Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

Think Reliability Logo

  • About Cause Mapping®
  • What is Root Cause Analysis?
  • Cause Mapping® Method
  • Cause Mapping® FAQs
  • Why ThinkReliability?
  • Online Workshops
  • On-Demand Training Catalog
  • On-Demand Training Subscription
  • Company Case Study
  • Upcoming Webinars
  • Webinar Archives
  • Public Workshops
  • Private Workshops
  • Cause Mapping Certified Facilitator Program
  • Our Services
  • Facilitation, Consulting, and Coaching
  • Root Cause Analysis Program Development
  • Work Process Reliability™
  • Cause Mapping® Template
  • Root Cause Analysis Examples
  • Video Library
  • Articles and Downloads
  • About ThinkReliability
  • Client List
  • Testimonials

problem-solving.jpg

Problem Solving - 3 Basic Steps

Don't complicate it.

Problems can be confusing. Your problem-solving process shouldn’t make them more confusing. With a variety of different tools available, it’s common for people in the same company to use different approaches and different terminology. This makes problem solving problematic. It shouldn’t be.

Some companies use 5Whys , some use fishbone diagrams , and some categorize incidents into generic buckets like " human error " and " procedure not followed ." Some problem-solving methods have six steps, some have eight steps and some have 14 steps. It’s easy to understand how employees get confused.

6-sigma is another widely recognized problem-solving tool. It has five steps with its own acronym, DMAIC: define, measure, analyze, improve and control. The first two steps are for defining and measuring the problem . The third step is the analysis . And the fourth and fifth steps are improve and control, and address solutions .

3 Basic Steps of Problem Solving

As the name suggests, problem solving starts with a problem and ends with solutions. The step in the middle is the analysis. The level of detail within a problem changes based on the magnitude of an issue, but the basic steps of problem solving remain the same regardless of the type of problem:

Step 1. Problem

Step 2. analysis, step 3. solutions.

But these steps are not necessarily what everyone does. Some groups jump directly to solutions after a hasty problem definition. The analysis step is regularly neglected. Individuals and organizations don’t dig into the details that are essential to understand the issue. In the Cause Mapping® method, the point of root cause analysis is to reveal what happened within an incident—to do that digging.

Step 1. Problem

A complete problem definition consists of several different questions:

  • What is the problem?
  • When did it happen?
  • Where did it happen?
  • What was the total impact to each of the organization’s overall goals?

These four questions capture what individuals see as a problem, along with the specifics about the setting of the issue (the time and place), and, importantly, the overall consequences to the organization. The traditional approach of writing a problem description as a few sentences doesn’t necessarily capture the information needed for a complete definition. Some organizations see their problem as a single effect, but that doesn’t reflect the nature of an actual issue since different negative outcomes can occur within the same incident. Specific pieces of information are captured within each of the four questions to provide a thorough definition of the problem.

The analysis step provides a clear explanation of an issue by breaking it down into parts. A simple way to organize the details of an incident is to make a timeline . Each piece of the incident in placed in chronological order. A timeline is an effective way to understand what happened and when for an issue.

Ultimately, the objective of problem solving is to turn the negative outcomes defined in step 1 into positive results. To do so, the causes that produced the unwanted outcomes must be identified. These causes provide both the explanation of the issue as well as control points for different solution options. This cause-and-effect approach is the basis of explaining and preventing a problem solving. It’s why cause-and-effect thinking is fundamental for troubleshooting, critical thinking and effective root cause analysis.

Many organizations are under-analyzing their problems because they stop at generic categories like procedure not followed, training less than adequate or management systems . This is a mistake. Learning how to dig a littler further, by asking more Why questions, can reveal significant insight about those chronic problems that people have come to accept as normal operations.

A Cause Map™ diagram provides a way for frontline personnel, technical leads and managers to communicate the details of an issue objectively, accurately and thoroughly. A cause-and-effect analysis can begin as a single, linear path that can be expanded into as much detail as needed to fully understand the issue.

Solutions are specific actions that control specific causes to produce specific outcomes. Both short-term and long-term solutions can be identified from a clear and accurate analysis. It is also important for people to understand that every cause doesn’t need to be solved. Most people believe that 15 causes require 15 solutions. That is not true. Changing just one cause along a causal path breaks that chain of events. Providing solutions on more than one causal path provides additional layers of protection to further reduce the risk of a similar issue occurring in the future.

The Basics of Problem Solving Don't Change

These three steps of problem solving can be applied consistently across an organization from frontline troubleshooters to the executives. First principles should be the foundation of a company’s problem-solving culture. Overlooking these basics erodes critical thinking. Even though the fundamentals of cause-and-effect don’t change, organizations and individuals continue to find special adjectives, algorithms and jargon appealing. Teaching too many tools and using contrived terms such as “true root causal factors” is a symptom of ignoring lean principles. Don’t do that which is unnecessary.

Your problems may be complex, but your problem-solving process should be clear and simple. A scientific approach that objectively explains what happened and why (cause and effect) is sound. It’s the basis for understanding and solving a problem – any problem. It works on the farm, in the power plant, at the manufacturing company and at an airline. It works for the cancer researcher and for the auto mechanic. It also works the same way for safety incidents, production losses and equipment failures. Cause and effect doesn’t change. Just test it.

If you’re interested in seeing one of your problems dissected as a Cause Map diagram, send us an email or call the ThinkReliability office. We’ll arrange a call to step through your issue. You can also learn more about improving the way your organization investigates and prevents problems through one of our upcoming online webinars, short courses or workshops .

Want to learn more? Watch our 28-minute video on problem-solving basics.

Share This Post With A Friend

Share on Facebook

Similar Posts

Other resources.

  • Root Cause Analysis blog
  • Patient Safety blog

Facilitate Better Investigations | Attend a Webinar

READ BY - - - - - - - - - -

3m-boxed.png

Other Resources - - - - - - - - - -

three stages of problem solving

Sign Up For Our eNewsletter

lls-logo-main

The Art of Effective Problem Solving: A Step-by-Step Guide

Author's Avatar

Author: Daniel Croft

Daniel Croft is an experienced continuous improvement manager with a Lean Six Sigma Black Belt and a Bachelor's degree in Business Management. With more than ten years of experience applying his skills across various industries, Daniel specializes in optimizing processes and improving efficiency. His approach combines practical experience with a deep understanding of business fundamentals to drive meaningful change.

Whether we realise it or not, problem solving skills are an important part of our daily lives. From resolving a minor annoyance at home to tackling complex business challenges at work, our ability to solve problems has a significant impact on our success and happiness. However, not everyone is naturally gifted at problem-solving, and even those who are can always improve their skills. In this blog post, we will go over the art of effective problem-solving step by step.

You will learn how to define a problem, gather information, assess alternatives, and implement a solution, all while honing your critical thinking and creative problem-solving skills. Whether you’re a seasoned problem solver or just getting started, this guide will arm you with the knowledge and tools you need to face any challenge with confidence. So let’s get started!

Problem Solving Methodologies

Individuals and organisations can use a variety of problem-solving methodologies to address complex challenges. 8D and A3 problem solving techniques are two popular methodologies in the Lean Six Sigma framework.

Methodology of 8D (Eight Discipline) Problem Solving:

The 8D problem solving methodology is a systematic, team-based approach to problem solving. It is a method that guides a team through eight distinct steps to solve a problem in a systematic and comprehensive manner.

The 8D process consists of the following steps:

8D Problem Solving2 - Learnleansigma

  • Form a team: Assemble a group of people who have the necessary expertise to work on the problem.
  • Define the issue: Clearly identify and define the problem, including the root cause and the customer impact.
  • Create a temporary containment plan: Put in place a plan to lessen the impact of the problem until a permanent solution can be found.
  • Identify the root cause: To identify the underlying causes of the problem, use root cause analysis techniques such as Fishbone diagrams and Pareto charts.
  • Create and test long-term corrective actions: Create and test a long-term solution to eliminate the root cause of the problem.
  • Implement and validate the permanent solution: Implement and validate the permanent solution’s effectiveness.
  • Prevent recurrence: Put in place measures to keep the problem from recurring.
  • Recognize and reward the team: Recognize and reward the team for its efforts.

Download the 8D Problem Solving Template

A3 Problem Solving Method:

The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.

The A3 problem-solving procedure consists of the following steps:

  • Determine the issue: Define the issue clearly, including its impact on the customer.
  • Perform root cause analysis: Identify the underlying causes of the problem using root cause analysis techniques.
  • Create and implement a solution: Create and implement a solution that addresses the problem’s root cause.
  • Monitor and improve the solution: Keep an eye on the solution’s effectiveness and make any necessary changes.

Subsequently, in the Lean Six Sigma framework, the 8D and A3 problem solving methodologies are two popular approaches to problem solving. Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.

Step 1 – Define the Problem

The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause. To avoid this pitfall, it is critical to thoroughly understand the problem.

To begin, ask yourself some clarifying questions:

  • What exactly is the issue?
  • What are the problem’s symptoms or consequences?
  • Who or what is impacted by the issue?
  • When and where does the issue arise?

Answering these questions will assist you in determining the scope of the problem. However, simply describing the problem is not always sufficient; you must also identify the root cause. The root cause is the underlying cause of the problem and is usually the key to resolving it permanently.

Try asking “why” questions to find the root cause:

  • What causes the problem?
  • Why does it continue?
  • Why does it have the effects that it does?

By repeatedly asking “ why ,” you’ll eventually get to the bottom of the problem. This is an important step in the problem-solving process because it ensures that you’re dealing with the root cause rather than just the symptoms.

Once you have a firm grasp on the issue, it is time to divide it into smaller, more manageable chunks. This makes tackling the problem easier and reduces the risk of becoming overwhelmed. For example, if you’re attempting to solve a complex business problem, you might divide it into smaller components like market research, product development, and sales strategies.

To summarise step 1, defining the problem is an important first step in effective problem-solving. You will be able to identify the root cause and break it down into manageable parts if you take the time to thoroughly understand the problem. This will prepare you for the next step in the problem-solving process, which is gathering information and brainstorming ideas.

Step 2 – Gather Information and Brainstorm Ideas

Brainstorming - Learnleansigma

Gathering information and brainstorming ideas is the next step in effective problem solving. This entails researching the problem and relevant information, collaborating with others, and coming up with a variety of potential solutions. This increases your chances of finding the best solution to the problem.

Begin by researching the problem and relevant information. This could include reading articles, conducting surveys, or consulting with experts. The goal is to collect as much information as possible in order to better understand the problem and possible solutions.

Next, work with others to gather a variety of perspectives. Brainstorming with others can be an excellent way to come up with new and creative ideas. Encourage everyone to share their thoughts and ideas when working in a group, and make an effort to actively listen to what others have to say. Be open to new and unconventional ideas and resist the urge to dismiss them too quickly.

