education, 11 (1), 63–76.

Heras, M., Ruiz-Mallén, I., & Gallois, S. (2020). Staging science with young people: Bringing science closer to students through stand-up comedy. International Journal of Science Education, 42 (12), 1968–1987.

Hernandez, P. R., Estrada, M., Woodcock, A., & Schultz, P. W. (2017). Protégé perceptions of high mentorship quality depend on shared values more than on demographic match. Journal of Experimental Education, 85 (3), 450–468.

Hinojo Lucena, F. J., Lopez Belmonte, J., Fuentes Cabrera, A., Trujillo Torres, J. M., & Pozo Sanchez, S. (2020). Academic effects of the use of flipped learning in physical education. International journal of Environmental Research and Public Health , 17 (1), article 276.

Holmes, K., Gore, J., Smith, M., & Lloyd, A. (2018). An integrated analysis of school students’ aspirations for STEM careers: Which student and school factors are most predictive? International Journal of Science and Mathematics Education, 16 (4), 655–675.

Huang, X., & Qiao, C. (2022). Enhancing computational thinking skills through artificial intelligence education at a STEAM high school. Science & Education . https://doi.org/10.1007/s11191-022-00392-6

Article   Google Scholar  

Hughes, R. M., Nzekwe, B., & Molynearx, K. J. (2013). The single sex debate for girls in science: A comparison between two informal science programs on middle school students’ STEM identity formation. Research in Science Education, 43 , 1979–2007.

Hughes, B. S., Corrigan, M. W., Grove, D., Andersen, S. B., & Wong, J. T. (2022). Integrating arts with STEM and leading with STEAM to increase science learning with equity for emerging bilingual learners in the United States. International Journal of STEM Education , 9 , article 58.

Johnson, A. M. (2019). “I can turn it on when I need to”: Pre-college integration, culture, and peer academic engagement among black and Latino/a engineering students. Sociology of Education, 92 (1), 1–20.

Kayan-Fadlelmula, F., Sellami, A., Abdelkader, N., & Umer, S. (2022). A systematic review of STEM education research in the GCC countries: Trends, gaps and barriers. International Journal of STEM Education, 9 , article 2.

Kelly, R., Mc Garr, O., Leahy, K., & Goos, M. (2020). An investigation of university students and professionals’ professional STEM identity status. Journal of Science Education and Technology, 29 (4), 536–546.

Kezar, A., Gehrke, S., & Bernstein-Sierra, S. (2017). Designing for success in STEM communities of practice: Philosophy and personal interactions. The Review of Higher Education, 40 (2), 217–244.

Kezar, A., Gehrke, S., & Bernstein-Sierra, S. (2018). Communities of transformation: Creating changes to deeply entrenched issues. The Journal of Higher Education, 89 (6), 832–864.

Kricorian, K., Seu, M., Lpoez, D., Ureta, E., & Equils, O. (2020). Factors influencing participation of underrepresented students in STEM fields: Matched mentors and mindsets. International Journal of STEM Education, 7 , article 16.

Ku, C. J., Hsu, Y. S., Chang, M. C., & Lin, K. Y. (2022). A model for examining middle school students’ STEM integration behavior in a national technology competition. International Journal of STEM Education, 9 (1), 3.

Leydesdroff, L. (1989). Words and co-words as indicators of intellectual organization. Research Policy, 18 (4), 209–223.

Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020a). Research and trends in STEM education: A systematic review of journal publications. International Journal of STEM Education, 7 , article 11.

Li, Y., Wang, K., Xiao, Y., Froyd, J. E., Nite, S. B. (2020b). Research and trends in STEM education: A systematic analysis of publicly funded projects. International Journal of STEM Education, 7 , article 17.

Lin, T. C., Lin, T. J., & Tsai, C. C. (2014). Research trends in science education from 2008 to 2012: A systematic content analysis of publications in selected journals. International Journal of Science Education, 36 (8), 1346–1372.

Lin, T. J., Lin, T. C., Potvin, P., & Tsai, C. C. (2019). Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. International Journal of Science Education, 41 (3), 367–387.

Lin, T. C., Tang, K. Y., Lin, S. S., Changlai, M. L., & Hsu, Y. S. (2022). A co-word analysis of selected science education literature: Identifying research trends of scaffolding in two decades (2000–2019). Frontiers in Psychology, 13 , 844425.

Liu, J. S., & Lu, L. Y. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the American Society for Information Science and Technology, 63 (3), 528–542.

Liu, C. Y., & Wu, C. J. (2022). STEM without art: A ship without a sail. Thinking Skills and Creativity, 43 , 100977.

Lou, S. H., Shih, R. C., Diez, C. R., & Tseng, K. H. (2011). The impact of problem-based learning strategies on STEM knowledge integration and attitudes: An exploratory study among female Taiwanese senior high school students. International Journal of Technology and Design Education, 21 (2), 195–215.

Lynch, S. J., Burton, E. P., Behrend, T., House, A., Ford, M., Spillane, N., Matray, S., Han, E., & Means, B. (2018). Understanding inclusive STEM high schools as opportunity structures for underrepresented students: Critical components. Journal of Research in Science Teaching, 55 (5), 712–748.

Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The Role of mathematics in interdisciplinary STEM education. ZDM-Mathematics Education, 51 (6), 869–884.