Finally, use brainstorming to generate a wide range of potential solutions. This is the place where you can let your imagination run wild. At this stage, don’t worry about the feasibility or practicality of the solutions; instead, focus on generating as many ideas as possible. Write down everything that comes to mind, no matter how ridiculous or unusual it may appear. This can be done individually or in groups.

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the next step in the problem-solving process, which we’ll go over in greater detail in the following section.

Step 3 – Evaluate Options and Choose the Best Solution

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the third step in effective problem solving, and it entails weighing the advantages and disadvantages of each solution, considering their feasibility and practicability, and selecting the solution that is most likely to solve the problem effectively.

To begin, weigh the advantages and disadvantages of each solution. This will assist you in determining the potential outcomes of each solution and deciding which is the best option. For example, a quick and easy solution may not be the most effective in the long run, whereas a more complex and time-consuming solution may be more effective in solving the problem in the long run.

Consider each solution’s feasibility and practicability. Consider the following:

  • Can the solution be implemented within the available resources, time, and budget?
  • What are the possible barriers to implementing the solution?
  • Is the solution feasible in today’s political, economic, and social environment?

You’ll be able to tell which solutions are likely to succeed and which aren’t by assessing their feasibility and practicability.

Finally, choose the solution that is most likely to effectively solve the problem. This solution should be based on the criteria you’ve established, such as the advantages and disadvantages of each solution, their feasibility and practicability, and your overall goals.

It is critical to remember that there is no one-size-fits-all solution to problems. What is effective for one person or situation may not be effective for another. This is why it is critical to consider a wide range of solutions and evaluate each one based on its ability to effectively solve the problem.

Step 4 – Implement and Monitor the Solution

Communication the missing peice from Lean Six Sigma - Learnleansigma

When you’ve decided on the best solution, it’s time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments.

To begin, implement the solution. This may entail delegating tasks, developing a strategy, and allocating resources. Ascertain that everyone involved understands their role and responsibilities in the solution’s implementation.

Next, keep an eye on the solution’s progress. This may entail scheduling regular check-ins, tracking metrics, and soliciting feedback from others. You will be able to identify any potential roadblocks and make any necessary adjustments in a timely manner if you monitor the progress of the solution.

Finally, make any necessary modifications to the solution. This could entail changing the solution, altering the plan of action, or delegating different tasks. Be willing to make changes if they will improve the solution or help it solve the problem more effectively.

It’s important to remember that problem solving is an iterative process, and there may be times when you need to start from scratch. This is especially true if the initial solution does not effectively solve the problem. In these situations, it’s critical to be adaptable and flexible and to keep trying new solutions until you find the one that works best.

To summarise, effective problem solving is a critical skill that can assist individuals and organisations in overcoming challenges and achieving their objectives. Effective problem solving consists of four key steps: defining the problem, generating potential solutions, evaluating alternatives and selecting the best solution, and implementing the solution.

You can increase your chances of success in problem solving by following these steps and considering factors such as the pros and cons of each solution, their feasibility and practicability, and making any necessary adjustments. Furthermore, keep in mind that problem solving is an iterative process, and there may be times when you need to go back to the beginning and restart. Maintain your adaptability and try new solutions until you find the one that works best for you.

  • Novick, L.R. and Bassok, M., 2005.  Problem Solving . Cambridge University Press.

Was this helpful?

Picture of Daniel Croft

Daniel Croft

Daniel Croft is a seasoned continuous improvement manager with a Black Belt in Lean Six Sigma. With over 10 years of real-world application experience across diverse sectors, Daniel has a passion for optimizing processes and fostering a culture of efficiency. He's not just a practitioner but also an avid learner, constantly seeking to expand his knowledge. Outside of his professional life, Daniel has a keen Investing, statistics and knowledge-sharing, which led him to create the website www.learnleansigma.com, a platform dedicated to Lean Six Sigma and process improvement insights.

The Role of P-Value In Lean Six Sigma

The Role of P-Value in Lean Six Sigma

5S Floor marking best practice - Feature Image - Learn Lean Sigma

5S Floor Marking Best Practices

Free lean six sigma templates.

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

Practice Exams-Sidebar

In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…

How to Measure the ROI of Continuous Improvement Initiatives

When it comes to business, knowing the value you’re getting for your money is crucial,…

8D Problem-Solving: Common Mistakes to Avoid

In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…

The Evolution of 8D Problem-Solving: From Basics to Excellence

In a world where efficiency and effectiveness are more than just buzzwords, the need for…

8D: Tools and Techniques

Are you grappling with recurring problems in your organization and searching for a structured way…

How to Select the Right Lean Six Sigma Projects: A Comprehensive Guide

Going on a Lean Six Sigma journey is an invigorating experience filled with opportunities for…

Join our FREE training and learn the 5 things you can do to become a top 1% facilitator

What is problem-solving and how to do it right steps, processes, exercises.

The better your problem-solving skills are, the better (and easier!) your life will be. Organized problem-solving is a killer career skill - learn all about it here.

Whether we’re trying to solve a technical problem at work, or trying to navigate around a roadblock that Google Maps doesn’t see – most people are problem-solving every single day . 

But how effective are you at tackling the challenges in your life? Do you have a bullet-proof process you follow that ensures solid outcomes, or... Do you act on a whim of inspiration (or lack thereof) to resolve your pressing problems?

Here’s the thing: the better your problem-solving skills are - the better (and easier!) your life will be (both professionally and personally). Organized problem-solving is a killer career (and life!) skill, so if you want to learn how to do it in the most efficient way possible, you’ve come to the right place.  

Read along to learn more about the steps, techniques and exercises of the problem-solving process.

  • 1. Do you want a Career in UX? 
  •  Learn the Principles of UX Design
  • Master a UX Design Tool ‍

What is Problem-Solving?

We’re faced with the reality of having to solve problems every day, both in our private and professional lives. So why do we even need to learn about problem-solving? Aren’t we versed in it well enough already?

Well, what separates problem-solving from dealing with the usual day-to-day issues is that it’s a distinct process that allows you to go beyond the standard approaches to solving a problem and allows you to come up with more effective and efficient solutions. Or in other words, problem-solving allows you to knock out those problems with less effort. 

Just like with any other skill, there’s an efficient way to solve problems, and a non-efficient one. While it might be tempting to go for the quickest fix for your challenge without giving it much thought, it will only end up costing you more time down the road. Quick fixes are rarely (if ever!) effective and end up being massive time wasters. 

What separates problem-solving from dealing with the usual day-to-day issues is that it’s a distinct process that allows you to go beyond the standard approaches to solving a problem and allows you to come up with more effective and efficient solutions.

On the other hand, following a systemized clear process for problem-solving allows you to shortcut inefficiencies and time-wasters, turn your challenges into opportunities, and tackle problems of any scope without the usual stress and hassle. 

What is the process that you need to follow, then? We’re glad you asked...

The Five Stages of Problem-Solving

So what’s the best way to move through the problem-solving process? There’s a 5-step process that you can follow that will allow you to solve your challenges more efficiently and effectively. In short, you need to move through these 5 steps: 

  • Defining a problem
  • Ideating on a solution
  • Committing to a course of action
  • Implementing your solution
  • And finally – analyzing the results. 

The 5 stages of problem-solving

Let’s look at each of those stages in detail.

Step 1: Defining The Problem

The first step might sound obvious, but trust us, you don’t want to skip it! Clearly defining and framing your challenge will help you guide your efforts and make sure you’re focussing on the things that matter, instead of being distracted by a myriad of other options, problems and issues that come up. 

For once, you have to make sure you’re trying to solve the root cause, and not trying to mend the symptoms of it. For instance, if you keep losing users during your app onboarding process, you might jump to the conclusion that you need to tweak the process itself: change the copy, the screens, or the sequence of steps.

But unless you have clear evidence that confirms your hypothesis, your challenge might have an entirely different root cause, e.g. in confusing marketing communication prior to the app download. 

Clearly defining and framing your challenge will help you guide your efforts and make sure you’re focussing on the things that matter, all the while ensuring that you’re trying to solve the root cause, and not trying to mend the symptoms of it

That’s why it’s essential you take a close look at the entire problem, not just at a fraction of it.

There are several exercises that can help you get a broader, more holistic view of the problem, some of our all-time favorites include Expert Interviews, How Might We, or The Map. Check out the step-by-step instructions on how to run them (along with 5 more exercises for framing your challenge!) here. 

When in doubt, map out your challenge, and always try to tackle the bottlenecks that are more upstream - it’s likely that solving them will solve a couple of other challenges down the flow.

You also have to be mindful of how you frame the challenge: resist the urge to include a pre-defined solution into your problem statement. Priming your solutions to a predestined outcome destroys the purpose of following a step-by-step process in the first place!  

Steer clear of formulations like:

We need to change the onboarding process... or We need to improve ad copy to increase conversions. 

Instead, opt for more neutral, problem-oriented statements that don’t include a solution suggestion in them:

The drop off rate during the onboarding process is too high or Our ad conversion rates are below the norm.

Pro tip: Reframing your challenge as a ‘How Might We’ statement is a great way to spark up new ideas, opening your problem to a broader set of solutions, and is just a great way to reframe your problem into a more positive statement (without implying the possible solution!)

For example, following the onboarding drop-off rate problem we mentioned earlier, instead of framing it as a problem, you could opt for:

How Might We decrease the drop-off rate during the onboarding process? 

Find out more about the best exercises for problem framing here!

Now that you have a clear idea of what you’re trying to solve, it’s move on to the next phase of the problem-solving process.

Learn more about facilitation and workshopping in our FREE FACILITATION COMMUNITY

Step 2: ideating a solution.

Get ready to roll up your sleeves and challenge the status quo! This step of the problem-solving process is all about thinking outside of the box, challenging old assumptions, and thinking laterally. 

This stage is the one that tends to cause the most overwhelm in teams because it requires just the right balance of creativity and critical thinking, which tends to cause a lot of friction.

Our best advice?

Let go of the pressure to produce a polished, thought-through solution at this stage. You can hash out the details at a later point. Our goal right now is to come up with a direction, a prototype if you may, of where we want to move towards. 

Embrace the “quantity over quality” motto, and let your creative juices flow! Now, we’re not saying you should roll with sub-par ideas. But you shouldn’t get too fixated on feasibility and viability just yet . 

Your main goal during this step is to spark ideas, kick off your thinking process in the right direction, venture out of the familiar territories and think outside the box. 

For the ideation to be the most effective your team will have to feel safe to challenge the norm and wide-spread assumptions. So lay judgment by side, there is no space for “that’s the way it’s always been done” in this step.

For your ideation sessions to be as efficient as possible, we highly recommend to run them in a workshop setting: this helps reduce the usual drawbacks of open discussions in teams (i.e. groupthink & team politics!)

Our favorite exercises to run during this phase include Lightning Demos, Sketching, and variations of Brainstorming.  We crafted an entire article on how to run and facilitate these exercises in a separate article, so check it out of you’re going to be running an ideation session anytime soon!