Mansfield, K. C. (2014). How listening to student voices informs and strengthens social justice research and practice. Educational Administration Quarterly, 50 (3), 392–430.

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM education , 6 , article 2.

Marín-Marín, J. A., Moreno-Guerrero, A. J., Dúo-Terrón, P., & López-Belmonte, J. (2021). STEAM in education: A bibliometric analysis of performance and co-words in Web of Science. International Journal of STEM Education , 8 , article 41.

Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A Review of Literature. Science Education, 103 (4), 799–822.

McGee, E. O. (2020). Interrogating structural racism in STEM higher education. Educational Researcher, 49 (9), 633–644.

Meho, L. I., & Yang, K. (2006). A new era in citation and bibliometric analyses: Web of Science, Scopus, and Google Scholar. arXiv preprint cs/0612132 .

Mejias, S., Thompson, N., Sedas, R. M., Rosin, M., Soep, E., Peppler, K., Roche, J., Wong, J., Hurley, M., Bell, P., & Bevan, B. (2021). The trouble with STEAM and why we use it anyway. Science Education, 105 (2), 209–231.

Micari, M., Van Winkle, Z., & Pazos, P. (2016). Among friends: The role of academic-preparedness diversity in individual performance within a small-group STEM learning environment. International Journal of Science Education, 38 (12), 1904–1922.

Millar, V. (2020). Trends, issues and possibilities for an interdisciplinary STEM curriculum. Science & Education, 29 (4), 929–948.

Nadelson, L. S., Callahan, J., Pyke, P., Hay, A., Dance, M., & Pfiester, J. (2013). Teacher STEM perception and preparation: Inquiry-based STEM professional development for elementary teachers. Journal of Educational Research, 106 (2), 157–168.

Nakatoh, T., & Hirokawa, S. (2019, July). Evaluation index to find relevant papers: Improvement of focused citation count. In International Conference on Human-Computer Interaction (pp. 555–566). Springer, Cham.

National Science Technology Council. (2012). Coordinating federal science, technology, engineering, and mathematics (STEM) education investments: Progress report. Retrieved from https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/nstc_federal_stem_education_coordination_report.pdf

National Science Technology Council. (2013). Federal Science, Technology, Engineering, and Mathematics (STEM) Education 5-Year Strategic Plan. Retrieved from https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/stem_stratplan_2013.pdf

Ong, M., Smith, J. M., & Ko, L. T. (2018). Counterspaces for women of color in STEM higher education: Marginal and central spaces for persistence and success. Journal of Research in Science Teaching, 55 (2), 206–245.

Organisation for Economic Cooperation and Development, OECD (2021). Education at A Glance 2021. Retrieve from https://read.oecd.org/10.1787/b35a14e5-en?format=pdf

Perez-Felkner, L., Felkner, J. S., Nix, S., & Magalhaes, M. (2020). The puzzling relationship between international development and gender equity: The case of STEM postsecondary education in Cambodia. International Journal of Educational Development, 72 , 102102.

Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31 , 31–43.

Quigley, C. F., & Herro, D. (2016). “Finding the joy in the unknown”: Implementation of steam teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25 (3), 410–426.

Ramey, K. E., & Stevens, R. (2019). Interest development and learning in choice-based, in-school, making activities: The case of a 3D printer. Learning, Culture and Social Interaction, 23 , 100262.

Salami, M. K., Makela, C. J., & de Miranda, M. A. (2017). Assessing changes in teachers’ attitudes toward interdisciplinary STEM teaching. International Journal of Technology and Design Education, 27 (1), 63–88.

Sanders, M. (2009). Integrative STEM education primer. The Technology Teacher, 68 (4), 20–26.

Saorín, J. L., Melian-Díaz, D., Bonnet, A., Carrera, C. C., Meier, C., & De La Torre-Cantero, J. (2017). Makerspace teaching-learning environment to enhance creative competence in engineering students. Thinking Skills and Creativity, 23 , 188–198.

Simon, R. M., Wagner, A., & Killion, B. (2017). Gender and choosing a STEM major in college: Femininity, masculinity, chilly climate, and occupational values. Journal of Research in Science Teaching, 54 (3), 299–323.

Stolle-McAllister, K., Domingo, M. R. S., & Carrillo, A. (2011). The Meyerhoff way: How the Meyerhoff scholarship program helps black students succeed in the sciences. Journal of Science Education and Technology, 20 (1), 5–16.

Thomas, B., & Watters, J. J. (2015). Perspectives on Australian, Indian and Malaysian approaches to STEM education. International Journal of Educational Development, 45 , 42–53.

Tosun, C. (2022). Analysis of the last 40 years of science education research via bibliometric methods. Science & Education . https://doi.org/10.1007/s11191-022-00400-9

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84 (2), 523–538.

Vencent-Ruz, P., & Schunn, C. D. (2017). The increasingly important role of science competency beliefs for science learning in girls. Journal of Research in Science Teaching, 54 (6), 790–822.

Wang, S., Chen, Y., Lv, X., & Xu, J. (2022). Hot topics and frontier evolution of science education research: A bibliometric mapping from 2001 to 2020. Science & Education . https://doi.org/10.1007/s11191-022-00337-z

Weeden, K. A., Gelbgiser, D., & Morgan, S. L. (2020). Pipeline dreams: Occupational plans and gender differences in STEM major persistence and completion. Sociology of Education, 93 (4), 297–314.

Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25 (1), 68–81.

Download references

Author information

Authors and affiliations.

Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Ting-Jou Rd., Sec. 4, Taipei City, 116, Taiwan

Ying-Shao Hsu

Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, No. 88, Ting-Jou Rd., Sec. 4, Taipei City, 116, Taiwan

Graduate Institute of Library & Information Science, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan

Kai-Yu Tang

Center for Liberal Arts, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist, Kaohsiung City, 807618, Taiwan

Tzu-Chiang Lin

Center for Teacher Education, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist, Kaohsiung City, 807618, Taiwan

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Tzu-Chiang Lin .

Ethics declarations

Ethical approval and consent to participate.

This study involves neither human participants’ data nor relevant biological material. Ethics approval and informed consent are hence not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Hsu, YS., Tang, KY. & Lin, TC. Trends and Hot Topics of STEM and STEM Education: a Co-word Analysis of Literature Published in 2011–2020. Sci & Educ 33 , 1069–1092 (2024). https://doi.org/10.1007/s11191-023-00419-6

Download citation

Accepted : 26 January 2023

Published : 23 February 2023

Issue Date : August 2024

DOI : https://doi.org/10.1007/s11191-023-00419-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • STEM education
  • Co-word analysis
  • Research trends
  • Find a journal
  • Publish with us
  • Track your research
  • MyU : For Students, Faculty, and Staff

College of Science and Engineering

Four new CSE department heads begin in 2024-25

Portrait of four new department heads

They bring a wealth of academic, research, and leadership abilities

MINNEAPOLIS / ST. PAUL (07/01/2024)—University of Minnesota College of Science and Engineering Dean Andrew Alleyne has named four new department heads in the college. All bring a wealth of academic, research, and leadership abilities to their departments.

Department of Chemical Engineering and Materials Science

Professor Kevin Dorfman has been appointed as the new d epartment h ead for the Department of Chemical Engineering and Materials Science (CEMS). Dorfman started his five-year term on July 1, 2024.

Dorfman joined the University of Minnesota faculty in January of 2006 and was quickly promoted up the ranks, receiving tenure in 2011, promotion to professor in 2015, and named a Distinguished McKnight Professor in 2020. He previously served as the director of undergraduate studies in chemical engineering from 2018-2022, where he headed a large-scale revision of the chemical engineering curriculum and saw the department through its most recent ABET accreditation. 

His research focuses on polymer physics and microfluidics, with applications in self-assembly and biotechnology. He is particularly well known for his integrated experimental and computational work on DNA confinement in nanochannels and its application towards genome mapping. Dorfman’s research has been recognized by numerous national awards including the AIChE Colburn Award, Packard Fellowship in Science and Engineering, NSF CAREER Award, and DARPA Young Faculty Award.

Dorfman received a bachelor’s degree in chemical engineering from Penn State and a master’s and Ph.D. in chemical engineering from MIT. 

Department of Industrial and Systems Engineering

Professor Archis  Ghate has been appointed as the new Department Head for the Department of Industrial and Systems Engineering after a national search. Ghate will begin his five-year term on July 8, 2024. 

Ghate is an expert in operations research and most recently served as the Fluor Endowed Chair in the Department of Industrial Engineering at Clemson University. Previously, he was a professor of industrial and systems engineering at the University of Washington. He has won several research and teaching awards, including an NSF CAREER Award. 

Ghate’s research in optimization spans areas as varied as health care, transportation and logistics, manufacturing, economics, and business analytics. He also served as a principal research scientist at Amazon working on supply chain optimization technologies. 

Ghate received bachelor’s and master’s degrees, both in chemical engineering, from the Indian Institute of Technology. He also received a master’s degree in management science and engineering from Stanford University and a Ph.D. in industrial and operations engineering from the University of Michigan.

Department of Mechanical Engineering

Professor Chris Hogan has been appointed as the new department head for the Department of Mechanical Engineering. Hogan started his five-year term on July 1, 2024.

Hogan, who currently holds the Carl and Janet Kuhrmeyer Chair, joined the University of Minnesota in 2009, and since then has taught fluid mechanics and heat transfer to nearly 1,000 undergraduates, advised 25+ Ph.D. students and postdoctoral associates, and served as the department’s director of graduate studies from 2015-2020. He most recently served as associate department head. 

He is a leading expert in particle science with applications including supersonic-to-hypersonic particle impacts with surfaces, condensation and coagulation, agricultural sprays, and virus aerosol sampling and control technologies. He has authored and co-authored more than 160 papers on these topics. He currently serves as the editor-in-chief of the Journal of Aerosol Science . Hogan received the University of Minnesota College of Science and Engineering’s George W. Taylor Award for Distinguished Research in 2023.

Hogan holds a bachelor’s degree Cornell University and a Ph.D. from Washington University in Saint Louis.

School of Physics and Astronomy

Professor James Kakalios   has been appointed   as the new department head for the School of Physics and Astronomy. Kakalios started his five-year term on July 1, 2024.