Step 3: Choosing the Best Strategy & Committing

It’s time to decide which of the ideas that you generated in the last step will be the one you’ll implement. 

This step is arguably the hardest one to complete smoothly: groupthink, team politics, differences in opinions and communication styles all make it very hard to align a team on a common course of action. 

If you want to avoid the usual pitfalls of team decision-making, we recommend you steer clear of open unstructured discussion. While it’s useful in some scenarios, it’s a poor choice for when you need to make a decision, because it tends to reward the loudest people in the room, rather than give way to the best ideas. 

It’s crucial you not only commit to a course of action but get full buy-in from the team. If your team members don’t understand the reasons for a decision, or are not fully onboard, the implementation of your decision will be half-hearted, and that’s definitely not what you want! 

To achieve that, opt for anonymized, multi-layered voting, and include guided exercises like Storyboarding to prioritize your ideas. 

We’ve gathered the list of our top-rated decision-making exercises, along with step-by-step instructions on how to run them in this article!

As a bonus tip, we recommend you involve a facilitator throughout the entire process. They will help align the team, and guide them through prioritizing and de-prioritizing solutions, as well as defining the next steps. 

Pro tip : If you’re not the ultimate decision maker on the issue you’re trying to solve, make sure they’re in the room when the call is being made! Having a Decider in the room ensures that the decisions you come to will actually get executed on after, instead of getting shut down by your superiors after. 

Join our FREE community and connect with other Facilitators and Workshoppers

Step 4: implementing your solution.

Here’s a truth that might be hard to swallow: it doesn’t matter how innovative, creative, or original your idea is, if your execution is weak. 

One of our favourite illustrations of how this works in practice comes from the book “ Anything you want ” by Derek Sivers. He reveals that ideas should be treated as multipliers of execution. What this means is that a mediocre, “so-so” idea could be worth millions if executed well, while a “brilliant” idea can completely flop with bad execution. 

That’s why this step is crucial if you want to really master the problem-solving process. 

What do we mean by execution? Everything that happens after the whiteboards are wiped clean and your team starts to action the outcomes of your sessions, be it prototyping, development, or promotion. 

But don’t just take our word for it, look at the example of how execution affected Nintendo’s sales:

In the past few years, Nintendo has come up with 3 products: the Wii, the Wii U and the Switch. Check out their sales figures on the graph below - Wii is the clear-cut leader, followed by Switch, and finally Wii U lagging behind.

Nintendo's sales figure for 2018

The Wii was unbelievably successful - it was a genuinely unique, “brilliant”-level idea and it had a “brilliant” execution (20x $10 million = $200 million). It is  one of the fastest selling game consoles of all time and it completely took over the market.

The next product was called Wii U and it was a “great” concept but the execution was absolutely terrible. So even though this product was very interesting and innovative, the end result was 15x $1,000 = $15,000. 

Finally, Nintendo took the Wii U concept and tried it again with the Switch. The idea was “so so” as it was already done before, but the execution was “brilliant”. So, 5x $10 million = $50 million! Much better.

Excellent execution is more important than a good idea.

Bottom line?  

The same idea can either make no dent in the market and damage your share price OR become a market hit and increase your share price dramatically. The only difference between the two scenarios – execution.

So shift your focus from coming up with crazy, innovative, outlandish ideas that will disrupt the market, and concentrate on really nailing down your execution instead. 

This is likely the least “workshoppy” step out of the entire problem-solving process because it requires less alignment and decision-making and more..well.. Execution!

But hey, we wouldn’t be called “Workshopper” if we didn't offer you at least one way to optimize and workshopify (yup, we’re making it a thing) your execution process. 

Cue in….prototyping. 

We’re huge fans of prototyping all big solutions (and testing them!) The main reason?

This saves us time AND money! Prototyping and testing your solutions (especially if they’re time and investment-demanding) is a great way to make sure you’re creating something that is actually needed. 

The key with prototyping the right way is to keep it simple. Don’t invest too much time, or resources into it. The goal is to gather data for your future decisions, not to create a near-to-perfect mockup of your solution.  

There are LOADS of prototyping forms and techniques, and if you’d like to learn more on the subject you should definitely check out our extensive prototyping guide.  

Step 5: Analyzing the Results

You’re nearly done, woo! Now that you have defined the right problem to tackle, brainstormed the solutions, aligned your team on the course of action, and put your plan into action it’s time to take stock of your efforts. 

Seek feedback from all involved parties, analyze the data you’ve gathered, look at the bottom line of your efforts, and  take a hard look at your problem: did it get solved? And even more than that, did the process feel smoother, easier, and more efficient than it normally is?

Running a retrospective is a great way to highlight things that went well and that you should keep for your next round of problem.solving, as well as pinpoint inefficiencies that you can eliminate.

‍ But which kind of retrospective should you run? There are loads of options, and it’s easy to feel overwhelmed by them all, so we gathered our favorite retrospective variations in this article.

And there you have it, you just completed the cycle of  problem-solving. We highly recommend you follow through with all the steps, without leaving any out. They all complement and build on each other, and it’s the combination of all 5 of them that makes the process effective. 

Now that you have the problem solving process down, you might be wondering…

Do I need any special skills in order to be able to move through that process?

And the answer is… sort of! More in this in the next section.

Problem-Solving Skills 

While your skill set will need to adapt and change based on the challenges you’ll be working on, most efficient problem-solvers have a solid foundation of these key skills:   

  • Active listening. While you might be the expert in the area of your challenge, there’s not a single person on Earth that knows it all! Being open to others’ perspectives and practicing active listening will come in very handy during step 1 of the process, as you’re trying to define the scope and the exact angle of the problem you’re working on.
  • Analytical approach. Your analytical skills will help you understand problems and effectively develop solutions. You will also need analytical skills during research to help distinguish between effective and ineffective solutions.
  • Communication. Is there a single area of expertise that DOESN’T require strong communication skills? We honestly don’t think so! Just like with any other life area, clear communication can make or break your problem-solving process. Being able to clearly communicate why you need to solve this challenge to your team, as well as align your team on the course of action are crucial for the success of the process. 
  • Decision-making. Ultimately, you will need to make a decision about how to solve problems that arise. A process without outcomes–regardless of how well thought-out and elaborate–is useless! If you want your problem-solving huddles to be effective, you have to come to grips with prioritization techniques and decision-making frameworks. 
  • Facilitation. Problem-solving revolves around being able to guide a group or a team to a common decision, and facilitation skills are essential in making that happen. Knowing how to facilitate will make it easy to keep the group focussed on the challenge, shortcut circular discussions, and make sure you’re moving along to solving the problem instead of just treading waters with fruitless discussions. 

Not checking every single skill of your list just yet? Not to worry, the next section will give you practical tools on how to level up and improve your problem-solving skills.

How to Improve Your Problem-Solving Skills

Just like with any other skill, problem-solving is not an innate talent that you either have or you don’t.  There are concrete steps you can take to improve your skills. 

Here are some things that will get you closer to mastering the problem-solving process:

  • Practice, Practice, Practice

Practice makes perfect, and problem-solving skills are no exception! Seek opportunities to utilize and develop these skills any time you can. 

If you don’t know where or how to start just yet, here’s a suggestion that will get you up and running in no time: run a quick problem-solving session on a challenge that has been bothering your team for a while now. 

It doesn’t need to be the big strategic decision or the issue defining the future of the company. Something easy and manageable (like optimizing office space or improving team communication) will do. 

As you start feeling more comfortable with the problem-solving techniques, you can start tackling bigger challenges. Before you know it, you’ll master the art of creative problem-solving!

  • Use a tried and tested problem-solving workshop

Facilitation is one of the essential skills for problem-solving. But here’s the thing… Facilitation skills on their own won’t lead you to a solved challenge.

While being able to shortcut aimless discussions is a great skill, you have to make sure your problem-solving session has tangible outcomes. Using a tried and tested method, a workshop, is one of the easiest ways to do that. 

Our best advice is to get started with a tried and tested problem-solving workshop like the Lightning Decision Jam . The LDJ has all the right ingredients for quick, effective problem solving that leads to tangible outcomes. Give it a go!

  • Learn from your peers

You may have colleagues who are skilled problem solvers. Observing how those colleagues solve problems can help you improve your own skills. 

If possible, ask one of your more experienced colleagues if you can observe their techniques. Ask them relevant questions and try to apply as many of the new found skills i your career as possible. 

  • Learn & Practice the best problem-solving exercises

Having a toolbox of problem-solving exercises to pull from that can fit any type of challenge will make you a more versatile problem-solver and will make solving challenges that much easier for you! 

Once you get used to the groove of learning how to combine them into effective sessions or workshops, there’ll be no stopping you. What are some of the most effective problem-solving exercises? Glad you asked! We’ve gathered our favorite ones here, check it out! 

And there you have it, you’re now fully equipped for running creative problem-sessions with confidence and ease! Whichever method or exercise you choose, remember to keep track of your wins, and learn as much as you can from your losses! 

Anastasia Ushakova

Brand Strategist, Digital Marketer, and a Workshopper.

three stages of problem solving

When Do You Need a Facilitator?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus.

three stages of problem solving

The Ultimate Facilitation Glossary: 50 Facilitation Terms You Should Know (From A-Z)

three stages of problem solving

How To Improve Team Collaboration

The Three Stages of Problem Solving: From Preparation to Judgment

Three Stages to Problem Solving

Preparation: The preparation stage of understanding and diagnosing is critical in problem solving because it allows us to develop our own cognitive representation of the problem and to place it within a personal framework.

When solving a puzzle, we may divide the problem into subparts or ignore some information as we try to simplify the task (grouping colors together)

Production: If the solution is not know known here, we use trial and error

Judgement: When a solution is clear and we see it, we are done, but some solutions that are not so clear, one must choose a best solution given the alternative ( multiple choice test).

Introduction

Problem-solving is a fundamental cognitive process that humans engage in daily to overcome challenges and achieve goals. Whether it’s solving puzzles, making decisions, or navigating complex situations, problem-solving involves a series of cognitive stages that help individuals arrive at effective solutions. This essay explores the three stages of problem solving: preparation, production, and judgment. Understanding these stages is crucial in enhancing our problem-solving abilities and optimizing decision-making processes .

Preparation: Understanding and Diagnosing the Problem

The preparation stage lays the foundation for effective problem-solving by allowing individuals to develop a cognitive representation of the problem. During this phase, we identify and diagnose the problem, gather relevant information, and place it within a personal framework. This stage is critical as it shapes how we perceive the problem and influences the strategies we use to solve it. For example, when solving a puzzle, we may break it down into subparts or ignore certain information to simplify the task, such as grouping colors together to facilitate the solution process.