Since joining the School of Physics and Astronomy in 1988, Kakalios has built a research program in experimental condensed matter physics, with particular emphasis on complex and disordered systems. His research ranges from the nano to the neuro with experimental investigations of the electronic and optical properties of nanostructured semiconductors and fluctuation phenomena in neurological systems.

During his time at the University of Minnesota, Kakalios has served as both director of undergraduate studies and director of graduate studies. He has received numerous awards and professorships including the University’s Taylor Distinguished Professorship, Andrew Gemant Award from the American Institute of Physics, and the Award for Public Engagement with Science from the American Association for the Advancement of Science (AAAS). He is a fellow of both the American Physical Society and AAAS. 

In addition to numerous research publications, Kakalios is the author of three popular science books— The Physics of Superheroes , The Amazing Story of Quantum Mechanics , and The Physics of Everyday Things .

Kaklios received a bachelor’s degree from City College of New York and master’s and Ph.D. degrees from the University of Chicago.

Rhonda Zurn, College of Science and Engineering,  [email protected]

University Public Relations,  [email protected]

Read more stories:

Find more news and feature stories on the  CSE news page .

Related news releases

  • Faculty and grad student earn collegiate awards in 2024
  • U of M Professor Vladimir Sverak elected to the Academy of Arts and Sciences
  • Five CSE faculty members named Distinguished McKnight University Professors
  • CSE Professor Hubert Lim named director of Bakken Medical Devices Center
  • Assistant Professor Zhen Liu receives prestigious Sloan Research Fellowship for early-career researchers
  • Future undergraduate students
  • Future transfer students
  • Future graduate students
  • Future international students
  • Diversity and Inclusion Opportunities
  • Learn abroad
  • Living Learning Communities
  • Mentor programs
  • Programs for women
  • Student groups
  • Visit, Apply & Next Steps
  • Information for current students
  • Departments and majors overview
  • Departments
  • Undergraduate majors
  • Graduate programs
  • Integrated Degree Programs
  • Additional degree-granting programs
  • Online learning
  • Academic Advising overview
  • Academic Advising FAQ
  • Academic Advising Blog
  • Appointments and drop-ins
  • Academic support
  • Commencement
  • Four-year plans
  • Honors advising
  • Policies, procedures, and forms
  • Career Services overview
  • Resumes and cover letters
  • Jobs and internships
  • Interviews and job offers
  • CSE Career Fair
  • Major and career exploration
  • Graduate school
  • Collegiate Life overview
  • Scholarships
  • Diversity & Inclusivity Alliance
  • Anderson Student Innovation Labs
  • Information for alumni
  • Get engaged with CSE
  • Upcoming events
  • CSE Alumni Society Board
  • Alumni volunteer interest form
  • Golden Medallion Society Reunion
  • 50-Year Reunion
  • Alumni honors and awards
  • Outstanding Achievement
  • Alumni Service
  • Distinguished Leadership
  • Honorary Doctorate Degrees
  • Nobel Laureates
  • Alumni resources
  • Alumni career resources
  • Alumni news outlets
  • CSE branded clothing
  • International alumni resources
  • Inventing Tomorrow magazine
  • Update your info
  • CSE giving overview
  • Why give to CSE?
  • College priorities
  • Give online now
  • External relations
  • Giving priorities
  • CSE Dean's Club
  • Donor stories
  • Impact of giving
  • Ways to give to CSE
  • Matching gifts
  • CSE directories
  • Invest in your company and the future
  • Recruit our students
  • Connect with researchers
  • K-12 initiatives
  • Diversity initiatives
  • Research news
  • Give to CSE
  • CSE priorities
  • Corporate relations
  • Information for faculty and staff
  • Administrative offices overview
  • Office of the Dean
  • Academic affairs
  • Finance and Operations
  • Communications
  • Human resources
  • Undergraduate programs and student services
  • CSE Committees
  • CSE policies overview
  • Academic policies
  • Faculty hiring and tenure policies
  • Finance policies and information
  • Graduate education policies
  • Human resources policies
  • Research policies
  • Research overview
  • Research centers and facilities
  • Research proposal submission process
  • Research safety
  • Award-winning CSE faculty
  • National academies
  • University awards
  • Honorary professorships
  • Collegiate awards
  • Other CSE honors and awards
  • Staff awards
  • Performance Management Process
  • Work. With Flexibility in CSE
  • K-12 outreach overview
  • Summer camps
  • Outreach events
  • Enrichment programs
  • Field trips and tours
  • CSE K-12 Virtual Classroom Resources
  • Educator development
  • Sponsor an event

Your browser is not supported

Sorry but it looks as if your browser is out of date. To get the best experience using our site we recommend that you upgrade or switch browsers.

Find a solution

  • Skip to main content
  • Skip to navigation

research topics about science education

  • Back to parent navigation item
  • Collections
  • Sustainability in chemistry
  • Simple rules
  • Teacher well-being hub
  • Women in chemistry
  • Global science
  • Escape room activities
  • Decolonising chemistry teaching
  • Teaching science skills
  • Get the print issue
  • RSC Education

Three cartoons: a female student thinking about concentration, a male student in a wheelchair reading Frankenstein and a female student wearing a headscarf and safety goggles heating a test tube on a bunsen burner. All are wearing school uniform.