Production: Trial and Error in Seeking Solutions

The production stage involves actively seeking solutions to the problem. If a clear solution is already known, this stage is straightforward. However, when the solution is not evident, trial and error become the primary approach. Individuals test various strategies and solutions to see if they lead to the desired outcome. This process often involves experimentation, learning from mistakes, and refining approaches until a viable solution emerges. In more complex problem-solving scenarios , this stage may require creativity and flexibility to explore multiple possibilities.

 Judgment: Evaluating and Implementing the Best Solution

The judgment stage is the culmination of the problem-solving process, where a solution is identified, and a decision is made. When the solution is apparent, the process is straightforward, and we implement the solution. However, in situations where multiple viable solutions exist, we must use our judgment to choose the best course of action. This is common in scenarios like multiple-choice tests, where selecting the most suitable answer requires careful evaluation of alternatives based on the information at hand. Effective judgment skills are vital in making sound decisions and optimizing problem-solving outcomes.

The three stages of problem solving – preparation, production, and judgment – form a cognitive framework that underpins effective decision-making and resolving challenges. Each stage is interconnected and builds upon the previous one, allowing individuals to develop a comprehensive understanding of the problem, explore various solutions, and make informed decisions. By recognizing and optimizing these stages, individuals can enhance their problem-solving abilities, foster creativity, and improve their overall cognitive functioning.

Incorporating problem-solving strategies into various aspects of life, whether in personal or professional settings, can lead to more efficient decision-making and improved problem-solving outcomes. By understanding the importance of preparation, embracing trial and error in the production stage, and honing judgment skills, individuals can navigate complex situations with confidence and overcome obstacles in pursuit of their goals.

Approximate price: $ 22

Recent Posts

  • Exploring Self-Concept Development in Children: Insights from the Video Assignment
  • Empowering Families: A Comparative Analysis of Family Psychoeducation Models
  • Nurturing Well-being: Examining the Program Components of Planet Health
  • Navigating Vulnerability and Setting Goals for Meaningful Connections
  • Navigating the Night: Strategies for College Students to Improve Sleep Hygiene

Recent Comments

Calculate the price of your order.

  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 Customer support
  • Tutor’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Attractive discounts
  • Expert Proofreading
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Unique Features

As a renowned provider of the best writing services, we have selected unique features which we offer to our customers as their guarantees that will make your user experience stress-free.

Money-Back Guarantee

Unlike other companies, our money-back guarantee ensures the safety of our customers' money. For whatever reason, the customer may request a refund; our support team assesses the ground on which the refund is requested and processes it instantly. However, our customers are lucky as they have the least chances to experience this as we are always prepared to serve you with the best.

Zero-Plagiarism Guarantee

Plagiarism is the worst academic offense that is highly punishable by all educational institutions. It's for this reason that Peachy Tutors does not condone any plagiarism. We use advanced plagiarism detection software that ensures there are no chances of similarity on your papers.

Free-Revision Policy

Sometimes your professor may be a little bit stubborn and needs some changes made on your paper, or you might need some customization done. All at your service, we will work on your revision till you are satisfied with the quality of work. All for Free!

Privacy And Confidentiality

We take our client's confidentiality as our highest priority; thus, we never share our client's information with third parties. Our company uses the standard encryption technology to store data and only uses trusted payment gateways.

High Quality Papers

Anytime you order your paper with us, be assured of the paper quality. Our tutors are highly skilled in researching and writing quality content that is relevant to the paper instructions and presented professionally. This makes us the best in the industry as our tutors can handle any type of paper despite its complexity.

WhatsApp Us

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

three stages of problem solving

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

three stages of problem solving

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Data-visuals-icon,

Data & Visuals

three stages of problem solving

Partner Center

40 problem-solving techniques and processes

Problem solving workshop

All teams and organizations encounter challenges. Approaching those challenges without a structured problem solving process can end up making things worse.

Proven problem solving techniques such as those outlined below can guide your group through a process of identifying problems and challenges , ideating on possible solutions , and then evaluating and implementing the most suitable .

In this post, you'll find problem-solving tools you can use to develop effective solutions. You'll also find some tips for facilitating the problem solving process and solving complex problems.

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, 54 great online tools for workshops and meetings, how to create an unforgettable training session in 8 simple steps.

  • 18 Free Facilitation Resources We Think You’ll Love

What is problem solving?

Problem solving is a process of finding and implementing a solution to a challenge or obstacle. In most contexts, this means going through a problem solving process that begins with identifying the issue, exploring its root causes, ideating and refining possible solutions before implementing and measuring the impact of that solution.

For simple or small problems, it can be tempting to skip straight to implementing what you believe is the right solution. The danger with this approach is that without exploring the true causes of the issue, it might just occur again or your chosen solution may cause other issues.

Particularly in the world of work, good problem solving means using data to back up each step of the process, bringing in new perspectives and effectively measuring the impact of your solution.

Effective problem solving can help ensure that your team or organization is well positioned to overcome challenges, be resilient to change and create innovation. In my experience, problem solving is a combination of skillset, mindset and process, and it’s especially vital for leaders to cultivate this skill.

A group of people looking at a poster with notes on it

What is the seven step problem solving process?

A problem solving process is a step-by-step framework from going from discovering a problem all the way through to implementing a solution.

With practice, this framework can become intuitive, and innovative companies tend to have a consistent and ongoing ability to discover and tackle challenges when they come up.

You might see everything from a four step problem solving process through to seven steps. While all these processes cover roughly the same ground, I’ve found a seven step problem solving process is helpful for making all key steps legible.

We’ll outline that process here and then follow with techniques you can use to explore and work on that step of the problem solving process with a group.

The seven-step problem solving process is:

1. Problem identification 

The first stage of any problem solving process is to identify the problem(s) you need to solve. This often looks like using group discussions and activities to help a group surface and effectively articulate the challenges they’re facing and wish to resolve.

Be sure to align with your team on the exact definition and nature of the problem you’re solving. An effective process is one where everyone is pulling in the same direction – ensure clarity and alignment now to help avoid misunderstandings later.

2. Problem analysis and refinement

The process of problem analysis means ensuring that the problem you are seeking to solve is  the   right problem . Choosing the right problem to solve means you are on the right path to creating the right solution.

At this stage, you may look deeper at the problem you identified to try and discover the root cause at the level of people or process. You may also spend some time sourcing data, consulting relevant parties and creating and refining a problem statement.

Problem refinement means adjusting scope or focus of the problem you will be aiming to solve based on what comes up during your analysis. As you analyze data sources, you might discover that the root cause means you need to adjust your problem statement. Alternatively, you might find that your original problem statement is too big to be meaningful approached within your current project.

Remember that the goal of any problem refinement is to help set the stage for effective solution development and deployment. Set the right focus and get buy-in from your team here and you’ll be well positioned to move forward with confidence.

3. Solution generation

Once your group has nailed down the particulars of the problem you wish to solve, you want to encourage a free flow of ideas connecting to solving that problem. This can take the form of problem solving games that encourage creative thinking or techniquess designed to produce working prototypes of possible solutions. 

The key to ensuring the success of this stage of the problem solving process is to encourage quick, creative thinking and create an open space where all ideas are considered. The best solutions can often come from unlikely places and by using problem solving techniques that celebrate invention, you might come up with solution gold. 

three stages of problem solving

4. Solution development

No solution is perfect right out of the gate. It’s important to discuss and develop the solutions your group has come up with over the course of following the previous problem solving steps in order to arrive at the best possible solution. Problem solving games used in this stage involve lots of critical thinking, measuring potential effort and impact, and looking at possible solutions analytically. 

During this stage, you will often ask your team to iterate and improve upon your front-running solutions and develop them further. Remember that problem solving strategies always benefit from a multitude of voices and opinions, and not to let ego get involved when it comes to choosing which solutions to develop and take further.

Finding the best solution is the goal of all problem solving workshops and here is the place to ensure that your solution is well thought out, sufficiently robust and fit for purpose. 

5. Decision making and planning

Nearly there! Once you’ve got a set of possible, you’ll need to make a decision on which to implement. This can be a consensus-based group decision or it might be for a leader or major stakeholder to decide. You’ll find a set of effective decision making methods below.

Once your group has reached consensus and selected a solution, there are some additional actions that also need to be decided upon. You’ll want to work on allocating ownership of the project, figure out who will do what, how the success of the solution will be measured and decide the next course of action.

Set clear accountabilities, actions, timeframes, and follow-ups for your chosen solution. Make these decisions and set clear next-steps in the problem solving workshop so that everyone is aligned and you can move forward effectively as a group. 

Ensuring that you plan for the roll-out of a solution is one of the most important problem solving steps. Without adequate planning or oversight, it can prove impossible to measure success or iterate further if the problem was not solved. 

6. Solution implementation 

This is what we were waiting for! All problem solving processes have the end goal of implementing an effective and impactful solution that your group has confidence in.

Project management and communication skills are key here – your solution may need to adjust when out in the wild or you might discover new challenges along the way. For some solutions, you might also implement a test with a small group and monitor results before rolling it out to an entire company.

You should have a clear owner for your solution who will oversee the plans you made together and help ensure they’re put into place. This person will often coordinate the implementation team and set-up processes to measure the efficacy of your solution too.

7. Solution evaluation 

So you and your team developed a great solution to a problem and have a gut feeling it’s been solved. Work done, right? Wrong. All problem solving strategies benefit from evaluation, consideration, and feedback.

You might find that the solution does not work for everyone, might create new problems, or is potentially so successful that you will want to roll it out to larger teams or as part of other initiatives. 

None of that is possible without taking the time to evaluate the success of the solution you developed in your problem solving model and adjust if necessary.

Remember that the problem solving process is often iterative and it can be common to not solve complex issues on the first try. Even when this is the case, you and your team will have generated learning that will be important for future problem solving workshops or in other parts of the organization. 

It’s also worth underlining how important record keeping is throughout the problem solving process. If a solution didn’t work, you need to have the data and records to see why that was the case. If you go back to the drawing board, notes from the previous workshop can help save time.

What does an effective problem solving process look like?

Every effective problem solving process begins with an agenda . In our experience, a well-structured problem solving workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

The format of a workshop ensures that you can get buy-in from your group, encourage free-thinking and solution exploration before making a decision on what to implement following the session.

This Design Sprint 2.0 template is an effective problem solving process from top agency AJ&Smart. It’s a great format for the entire problem solving process, with four-days of workshops designed to surface issues, explore solutions and even test a solution.

Check it for an example of how you might structure and run a problem solving process and feel free to copy and adjust it your needs!

For a shorter process you can run in a single afternoon, this remote problem solving agenda will guide you effectively in just a couple of hours.

Whatever the length of your workshop, by using SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

three stages of problem solving

Complete problem-solving methods

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

The Six Thinking Hats   #creative thinking   #meeting facilitation   #problem solving   #issue resolution   #idea generation   #conflict resolution   The Six Thinking Hats are used by individuals and groups to separate out conflicting styles of thinking. They enable and encourage a group of people to think constructively together in exploring and implementing change, rather than using argument to fight over who is right and who is wrong.

Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   It doesn’t matter where you work and what your job role is, if you work with other people together as a team, you will always encounter the same challenges: Unclear goals and miscommunication that cause busy work and overtime Unstructured meetings that leave attendants tired, confused and without clear outcomes. Frustration builds up because internal challenges to productivity are not addressed Sudden changes in priorities lead to a loss of focus and momentum Muddled compromise takes the place of clear decision- making, leaving everybody to come up with their own interpretation. In short, a lack of structure leads to a waste of time and effort, projects that drag on for too long and frustrated, burnt out teams. AJ&Smart has worked with some of the most innovative, productive companies in the world. What sets their teams apart from others is not better tools, bigger talent or more beautiful offices. The secret sauce to becoming a more productive, more creative and happier team is simple: Replace all open discussion or brainstorming with a structured process that leads to more ideas, clearer decisions and better outcomes. When a good process provides guardrails and a clear path to follow, it becomes easier to come up with ideas, make decisions and solve problems. This is why AJ&Smart created Lightning Decision Jam (LDJ). It’s a simple and short, but powerful group exercise that can be run either in-person, in the same room, or remotely with distributed teams.

Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.
Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for brainstorming solutions

Now you have the context and background of the problem you are trying to solving, now comes the time to start ideating and thinking about how you’ll solve the issue.

Here, you’ll want to encourage creative, free thinking and speed. Get as many ideas out as possible and explore different perspectives so you have the raw material for the next step.

Looking at a problem from a new angle can be one of the most effective ways of creating an effective solution. TRIZ is a problem-solving tool that asks the group to consider what they must not do in order to solve a challenge.

By reversing the discussion, new topics and taboo subjects often emerge, allowing the group to think more deeply and create ideas that confront the status quo in a safe and meaningful way. If you’re working on a problem that you’ve tried to solve before, TRIZ is a great problem-solving method to help your team get unblocked.

Making Space with TRIZ   #issue analysis   #liberating structures   #issue resolution   You can clear space for innovation by helping a group let go of what it knows (but rarely admits) limits its success and by inviting creative destruction. TRIZ makes it possible to challenge sacred cows safely and encourages heretical thinking. The question “What must we stop doing to make progress on our deepest purpose?” induces seriously fun yet very courageous conversations. Since laughter often erupts, issues that are otherwise taboo get a chance to be aired and confronted. With creative destruction come opportunities for renewal as local action and innovation rush in to fill the vacuum. Whoosh!

Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

Idea and Concept Development

Brainstorming without structure can quickly become chaotic or frustrating. In a problem-solving context, having an ideation framework to follow can help ensure your team is both creative and disciplined.

In this method, you’ll find an idea generation process that encourages your group to brainstorm effectively before developing their ideas and begin clustering them together. By using concepts such as Yes and…, more is more and postponing judgement, you can create the ideal conditions for brainstorming with ease.

Idea & Concept Development   #hyperisland   #innovation   #idea generation   Ideation and Concept Development is a process for groups to work creatively and collaboratively to generate creative ideas. It’s a general approach that can be adapted and customized to suit many different scenarios. It includes basic principles for idea generation and several steps for groups to work with. It also includes steps for idea selection and development.

Problem-solving techniques for developing and refining solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to develop and refine your ideas in order to bring them closer to a solution that actually solves the problem.

Use these problem-solving techniques when you want to help your team think through their ideas and refine them as part of your problem solving process.

Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

Ensuring that everyone in a group is able to contribute to a discussion is vital during any problem solving process. Not only does this ensure all bases are covered, but its then easier to get buy-in and accountability when people have been able to contribute to the process.

1-2-4-All is a tried and tested facilitation technique where participants are asked to first brainstorm on a topic on their own. Next, they discuss and share ideas in a pair before moving into a small group. Those groups are then asked to present the best idea from their discussion to the rest of the team.

This method can be used in many different contexts effectively, though I find it particularly shines in the idea development stage of the process. Giving each participant time to concretize their ideas and develop them in progressively larger groups can create a great space for both innovation and psychological safety.

1-2-4-All   #idea generation   #liberating structures   #issue analysis   With this facilitation technique you can immediately include everyone regardless of how large the group is. You can generate better ideas and more of them faster than ever before. You can tap the know-how and imagination that is distributed widely in places not known in advance. Open, generative conversation unfolds. Ideas and solutions are sifted in rapid fashion. Most importantly, participants own the ideas, so follow-up and implementation is simplified. No buy-in strategies needed! Simple and elegant!

15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

Problem-solving techniques for making decisions and planning

After your group is happy with the possible solutions you’ve developed, now comes the time to choose which to implement. There’s more than one way to make a decision and the best option is often dependant on the needs and set-up of your group.

Sometimes, it’s the case that you’ll want to vote as a group on what is likely to be the most impactful solution. Other times, it might be down to a decision maker or major stakeholder to make the final decision. Whatever your process, here’s some techniques you can use to help you make a decision during your problem solving process.

How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

Straddling the gap between decision making and planning, MoSCoW is a simple and effective method that allows a group team to easily prioritize a set of possible options.

Use this method in a problem solving process by collecting and summarizing all your possible solutions and then categorize them into 4 sections: “Must have”, “Should have”, “Could have”, or “Would like but won‘t get”.

This method is particularly useful when its less about choosing one possible solution and more about prioritorizing which to do first and which may not fit in the scope of your project. In my experience, complex challenges often require multiple small fixes, and this method can be a great way to move from a pile of things you’d all like to do to a structured plan.

MoSCoW   #define intentions   #create   #design   #action   #remote-friendly   MoSCoW is a method that allows the team to prioritize the different features that they will work on. Features are then categorized into “Must have”, “Should have”, “Could have”, or “Would like but won‘t get”. To be used at the beginning of a timeslot (for example during Sprint planning) and when planning is needed.

When it comes to managing the rollout of a solution, clarity and accountability are key factors in ensuring the success of the project. The RAACI chart is a simple but effective model for setting roles and responsibilities as part of a planning session.

Start by listing each person involved in the project and put them into the following groups in order to make it clear who is responsible for what during the rollout of your solution.

  • Responsibility  (Which person and/or team will be taking action?)
  • Authority  (At what “point” must the responsible person check in before going further?)
  • Accountability  (Who must the responsible person check in with?)
  • Consultation  (Who must be consulted by the responsible person before decisions are made?)
  • Information  (Who must be informed of decisions, once made?)

Ensure this information is easily accessible and use it to inform who does what and who is looped into discussions and kept up to date.

RAACI   #roles and responsibility   #teamwork   #project management   Clarifying roles and responsibilities, levels of autonomy/latitude in decision making, and levels of engagement among diverse stakeholders.

Problem-solving warm-up activities

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process. Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Closing activities for a problem-solving process

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Tips for effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Create psychologically safe spaces for discussion

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner.

It can be tough for people to stand up and contribute if the problems or challenges are emotive or personal in nature. Try and create a psychologically safe space for these kinds of discussions and where possible, create regular opportunities for challenges to be brought up organically.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

Save time and effort creating an effective problem solving process

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

three stages of problem solving

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

three stages of problem solving

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of great workshop tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your life easier and run better workshops and meetings. In fact, there are plenty of free online workshop tools and meeting…

three stages of problem solving

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

loading

  • Soft skills
  • What is a credential?
  • Why do a credential?
  • How do credentials work?
  • Selecting your level
  • How will I be assessed?
  • Benefits for professionals
  • Benefits for organisations
  • Benefits for postgraduates

Problem solving techniques: Steps and methods

three stages of problem solving

Posted on May 29, 2019

Constant disruption has become a hallmark of the modern workforce and organisations want problem solving skills to combat this. Employers need people who can respond to change – be that evolving technology, new competitors, different models for doing business, or any of the other transformations that have taken place in recent years.

In addition, problem solving techniques encompass many of the other top skills employers seek . For example, LinkedIn’s list of the most in-demand soft skills of 2019 includes creativity, collaboration and adaptability, all of which fall under the problem-solving umbrella.

Despite its importance, many employees misunderstand what the problem solving method really involves.

What constitutes effective problem solving?

Effective problem solving doesn’t mean going away and coming up with an answer immediately. In fact, this isn’t good problem solving at all, because you’ll be running with the first solution that comes into your mind, which often isn’t the best.

Instead, you should look at problem solving more as a process with several steps involved that will help you reach the best outcome. Those steps are:

  • Define the problem
  • List all the possible solutions
  • Evaluate the options
  • Select the best solution
  • Create an implementation plan
  • Communicate your solution

Let’s look at each step in a little more detail.

It's important you take the time to brainstorm and consider all your options when solving problems.

1. Define the problem

The first step to solving a problem is defining what the problem actually is – sounds simple, right? Well no. An effective problem solver will take the thoughts of everyone involved into account, but different people might have different ideas on what the root cause of the issue really is. It’s up to you to actively listen to everyone without bringing any of your own preconceived notions to the conversation. Learning to differentiate facts from opinion is an essential part of this process.

An effective problem solver will take the opinions of everyone involved into account

The same can be said of data. Depending on what the problem is, there will be varying amounts of information available that will help you work out what’s gone wrong. There should be at least some data involved in any problem, and it’s up to you to gather as much as possible and analyse it objectively.

2. List all the possible solutions

Once you’ve identified what the real issue is, it’s time to think of solutions. Brainstorming as many solutions as possible will help you arrive at the best answer because you’ll be considering all potential options and scenarios. You should take everyone’s thoughts into account when you’re brainstorming these ideas, as well as all the insights you’ve gleaned from your data analysis. It also helps to seek input from others at this stage, as they may come up with solutions you haven’t thought of.

Depending on the type of problem, it can be useful to think of both short-term and long-term solutions, as some of your options may take a while to implement.

One of the best problem solving techniques is brainstorming a number of different solutions and involving affected parties in this process.

3. Evaluate the options

Each option will have pros and cons, and it’s important you list all of these, as well as how each solution could impact key stakeholders. Once you’ve narrowed down your options to three or four, it’s often a good idea to go to other employees for feedback just in case you’ve missed something. You should also work out how each option ties in with the broader goals of the business.

There may be a way to merge two options together in order to satisfy more people.

4. Select an option

Only now should you choose which solution you’re going to go with. What you decide should be whatever solves the problem most effectively while also taking the interests of everyone involved into account. There may be a way to merge two options together in order to satisfy more people.

5. Create an implementation plan

At this point you might be thinking it’s time to sit back and relax – problem solved, right? There are actually two more steps involved if you want your problem solving method to be truly effective. The first is to create an implementation plan. After all, if you don’t carry out your solution effectively, you’re not really solving the problem at all. 

Create an implementation plan on how you will put your solution into practice. One problem solving technique that many use here is to introduce a testing and feedback phase just to make sure the option you’ve selected really is the most viable. You’ll also want to include any changes to your solution that may occur in your implementation plan, as well as how you’ll monitor compliance and success.