  • More navigation items

Vape flavours linked to lung disease

Nina Notman

  • No comments

Researchers predict a long list of harmful compounds that could be produced from heating e-liquids

A preview of the vape flavourings summary slide and questions

Download this

Use this story and the accompanying summary slide for a real-world context when studying esters and thermal decomposition with your 14–18 learners.

Download the story as MS Word or PDF and the summary slide as MS PowerPoint or PDF .

Different brands and flavours of vape juice on a shop shelf

Source: © Jonathan Weiss/Shutterstock

Flavours in vapes are tested for the food industry, which doesn’t consider what happens to their ingredients when vape users heat and inhale them

An artificial intelligence-based approach  predicts hundreds of harmful compounds that could form when vape users heat e-cigarette flavour chemicals in vaping devices. The research adds to mounting evidence concerning the safety of vaping, finding that many of the predicted products released by heating flavours are classed as acutely toxic, health hazards or irritants. What’s more, their impact on health might take years to emerge.

E-cigarettes heat up e-liquids to produce aerosols, which users inhale. There are tens of thousands of different flavour e-liquids on the market containing ingredients picked from at least 180 commercially available flavour compounds. These flavours were originally developed for the food industry and deemed safe for consumption. However, the long-term health risks of heating and inhaling these chemicals remain unknown.

Flavour chemistry

‘The flavours being used in vapes have never been clinically tested for heating to high temperatures with lung inhalation,’ says Donal O’Shea, who led this work at the Royal College of Surgeons in Dublin, Ireland. ‘It is important to quickly get an understanding of the cocktail of chemicals that vape-users’ lungs are being exposed to.’

Donal’s team trained a neural network – a machine-learning model that mimics the human brain – on over 300,000 chemical reactions. It then used this to predict 7307 thermal decomposition products of 180 compounds used as e-liquid flavourings. Further investigation found that 127 of these breakdown products are acutely toxic, 153 are health hazards and 225 are irritants.

Vaping dangers

‘From the compounds predicted, chronic obstructive pulmonary disease, cardiovascular disease and cancers could be expected to arise from prolonged exposures,’ says Donal. ‘The ester flavours are particularly concerning as they produce many reactive carbonyls, alkenes and aromatics and are most popular with a younger demographic.’ Among the e-liquid flavours that have esters in their ingredients are bubblegum, fruit and citrus-based ones.

‘It is crucially important to understand flavourings’ health effects, especially given that users essentially inhale these at a high daily frequency, often for years,’ comments Hanno Erythropel, an analytical chemist who studies e-liquid flavours at Yale University, US. ‘This approach is very interesting and produces results that would never be possible to realise experimentally due to the sheer volume.’

Donal envisages further work to confirm his group’s predictions by comparing them with those from other AI training sets, as well as results from the experimental analysis of vape plumes. ‘We would also like to expand the chemical reactions to include combustion products and predict the potential for catalysis from the metal components found within vaping devices,’ he says.

This article is adapted from James Urquhart’s in Chemistry World .

Nina Notman

A Kishimoto et al, Sci. Rep. 2024,  14 , 9591 ( DOI: 10.1038/s41598-024-59619-x )

A starter slide to use with 14–18 year-old learners to provide context for the study of esters and thermal decomposition: rsc.li/4d5S4q7

Vape flavourings student sheet

Vape flavourings summary slide.

A Kishimoto  et al, Sci. Rep.  2024, 14 , 9591 ( DOI: 10.1038/s41598-024-59619-x )

Nina Notman

More Nina Notman

A person in overalls and protective gloves holding a mass of curled metal strips next to a large pile of the same metal strips

Electrolysis gets a boost from metal scraps

A chemistry teacher and students playing basket ball with electrons from a large atom symbol

Why you and your students should get involved in the Olympiad

A boy with a chemistry symbol on his t-shirt with a tennis racket showing the structure of ethanol hits a ball that says E10

Simply the best – classic questions from UK Chemistry Olympiads

  • Comprehension skills
  • Functional groups
  • Society and ethics

Related articles

A person in overalls and protective gloves holding a mass of curled metal strips next to a large pile of the same metal strips

2024-06-21T08:00:00Z By Nina Notman

Waste metals transformed into catalysts for clean fuel production

A dog playing in a field of narcissus daffodil flowers

Why are some plants poisonous to you and your pets?

2024-05-22T08:16:00Z By Kit Chapman

Dig up the toxic secrets of nature’s blooms

Small bowls of different fermented foods - gherkins, sour cream, kimchi, kombucha, saurkraut

Why fermented foods are good for your gut – and your teaching

2024-04-15T05:30:00Z By Emma Davies

From kimchi to kefir, tuck into the complex chemistry of fermentation and its health potential

No comments yet

Only registered users can comment on this article., more science research.

Stacked spheres showing the molecular structure of a diamond

New method grows larger diamonds

2024-05-31T08:24:00Z By Nina Notman

Use this real-world context when teaching about giant covalent structures

Firefighters in protective silver suits spray a thick white foam from a large hose

PFAS levels in surface and groundwater exposed

2024-05-17T12:45:00Z By Nina Notman

 Are forever chemicals lurking in your water?

A man uses an electric drill and composite materials to make a decking area in a garden

Composite decking can capture carbon dioxide

2024-04-26T08:58:00Z By Nina Notman

Could our choice of patio decking help reduce the global warming effects of building materials?

  • Contributors
  • Print issue
  • Email alerts

Site powered by Webvision Cloud

share this!

June 26, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

New research shows that improving mobile internet service can reduce digital inequality

by Georgia Institute of Technology

using smart phone

New research shows removing data caps to cell phone usage may not only reduce digital inequality but might increase education data consumption by disadvantaged populations.

More than 90% of the U.S. population has internet access. However, many households , particularly those of low socioeconomic status, are "smartphone-dependent," meaning they rely purely on their smartphone for internet access. As a result, their connection may be unstable or slow, and they may be constrained by data caps that limit how much they can use the internet.

This puts them at a disadvantage compared to households with internet access through smartphones and other broadband connections at home and work, perpetuating digital inequality between disadvantaged and advantaged households.

The smartphone dependence of many disadvantaged households begs the question: If mobile internet service was better—e.g., if it was faster, more reliable, and/or didn't come with data constraints—could that reduce digital inequality and level the playing field? Researchers from the Georgia Tech Scheller College of Business and Southern Methodist University Cox School of Business studied this question and found the answer is "yes."

The research paper is forthcoming in Management Science and is available on the SSRN site.

Karthik Kannan, assistant professor of IT and Operations Management at the Cox School of Business and Georgia Tech Ph.D. graduate, led the project. "I was interested in the effect of data caps. For example, when you have 10GB of data per month and use more, you are charged extra, or your connection is throttled," said Kannan.

"So, I partnered with a large telecommunications provider to study what happens when their subscribers switched from capped to unlimited data plans. I was particularly interested in differences between high-income and low-income households."

Kannan, along with Eric Overby, Catherine and Edwin Wahlen Professor of Information Technology Management, and Sri Narasimhan, Gregory J. Owens Professor of Information Technology Management, at the Scheller College of Business, found that while all households increased their data use after switching to an unlimited plan, the increase was significantly larger for families of low socioeconomic status .

"That was our initial finding: that improving mobile internet service by removing the data cap had disproportionately large benefits for disadvantaged households," said Overby. "But that didn't mean much in and of itself. If those households weren't using the additional data for 'enriching' purposes like accessing educational, health care , or career-related data, the additional data consumption wouldn't translate into positive social benefits.

"Indeed, years of research on digital inequality have consistently shown a 'usage gap' in which advantaged households take fuller advantage of internet access improvements than disadvantaged households. The result is that internet improvements often exacerbate inequality. So, we dug deeper."

Specifically, the researchers leveraged the telecommunication provider's data categorization system to study changes in the consumption of educational data. They found that disadvantaged households experienced disproportionate increases in education data consumption (as well as in overall data consumption) after switching to unlimited mobile data.

Although advantaged households increased their education data consumption by approximately 15MB (or about three digital textbooks) per month after switching to unlimited data, disadvantaged households increased their education data consumption by approximately 24MB (or about five digital textbooks) per month.

"We can't be sure that these disproportionate increases in education data consumption will help disadvantaged households narrow gaps in educational outcomes. However, this is clearly a step in the right direction," said Kannan.

The research is directly relevant to the Federal Communications Commission's 2023 inquiry into the effects of data caps on disadvantaged households. Narasimhan explains, "Let's say that based on their inquiry, the FCC decides to limit the use of data caps. A logical question is: will that do any good? In other words, will disadvantaged households take advantage of their improved mobile internet service in a way that can reduce digital inequality? Prior to our research, we didn't really know. But based on our research, the answer is yes."

Journal information: Management Science

Provided by Georgia Institute of Technology

Explore further

Feedback to editors

research topics about science education

Starlings' migratory behavior found to be inherited, not learned

16 hours ago

research topics about science education

Webb captures a staggering quasar-galaxy merger in the remote universe

research topics about science education

Repurposed technology used to probe new regions of Mars' atmosphere

research topics about science education

Evidence shows ancient Saudi Arabia had complex and thriving communities, not struggling people in a barren land

17 hours ago

research topics about science education

Research finds humpbacks were happier during pandemic pause

research topics about science education

Webb admires bejeweled ring of the lensed quasar RX J1131-1231

research topics about science education

Researchers demonstrate economical process for the synthesis and purification of ionic liquids

research topics about science education

New probe reveals water-ice microstructures

research topics about science education

Researchers pioneer new methods in ultrafast science for sharper molecular movies

research topics about science education

How listening for the right buzz keeps mosquitoes from mating with the wrong species

Relevant physicsforums posts, cover songs versus the original track, which ones are better.

4 hours ago

History of Railroad Safety - Spotlight on current derailments

12 hours ago

Oldest cave art discovered in Indonesia: 51,200 years old

Jul 4, 2024

Who is your favorite Jazz musician and what is your favorite song?

Biographies, history, personal accounts.