6. Communicate your solution

There’s one last step to consider as part of the problem solving methodology, and that’s communicating your solution . Without this crucial part of the process, how is anyone going to know what you’ve decided? Make sure you communicate your decision to all the people who might be impacted by it. Not everyone is going to be 100 per cent happy with it, so when you communicate you must give them context. Explain exactly why you’ve made that decision and how the pros mean it’s better than any of the other options you came up with.

Prove your problem solving skills with Deakin

Employers are increasingly seeking soft skills, but unfortunately, while you can show that you’ve got a degree in a subject, it’s much harder to prove you’ve got proficiency in things like problem solving skills. But this is changing thanks to Deakin’s micro-credentials. These are university-level micro-credentials that provide an authoritative and third-party assessment of your capabilities in a range of areas, including problem solving. Reach out today for more information .

How to master the seven-step problem-solving process

In this episode of the McKinsey Podcast , Simon London speaks with Charles Conn, CEO of venture-capital firm Oxford Sciences Innovation, and McKinsey senior partner Hugo Sarrazin about the complexities of different problem-solving strategies.

Podcast transcript

Simon London: Hello, and welcome to this episode of the McKinsey Podcast , with me, Simon London. What’s the number-one skill you need to succeed professionally? Salesmanship, perhaps? Or a facility with statistics? Or maybe the ability to communicate crisply and clearly? Many would argue that at the very top of the list comes problem solving: that is, the ability to think through and come up with an optimal course of action to address any complex challenge—in business, in public policy, or indeed in life.

Looked at this way, it’s no surprise that McKinsey takes problem solving very seriously, testing for it during the recruiting process and then honing it, in McKinsey consultants, through immersion in a structured seven-step method. To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and also with Charles Conn. Charles is a former McKinsey partner, entrepreneur, executive, and coauthor of the book Bulletproof Problem Solving: The One Skill That Changes Everything [John Wiley & Sons, 2018].

Charles and Hugo, welcome to the podcast. Thank you for being here.

Hugo Sarrazin: Our pleasure.

Charles Conn: It’s terrific to be here.

Simon London: Problem solving is a really interesting piece of terminology. It could mean so many different things. I have a son who’s a teenage climber. They talk about solving problems. Climbing is problem solving. Charles, when you talk about problem solving, what are you talking about?

Charles Conn: For me, problem solving is the answer to the question “What should I do?” It’s interesting when there’s uncertainty and complexity, and when it’s meaningful because there are consequences. Your son’s climbing is a perfect example. There are consequences, and it’s complicated, and there’s uncertainty—can he make that grab? I think we can apply that same frame almost at any level. You can think about questions like “What town would I like to live in?” or “Should I put solar panels on my roof?”

You might think that’s a funny thing to apply problem solving to, but in my mind it’s not fundamentally different from business problem solving, which answers the question “What should my strategy be?” Or problem solving at the policy level: “How do we combat climate change?” “Should I support the local school bond?” I think these are all part and parcel of the same type of question, “What should I do?”

I’m a big fan of structured problem solving. By following steps, we can more clearly understand what problem it is we’re solving, what are the components of the problem that we’re solving, which components are the most important ones for us to pay attention to, which analytic techniques we should apply to those, and how we can synthesize what we’ve learned back into a compelling story. That’s all it is, at its heart.

I think sometimes when people think about seven steps, they assume that there’s a rigidity to this. That’s not it at all. It’s actually to give you the scope for creativity, which often doesn’t exist when your problem solving is muddled.

Simon London: You were just talking about the seven-step process. That’s what’s written down in the book, but it’s a very McKinsey process as well. Without getting too deep into the weeds, let’s go through the steps, one by one. You were just talking about problem definition as being a particularly important thing to get right first. That’s the first step. Hugo, tell us about that.

Hugo Sarrazin: It is surprising how often people jump past this step and make a bunch of assumptions. The most powerful thing is to step back and ask the basic questions—“What are we trying to solve? What are the constraints that exist? What are the dependencies?” Let’s make those explicit and really push the thinking and defining. At McKinsey, we spend an enormous amount of time in writing that little statement, and the statement, if you’re a logic purist, is great. You debate. “Is it an ‘or’? Is it an ‘and’? What’s the action verb?” Because all these specific words help you get to the heart of what matters.

Want to subscribe to The McKinsey Podcast ?

Simon London: So this is a concise problem statement.

Hugo Sarrazin: Yeah. It’s not like “Can we grow in Japan?” That’s interesting, but it is “What, specifically, are we trying to uncover in the growth of a product in Japan? Or a segment in Japan? Or a channel in Japan?” When you spend an enormous amount of time, in the first meeting of the different stakeholders, debating this and having different people put forward what they think the problem definition is, you realize that people have completely different views of why they’re here. That, to me, is the most important step.

Charles Conn: I would agree with that. For me, the problem context is critical. When we understand “What are the forces acting upon your decision maker? How quickly is the answer needed? With what precision is the answer needed? Are there areas that are off limits or areas where we would particularly like to find our solution? Is the decision maker open to exploring other areas?” then you not only become more efficient, and move toward what we call the critical path in problem solving, but you also make it so much more likely that you’re not going to waste your time or your decision maker’s time.

How often do especially bright young people run off with half of the idea about what the problem is and start collecting data and start building models—only to discover that they’ve really gone off half-cocked.

Hugo Sarrazin: Yeah.

Charles Conn: And in the wrong direction.

Simon London: OK. So step one—and there is a real art and a structure to it—is define the problem. Step two, Charles?

Charles Conn: My favorite step is step two, which is to use logic trees to disaggregate the problem. Every problem we’re solving has some complexity and some uncertainty in it. The only way that we can really get our team working on the problem is to take the problem apart into logical pieces.

What we find, of course, is that the way to disaggregate the problem often gives you an insight into the answer to the problem quite quickly. I love to do two or three different cuts at it, each one giving a bit of a different insight into what might be going wrong. By doing sensible disaggregations, using logic trees, we can figure out which parts of the problem we should be looking at, and we can assign those different parts to team members.

Simon London: What’s a good example of a logic tree on a sort of ratable problem?

Charles Conn: Maybe the easiest one is the classic profit tree. Almost in every business that I would take a look at, I would start with a profit or return-on-assets tree. In its simplest form, you have the components of revenue, which are price and quantity, and the components of cost, which are cost and quantity. Each of those can be broken out. Cost can be broken into variable cost and fixed cost. The components of price can be broken into what your pricing scheme is. That simple tree often provides insight into what’s going on in a business or what the difference is between that business and the competitors.

If we add the leg, which is “What’s the asset base or investment element?”—so profit divided by assets—then we can ask the question “Is the business using its investments sensibly?” whether that’s in stores or in manufacturing or in transportation assets. I hope we can see just how simple this is, even though we’re describing it in words.

When I went to work with Gordon Moore at the Moore Foundation, the problem that he asked us to look at was “How can we save Pacific salmon?” Now, that sounds like an impossible question, but it was amenable to precisely the same type of disaggregation and allowed us to organize what became a 15-year effort to improve the likelihood of good outcomes for Pacific salmon.

Simon London: Now, is there a danger that your logic tree can be impossibly large? This, I think, brings us onto the third step in the process, which is that you have to prioritize.

Charles Conn: Absolutely. The third step, which we also emphasize, along with good problem definition, is rigorous prioritization—we ask the questions “How important is this lever or this branch of the tree in the overall outcome that we seek to achieve? How much can I move that lever?” Obviously, we try and focus our efforts on ones that have a big impact on the problem and the ones that we have the ability to change. With salmon, ocean conditions turned out to be a big lever, but not one that we could adjust. We focused our attention on fish habitats and fish-harvesting practices, which were big levers that we could affect.

People spend a lot of time arguing about branches that are either not important or that none of us can change. We see it in the public square. When we deal with questions at the policy level—“Should you support the death penalty?” “How do we affect climate change?” “How can we uncover the causes and address homelessness?”—it’s even more important that we’re focusing on levers that are big and movable.

Would you like to learn more about our Strategy & Corporate Finance Practice ?

Simon London: Let’s move swiftly on to step four. You’ve defined your problem, you disaggregate it, you prioritize where you want to analyze—what you want to really look at hard. Then you got to the work plan. Now, what does that mean in practice?

Hugo Sarrazin: Depending on what you’ve prioritized, there are many things you could do. It could be breaking the work among the team members so that people have a clear piece of the work to do. It could be defining the specific analyses that need to get done and executed, and being clear on time lines. There’s always a level-one answer, there’s a level-two answer, there’s a level-three answer. Without being too flippant, I can solve any problem during a good dinner with wine. It won’t have a whole lot of backing.

Simon London: Not going to have a lot of depth to it.

Hugo Sarrazin: No, but it may be useful as a starting point. If the stakes are not that high, that could be OK. If it’s really high stakes, you may need level three and have the whole model validated in three different ways. You need to find a work plan that reflects the level of precision, the time frame you have, and the stakeholders you need to bring along in the exercise.

Charles Conn: I love the way you’ve described that, because, again, some people think of problem solving as a linear thing, but of course what’s critical is that it’s iterative. As you say, you can solve the problem in one day or even one hour.

Charles Conn: We encourage our teams everywhere to do that. We call it the one-day answer or the one-hour answer. In work planning, we’re always iterating. Every time you see a 50-page work plan that stretches out to three months, you know it’s wrong. It will be outmoded very quickly by that learning process that you described. Iterative problem solving is a critical part of this. Sometimes, people think work planning sounds dull, but it isn’t. It’s how we know what’s expected of us and when we need to deliver it and how we’re progressing toward the answer. It’s also the place where we can deal with biases. Bias is a feature of every human decision-making process. If we design our team interactions intelligently, we can avoid the worst sort of biases.

Simon London: Here we’re talking about cognitive biases primarily, right? It’s not that I’m biased against you because of your accent or something. These are the cognitive biases that behavioral sciences have shown we all carry around, things like anchoring, overoptimism—these kinds of things.

Both: Yeah.

Charles Conn: Availability bias is the one that I’m always alert to. You think you’ve seen the problem before, and therefore what’s available is your previous conception of it—and we have to be most careful about that. In any human setting, we also have to be careful about biases that are based on hierarchies, sometimes called sunflower bias. I’m sure, Hugo, with your teams, you make sure that the youngest team members speak first. Not the oldest team members, because it’s easy for people to look at who’s senior and alter their own creative approaches.

Hugo Sarrazin: It’s helpful, at that moment—if someone is asserting a point of view—to ask the question “This was true in what context?” You’re trying to apply something that worked in one context to a different one. That can be deadly if the context has changed, and that’s why organizations struggle to change. You promote all these people because they did something that worked well in the past, and then there’s a disruption in the industry, and they keep doing what got them promoted even though the context has changed.

Simon London: Right. Right.

Hugo Sarrazin: So it’s the same thing in problem solving.

Charles Conn: And it’s why diversity in our teams is so important. It’s one of the best things about the world that we’re in now. We’re likely to have people from different socioeconomic, ethnic, and national backgrounds, each of whom sees problems from a slightly different perspective. It is therefore much more likely that the team will uncover a truly creative and clever approach to problem solving.

Simon London: Let’s move on to step five. You’ve done your work plan. Now you’ve actually got to do the analysis. The thing that strikes me here is that the range of tools that we have at our disposal now, of course, is just huge, particularly with advances in computation, advanced analytics. There’s so many things that you can apply here. Just talk about the analysis stage. How do you pick the right tools?

Charles Conn: For me, the most important thing is that we start with simple heuristics and explanatory statistics before we go off and use the big-gun tools. We need to understand the shape and scope of our problem before we start applying these massive and complex analytical approaches.

Simon London: Would you agree with that?

Hugo Sarrazin: I agree. I think there are so many wonderful heuristics. You need to start there before you go deep into the modeling exercise. There’s an interesting dynamic that’s happening, though. In some cases, for some types of problems, it is even better to set yourself up to maximize your learning. Your problem-solving methodology is test and learn, test and learn, test and learn, and iterate. That is a heuristic in itself, the A/B testing that is used in many parts of the world. So that’s a problem-solving methodology. It’s nothing different. It just uses technology and feedback loops in a fast way. The other one is exploratory data analysis. When you’re dealing with a large-scale problem, and there’s so much data, I can get to the heuristics that Charles was talking about through very clever visualization of data.

You test with your data. You need to set up an environment to do so, but don’t get caught up in neural-network modeling immediately. You’re testing, you’re checking—“Is the data right? Is it sound? Does it make sense?”—before you launch too far.

Simon London: You do hear these ideas—that if you have a big enough data set and enough algorithms, they’re going to find things that you just wouldn’t have spotted, find solutions that maybe you wouldn’t have thought of. Does machine learning sort of revolutionize the problem-solving process? Or are these actually just other tools in the toolbox for structured problem solving?

Charles Conn: It can be revolutionary. There are some areas in which the pattern recognition of large data sets and good algorithms can help us see things that we otherwise couldn’t see. But I do think it’s terribly important we don’t think that this particular technique is a substitute for superb problem solving, starting with good problem definition. Many people use machine learning without understanding algorithms that themselves can have biases built into them. Just as 20 years ago, when we were doing statistical analysis, we knew that we needed good model definition, we still need a good understanding of our algorithms and really good problem definition before we launch off into big data sets and unknown algorithms.

Simon London: Step six. You’ve done your analysis.

Charles Conn: I take six and seven together, and this is the place where young problem solvers often make a mistake. They’ve got their analysis, and they assume that’s the answer, and of course it isn’t the answer. The ability to synthesize the pieces that came out of the analysis and begin to weave those into a story that helps people answer the question “What should I do?” This is back to where we started. If we can’t synthesize, and we can’t tell a story, then our decision maker can’t find the answer to “What should I do?”

Simon London: But, again, these final steps are about motivating people to action, right?

Charles Conn: Yeah.

Simon London: I am slightly torn about the nomenclature of problem solving because it’s on paper, right? Until you motivate people to action, you actually haven’t solved anything.

Charles Conn: I love this question because I think decision-making theory, without a bias to action, is a waste of time. Everything in how I approach this is to help people take action that makes the world better.

Simon London: Hence, these are absolutely critical steps. If you don’t do this well, you’ve just got a bunch of analysis.

Charles Conn: We end up in exactly the same place where we started, which is people speaking across each other, past each other in the public square, rather than actually working together, shoulder to shoulder, to crack these important problems.

Simon London: In the real world, we have a lot of uncertainty—arguably, increasing uncertainty. How do good problem solvers deal with that?

Hugo Sarrazin: At every step of the process. In the problem definition, when you’re defining the context, you need to understand those sources of uncertainty and whether they’re important or not important. It becomes important in the definition of the tree.

You need to think carefully about the branches of the tree that are more certain and less certain as you define them. They don’t have equal weight just because they’ve got equal space on the page. Then, when you’re prioritizing, your prioritization approach may put more emphasis on things that have low probability but huge impact—or, vice versa, may put a lot of priority on things that are very likely and, hopefully, have a reasonable impact. You can introduce that along the way. When you come back to the synthesis, you just need to be nuanced about what you’re understanding, the likelihood.

Often, people lack humility in the way they make their recommendations: “This is the answer.” They’re very precise, and I think we would all be well-served to say, “This is a likely answer under the following sets of conditions” and then make the level of uncertainty clearer, if that is appropriate. It doesn’t mean you’re always in the gray zone; it doesn’t mean you don’t have a point of view. It just means that you can be explicit about the certainty of your answer when you make that recommendation.

Simon London: So it sounds like there is an underlying principle: “Acknowledge and embrace the uncertainty. Don’t pretend that it isn’t there. Be very clear about what the uncertainties are up front, and then build that into every step of the process.”

Hugo Sarrazin: Every step of the process.

Simon London: Yeah. We have just walked through a particular structured methodology for problem solving. But, of course, this is not the only structured methodology for problem solving. One that is also very well-known is design thinking, which comes at things very differently. So, Hugo, I know you have worked with a lot of designers. Just give us a very quick summary. Design thinking—what is it, and how does it relate?

Hugo Sarrazin: It starts with an incredible amount of empathy for the user and uses that to define the problem. It does pause and go out in the wild and spend an enormous amount of time seeing how people interact with objects, seeing the experience they’re getting, seeing the pain points or joy—and uses that to infer and define the problem.

Simon London: Problem definition, but out in the world.

Hugo Sarrazin: With an enormous amount of empathy. There’s a huge emphasis on empathy. Traditional, more classic problem solving is you define the problem based on an understanding of the situation. This one almost presupposes that we don’t know the problem until we go see it. The second thing is you need to come up with multiple scenarios or answers or ideas or concepts, and there’s a lot of divergent thinking initially. That’s slightly different, versus the prioritization, but not for long. Eventually, you need to kind of say, “OK, I’m going to converge again.” Then you go and you bring things back to the customer and get feedback and iterate. Then you rinse and repeat, rinse and repeat. There’s a lot of tactile building, along the way, of prototypes and things like that. It’s very iterative.

Simon London: So, Charles, are these complements or are these alternatives?

Charles Conn: I think they’re entirely complementary, and I think Hugo’s description is perfect. When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that’s very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use contrasting teams, so that we do have divergent thinking. The best teams allow divergent thinking to bump them off whatever their initial biases in problem solving are. For me, design thinking gives us a constant reminder of creativity, empathy, and the tactile nature of problem solving, but it’s absolutely complementary, not alternative.

Simon London: I think, in a world of cross-functional teams, an interesting question is do people with design-thinking backgrounds really work well together with classical problem solvers? How do you make that chemistry happen?

Hugo Sarrazin: Yeah, it is not easy when people have spent an enormous amount of time seeped in design thinking or user-centric design, whichever word you want to use. If the person who’s applying classic problem-solving methodology is very rigid and mechanical in the way they’re doing it, there could be an enormous amount of tension. If there’s not clarity in the role and not clarity in the process, I think having the two together can be, sometimes, problematic.

The second thing that happens often is that the artifacts the two methodologies try to gravitate toward can be different. Classic problem solving often gravitates toward a model; design thinking migrates toward a prototype. Rather than writing a big deck with all my supporting evidence, they’ll bring an example, a thing, and that feels different. Then you spend your time differently to achieve those two end products, so that’s another source of friction.

Now, I still think it can be an incredibly powerful thing to have the two—if there are the right people with the right mind-set, if there is a team that is explicit about the roles, if we’re clear about the kind of outcomes we are attempting to bring forward. There’s an enormous amount of collaborativeness and respect.

Simon London: But they have to respect each other’s methodology and be prepared to flex, maybe, a little bit, in how this process is going to work.

Hugo Sarrazin: Absolutely.

Simon London: The other area where, it strikes me, there could be a little bit of a different sort of friction is this whole concept of the day-one answer, which is what we were just talking about in classical problem solving. Now, you know that this is probably not going to be your final answer, but that’s how you begin to structure the problem. Whereas I would imagine your design thinkers—no, they’re going off to do their ethnographic research and get out into the field, potentially for a long time, before they come back with at least an initial hypothesis.

Want better strategies? Become a bulletproof problem solver

Want better strategies? Become a bulletproof problem solver

Hugo Sarrazin: That is a great callout, and that’s another difference. Designers typically will like to soak into the situation and avoid converging too quickly. There’s optionality and exploring different options. There’s a strong belief that keeps the solution space wide enough that you can come up with more radical ideas. If there’s a large design team or many designers on the team, and you come on Friday and say, “What’s our week-one answer?” they’re going to struggle. They’re not going to be comfortable, naturally, to give that answer. It doesn’t mean they don’t have an answer; it’s just not where they are in their thinking process.

Simon London: I think we are, sadly, out of time for today. But Charles and Hugo, thank you so much.

Charles Conn: It was a pleasure to be here, Simon.

Hugo Sarrazin: It was a pleasure. Thank you.

Simon London: And thanks, as always, to you, our listeners, for tuning into this episode of the McKinsey Podcast . If you want to learn more about problem solving, you can find the book, Bulletproof Problem Solving: The One Skill That Changes Everything , online or order it through your local bookstore. To learn more about McKinsey, you can of course find us at McKinsey.com.

Charles Conn is CEO of Oxford Sciences Innovation and an alumnus of McKinsey’s Sydney office. Hugo Sarrazin is a senior partner in the Silicon Valley office, where Simon London, a member of McKinsey Publishing, is also based.

Explore a career with us

Related articles.

Want better strategies? Become a bulletproof problem solver

Strategy to beat the odds

firo13_frth

Five routes to more innovative problem solving

SkillsYouNeed

  • INTERPERSONAL SKILLS
  • Problem Solving and Decision Making

Identifying and Structuring Problems

Search SkillsYouNeed:

Interpersonal Skills:

  • A - Z List of Interpersonal Skills
  • Interpersonal Skills Self-Assessment
  • Communication Skills
  • Emotional Intelligence
  • Conflict Resolution and Mediation Skills
  • Customer Service Skills
  • Team-Working, Groups and Meetings
  • Decision-Making and Problem-Solving
  • Effective Decision Making
  • Decision-Making Framework
  • Introduction to Problem Solving
  • Investigating Ideas and Solutions
  • Implementing a Solution and Feedback
  • Creative Problem-Solving
  • Social Problem-Solving
  • Negotiation and Persuasion Skills
  • Personal and Romantic Relationship Skills

Subscribe to our FREE newsletter and start improving your life in just 5 minutes a day.

You'll get our 5 free 'One Minute Life Skills' and our weekly newsletter.

We'll never share your email address and you can unsubscribe at any time.

This page continues from Problem Solving an Introduction that introduces problem solving as a concept and outlines the stages used to successfully solve problems.