Jul 3, 2024

Today's Fusion Music: T Square, Cassiopeia, Rei & Kanade Sato

Jun 29, 2024

More from Art, Music, History, and Linguistics

Related Stories

research topics about science education

Many low-income New Yorkers rely on costly cell plans for internet access

Jun 6, 2024

research topics about science education

Survey shows digital divide narrowing in California, but many low-income residents still under-connected

Jan 16, 2024

research topics about science education

More Californians are gaining broadband internet access. But Black and Latino households still lag

Jun 23, 2022

research topics about science education

Study finds affordability, not infrastructure, is major barrier to high-speed internet connectivity

Apr 26, 2024

research topics about science education

Alcohol purchasing patterns of British households changed in COVID-19 lockdowns

Jan 19, 2022

research topics about science education

Despite improved access, digital divide persists for minority, low-income students

Dec 9, 2020

Recommended for you

research topics about science education

Motivated to disagree: What can be learned about rapid polarization from the Israeli judicial reform?

19 hours ago

research topics about science education

Song melodies have become simpler since 1950, study suggests

research topics about science education

Cryptocurrency investors are more likely to self-report 'Dark Tetrad' personality traits, study shows

research topics about science education

Study: More complaints, worse performance when AI monitors employees

Jul 2, 2024

research topics about science education

Watching others' biased behavior unconsciously creates prejudice, finds study

research topics about science education

Understanding the synchronization of physiological states during a live music performance

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

IMAGES

  1. Take a Look at Interesting Research Topics in Education

    research topics about science education

  2. 55 Brilliant Research Topics For STEM Students

    research topics about science education

  3. 130 Excellent Science Research Paper Topics to Consider

    research topics about science education

  4. ⛔ Sample research topics in education. 53 Best Education Dissertation

    research topics about science education

  5. The Ultimate List of Research Topics for Kids

    research topics about science education

  6. The Role of Qualitative Research in Science Education (PDF Download

    research topics about science education

VIDEO

  1. Exploring Science

  2. ពាក្យក្នុងសារព័ត៌មាន៖ Spectacular

  3. STEVE reveals some of its secrets

  4. Pulling ideas from the brain

  5. ពាក្យក្នុងសារព័ត៌មាន៖ Defendant

  6. ពាក្យក្នុងសារព័ត៌មាន៖ Ignite

COMMENTS

  1. 170+ Research Topics In Education (+ Free Webinar)

    Education-Related Research Topics & Ideas. ... Science education topics? Reply. alina on April 17, 2024 at 5:43 pm plz tell me if you got some good topics, im here for finding research topic for masters degree. Reply. Karen Joy Andrade on July 22, 2023 at 11:16 am

  2. PDF Trends on Science Education Research Topics in Education Journals

    Any research conducted already has examined the topics in journals oriented to science education and has shown that in the previous decades, there was more emphasis on teacher education, teaching practices, misconceptions and ICT (Chang et al., 2009; Chin et al., 2018; Penick & Yager, 1986).

  3. How has Science Education changed over the last 100 years? An analysis

    Based on our goal of analyzing the science education research literature over time, we needed a circumscribed literature base that covered an extended number of years. ... (Topic 7), and Teacher Professional Development and Science Teacher Education (Topic 12). Plotting these three topics together (Figure 7), we can see that the journal had an ...

  4. Articles

    Bodil Sundberg. Konrad Schönborn. OriginalPaper Open access 02 October 2023 Pages: 185 - 203. 1. 2. …. 44. Next. Research in Science Education is an international journal publishing and promoting scholarly science education research of interest to a wide group of people. ...

  5. Home

    Research in Science Education is an international journal publishing and promoting scholarly science education research of interest to a wide group of people. The journal examines early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education. In publishing scholarly articles, RISE is looking ...

  6. Research and trends in STEM education: a systematic review of journal

    A recent review of 144 publications in the International Journal of STEM Education (IJ-STEM) showed how scholarship in science, technology, engineering, and mathematics (STEM) education developed between August 2014 and the end of 2018 through the lens of one journal (Li, Froyd, & Wang, 2019).The review of articles published in only one journal over a short period of time prompted the need to ...

  7. Studies in Science Education

    The central aim of Studies in Science Education is topublish review articles of the highest quality which provide analytical syntheses of research into key topics and issues in science education. In addressing this aim, the Editor and Editorial Advisory Board, are guided by a commitment to: publishing articles which serve both to consolidate ...

  8. Topics and Trends in Current Science Education

    This book features 35 of best papers from the 9th European Science Education Research Association Conference, ESERA 2011, held in Lyon, France, September 5th-9th 2011. The ESERA international conference featured some 1,200 participants from Africa, Asia, Australia, Europe as well as North and South America offering insight into the field at the ...

  9. Research trends in science education from 2013 to 2017: a systematic

    The top three research topics, that is, the context of students' learning, science teaching, and students' conceptual learning were still emphasized by researchers in the period of 2013-2017. It is also evident that researchers have undoubtedly changed their preferences of research topics in the three journals within the 2 decades.

  10. Education

    Grade inflation effects of capacity expansion in higher education: a longitudinal study in undergraduate teacher education programs from 2003 to 2022. S. Koza Ciftci. Engin Karadag. Research Open ...

  11. PDF Trends and Issues in Science Education in the New Millennium: A

    Dogan. (Turkey). Trends and Issues in Science Education in the New Millennium. SIEF, Vol.16, No.1, 2023 2378 ing the Journal of Research in Science Teaching (JRST). The JRST is the official journal of the National Association for Research in Science (NARST), a global consortium dedicated to improving science education through research.

  12. Innovations and Technologies in Science/STEM Education ...

    In our digital era, harnessing innovations and emerging technologies to support teaching and learning has been an important research area in the field of education around the world. In science/STEM education, technologies can be leveraged to present and visualize scientific theories and concepts effectively, while the development of pedagogic innovations usually requires collective, inter ...

  13. Trends on Science Education Research Topics in Education Journals

    in these topics, which was boosted by the general trends around science or education (Martin et al, 2011). According to Lin et al (2019), sc ience teaching with the help of ICT attracted great ...

  14. PDF Special Topics In Science Education Research

    Special Topics In Science Education Research is organized into ten (10) dis-tinct sections that provide comprehensive coverage of important topics. The sec-tions are: (1) A Two-Phased Conceptual Test to Help Reveal the Misconceptions About the Topic of "Work", (2) Adaptation of the Teacher Attitudes Towards Self-

  15. Scientific Research in Education

    Researchers, historians, and philosophers of science have debated the nature of scientific research in education for more than 100 years. Recent enthusiasm for "evidence-based" policy and practice in education—now codified in the federal law that authorizes the bulk of elementary and secondary education programs—have brought a new sense of urgency to understanding the ways in which the ...

  16. Recent Research in Science Teaching and Learning

    The Current Insights feature is designed to introduce life science educators and researchers to current articles of interest in other social science and education journals. In this installment, I highlight three diverse research studies: one addresses the relationships between active learning and teaching evaluations; one presents an observation tool for documenting metacognition in the ...

  17. Science Education

    Science Education. Conceptual models (Greca & Moreira, 2000), a construct of science education research, are coherent conceptual structures developed with a view to achieve permanence, to offer facility for understanding phenomena or situations, and to be used for analysis and predictions.

  18. Hot Topics and Frontier Evolution of Science Education Research: a

    4.4 Hot Topics of Science Education Research. Hot topics help to explore the core knowledge nodes of science education research. Figure 5 shows the timeline of the change of hot topics in science education research, including 741 nodes and 8728 lines, forming 7 clusters. In this study, clusters are numbered from 0 to 6, among which cluster 0 is ...

  19. PDF New Trends in Science Education within the 21st Century Skills ...

    Education Research Highlights in Mathematics, Science and Technology 2020 154 In the model, it can easily be seen that STEM Education and 21st century skills are connected to each other and foster themselves. Science Education in 21st Century These sections are given under experiments, technology based apps and distance teaching strategies.

  20. 100 Science Topics for Research Papers

    Science: As a premier publication in the field, Science publishes peer-reviewed research and expert-curated information. Nature: Publishes peer-reviewed articles on biology, environment, health, and physical sciences. Nature is an authoritative source for current information. If articles are difficult to read, you can search for the same ...

  21. Science Education Books and Book Reviews

    Science Education Research Papers/Topics . Technologically-Driven Education: Uncovering the Two Sides Through Article Analysis. In this paper, we undertake an article analysis approach to examine the profound shift in education towards a technologically-driven curriculum. We explore the positives and negatives of this transformative phenomenon ...

  22. NSF awards $35M for networks to transform research capacity and

    The U.S. National Science Foundation has awarded $35 million through the Established Program to Stimulate Competitive Research (EPSCoR) Research Incubators for STEM Excellence Research Infrastructure Improvement (E-RISE RII) to boost research competitiveness, build partnerships across academic institutions and non-academic sectors and create workforce development opportunities.

  23. Science, technology and innovation

    International co-operation on science, technology and innovation pushes the knowledge frontier and accelerates progress towards tackling shared global challenges like climate change and biodiversity loss. The OECD provides data and evidence-based analysis on supporting research and innovation and fostering policies that promote responsible innovation and technology governance for resilient and ...

  24. Researchers unveil comprehensive youth diabetes dataset ...

    A team has developed the most comprehensive epidemiological dataset for youth diabetes and prediabetes research, derived from extensive National Health and Nutrition Examination Survey (NHANES ...

  25. Trends and Hot Topics of STEM and STEM Education: a Co-word ...

    This study explored research trends in science, technology, engineering, and mathematics (STEM) education. Descriptive analysis and co-word analysis were used to examine articles published in Social Science Citation Index journals from 2011 to 2020. From a search of the Web of Science database, a total of 761 articles were selected as target samples for analysis. A growing number of STEM ...

  26. Four new CSE department heads begin in 2024-25

    They bring a wealth of academic, research, and leadership abilitiesMINNEAPOLIS / ST. PAUL (07/01/2024)—University of Minnesota College of Science and Engineering Dean Andrew Alleyne has named four new department heads in the college. All bring a wealth of academic, research, and leadership abilities to their departments.Department of Chemical Engineering and Materials ScienceProfessor Kevin ...

  27. Vaping could cause lung disease

    An artificial intelligence-based approach predicts hundreds of harmful compounds that could form when vape users heat e-cigarette flavour chemicals in vaping devices. The research adds to mounting evidence concerning the safety of vaping, finding that many of the predicted products released by heating flavours are classed as acutely toxic, health hazards or irritants.

  28. New research shows that improving mobile internet service can reduce

    New research shows removing data caps to cell phone usage may not only reduce digital inequality but might increase education data consumption by disadvantaged populations. More than 90% of the U ...