This page covers the first two stages in the problem solving process: Identifying the Problem and Structuring the Problem .

Stage One: Identifying the Problem

Before being able to confront a problem its existence needs to be identified. This might seem an obvious statement but, quite often, problems will have an impact for some time before they are recognised or brought to the attention of someone who can do anything about them.

In many organisations it is possible to set up formal systems of communication so that problems are reported early on, but inevitably these systems do not always work. Once a problem has been identified, its exact nature needs to be determined: what are the goal and barrier components of the problem?  Some of the main elements of the problem can be outlined, and a first attempt at defining the problem should be made.  This definition should be clear enough for you to be able to easily explain the nature of the problem to others.

Looking at the problem in terms of goals and barriers can offer an effective way of defining many problems and splitting bigger problems into more manageable sub-problems.

Sometimes it will become apparent that what seems to be a single problem, is more accurately a series of sub-problems.  For example, in the problem:

“I have been offered a job that I want, but I don't have the transport to get there and I don't have enough money to buy a car.”

“ I want to take a job ” (main problem)

“ But I don't have transport to get there ” (sub-problem 1)

“ And I don't have enough money to buy a car ” (sub-problem 2)

Useful ways of describing more complex problems are shown in the section, ' Structuring the Problem' , below.

During this first stage of problem solving, it is important to get an initial working definition of the problem.  Although it may need to be adapted at a later stage, a good working definition makes it possible to describe the problem to others who may become involved in the problem solving process.  For example:

Problem Working Definition

Stage Two: Structuring the Problem

The second stage of the problem solving process involves gaining a deeper understanding of the problem. Firstly, facts need to be checked.

Problem Checking Facts
“I want to take a job, but I don’t have the transport to get there
and I don’t have enough money to buy a car.”
“Do I really want a job?”
“Do I really have no access to transport?”
“Can I really not afford to buy a car?”

The questions have to be asked, is the stated goal the real goal?  Are the barriers actual barriers and what other barriers are there?  In this example, the problem at first seems to be:

Goal Barrier 1 Barrier 2
Take the job No transport No money

This is also a good opportunity to look at the relationships between the key elements of the problem .  For example, in the 'Job-Transport-Money' problem, there are strong connections between all the elements.

By looking at all the relationships between the key elements, it appears that the problem is more about how to achieve any one of three things, i.e. job, transport or money, because solving one of these sub-problems will, in turn, solve the others.

This example shows how useful it is to have a representation of a problem.

Problems can be represented in the following ways:

  • Visually: using pictures, models or diagrams.
  • Verbally: describing the problem in words.

Visual and verbal representations include:

  • Chain diagrams
  • Flow charts
  • Tree diagrams

Chain Diagrams

Chain diagrams are powerful and simple ways of representing problems using a combination of diagrams and words.   The elements of the problem are set out in words, usually placed in boxes, and positioned in different places on a sheet of paper, using lines to represent the relationship between them.

Chain Diagrams are the simplest type, where all the elements are presented in an ordered list, each element being connected only with the elements immediately before and after it.  Chain diagrams usually represent a sequence of events needed for a solution.  A simple example of a chain diagram illustrates the job-transport-money example as as follows:

TAKE JOB

Flow Charts

Flow charts allow for inclusion of branches, folds, loops, decision points and many other relationships between the elements.  In practice, flow charts can be quite complicated and there are many conventions as to how they are drawn but, generally, simple diagrams are easier to understand and aid in 'seeing' the problem more readily.

Tree Diagrams

Tree diagrams and their close relative, the Decision Tree , are ways of representing situations where there are a number of choices or different possible events to be considered.  These types of diagram are particularly useful for considering all the possible consequences of solutions.

Remember that the aim of a visualisation is to make the problem clearer.  Over-complicated diagrams will just confuse and make the problem harder to understand.

Listing the elements of a problem can also help to represent priorities, order and sequences in the problem.  Goals can be listed in order of importance and barriers in order of difficulty.  Separate lists could be made of related goals or barriers.  The barriers could be listed in the order in which they need to be solved, or elements of the problem classified in a number of different ways.  There are many possibilities, but the aim is to provide a clearer picture of the problem.

1. Get money
2. Get car
3. Get job

A visual representation and a working definition together makes it far easier to describe a problem to others. Many problems will be far more complex than the example used here.

Continue to: Investigating Ideas and Possible Solutions

See also: Social Problem Solving Project Management Risk Management

25 Year Anniversary_logo.png

  • Miles Anthony Smith
  • Sep 12, 2022
  • 12 min read

The Ultimate Problem-Solving Process Guide: 31 Steps and Resources

Updated: Jan 24, 2023

GOT CHALLENGES WITH YOUR PROBLEM-SOLVING PROCESS? ARE YOU FRUSTRATED?

prob·lem-solv·ing noun -the process of finding solutions to difficult or complex issues. It sounds so simple, doesn’t it? But in reality problem-solving is hard. It's almost always more complex than it seems. That's why problem-solving can be so frustrating sometimes. You can feel like you’re spinning your wheels, arguing in circles, or just failing to find answers that actually work. And when you've got a group working on a problem, it can get even muddier …differences of opinions, viewpoints colored by different backgrounds, history, life experiences, you name it. We’re all looking at life and work from different angles, and that often means disagreement. Sometimes sharp disagreement. That human element, figuring out how to take ourselves out of the equation and make solid, fact-based decisions , is precisely why there’s been so much written on problem-solving. Which creates its own set of problems. Whose method is best? How can you possibly sift through them all? Are we to have one person complete the entire problem-solving process by themselves or rely on a larger team to find answers to our most vexing challenges in the workplace ? Today, we’re going to make sense of it all. We’ll take a close look at nine top problem-solving methods. Then we’ll grab the best elements of all of them to give you a process that will have your team solving problems faster, with better results , and maybe with less sharp disagreement. Ready to dive in? Let’s go!

9 PROFITABLE PROBLEM-SOLVING TECHNIQUES AND METHODS

While there are loads of methods to choose from, we are going to focus on nine of the more common ones. You can use some of these problem-solving techniques reactively to solve a known issue or proactively to find more efficient or effective ways of performing tasks. If you want to explore other methods, check out this resource here . A helpful bit of advice here is to reassure people that you aren’t here to identify the person that caused the problem . You’re working to surface the issue, solve it and make sure it doesn’t happen again, regardless of the person working on the process. It can’t be understated how important it is to continually reassure people of this so that you get unfiltered access to information. Without this, people will often hide things to protect themselves . After all, nobody wants to look bad, do they? With that said, let’s get started...

1. CREATIVE PROBLEM SOLVING (CPS)

Alex Osborn coined the term “Creative Problem Solving” in the 1940s with this simple four-step process:

Clarify : Explore the vision, gather data, and formulate questions.

Ideate : This stage should use brainstorming to generate divergent thinking and ideas rather than the random ideas normally associated with brainstorming.

Develop : Formulate solutions as part of an overall plan.

Implement : Put the plan into practice and communicate it to all parties.

2. APPRECIATIVE INQUIRY

Appreciative Inquiry 4D Cycle

Source: http://www.davidcooperrider.com/ai-process/ This method seeks, first and foremost, to identify the strengths in people and organizations and play to that “positive core” rather than focus our energies on improving weaknesses . It starts with an “affirmative topic,” followed by the “positive core (strengths).” Then this method delves into the following stages:

Discovery (fact-finding)

Dream (visioning the future)

Design (strategic purpose)

Destiny (continuous improvement)

3. “FIVE WHYS” METHOD

This method simply suggests that we ask “Why” at least five times during our review of the problem and in search of a fix. This helps us dig deeper to find the the true reason for the problem, or the root cause. Now, this doesn’t mean we just keeping asking the same question five times. Once we get an answer to our first “why”, we ask why to that answer until we get to five “whys”.

Using the “five whys” is part of the “Analyze” phase of Six Sigma but can be used with or without the full Six Sigma process.

Review this simple Wikipedia example of the 5 Whys in action:

The vehicle will not start. (the problem)

Why? - The battery is dead. (First why)

Why? - The alternator is not functioning. (Second why)

Why? - The alternator belt has broken. (Third why)

Why? - The alternator belt was well beyond its useful service life and not replaced. (Fourth why)

Why? - The vehicle was not maintained according to the recommended service schedule. (Fifth why, a root cause)

4. LEAN SIX SIGMA (DMAIC METHOD)

Define, Measure, Analyze, Design, Verify

While many people have at least heard of Lean or Six Sigma, do we know what it is? Like many problem-solving processes, it has five main steps to follow.

Define : Clearly laying out the problem and soliciting feedback from those who are customers of the process is necessary to starting off on the right foot.

Measure : Quantifying the current state of the problem is a key to measuring how well the fix performed once it was implemented.

Analyze : Finding out the root cause of the problem (see number 5 “Root Cause Analysis” below) is one of the hardest and least explored steps of Six Sigma.

Improve : Crafting, executing, and testing the solution for measureable improvement is key. What doesn’t get implemented and measured really won’t make a difference.

Control : Sustaining the fix through a monitoring plan will ensure things continue to stay on track rather than being a short-lived solution.

5. ROOT CAUSE ANALYSIS

Compared to other methods, you’ll more often find this technique in a reactive problem-solving mode, but it is helpful nonetheless. Put simply, it requires a persistent approach to finding the highest-level cause, since most reasons you’ll uncover for a problem don’t tell the whole story.

Most of the time, there are many factors that contributed to an issue. The main reason is often shrouded in either intentional or unintentional secrecy. Taking the time to drill down to the root of the issue is key to truly solving the problem.

6. DEMING-SHEWHART CYCLE: PLAN-DO-CHECK-ACT (PDCA)

Named for W. Edwards Deming and Walter A. Shewhart, this model follows a four-step process:

Plan: Establish goals and objectives at the outset to gain agreement. It’s best to start on a small scale in order to test results and get a quick win.

Do: This step is all about the implementation and execution of the solution.

Check: Study and compare actual to expected results. Chart this data to identify trends.

Act/Adjust: If the check phase showed different results, then adjust accordingly. If worse than expected, then try another fix. If the same or better than expected, then use that as the new baseline for future improvements.

7. 8D PROBLEM-SOLVING

Man Drawing 8 Circles in a Circle

While this is named “8D” for eight disciplines, there are actually nine , because the first is listed as step zero. Each of the disciplines represents a phase of this process. Its aim is to implement a quick fix in the short term while working on a more permanent solution with no recurring issues.

Prepare and Plan : Collecting initial information from the team and preparing your approach to the process is a necessary first step.

Form a Team : Select a cross-functional team of people, one leader to run meetings and the process, and one champion/sponsor who will be the final decision-maker.

Describe the Problem : Using inductive and deductive reasoning approaches, lay out the precise issue to be corrected.

Interim Containment Action : Determine if an interim solution needs to be implemented or if it can wait until the final fix is firmed up. If necessary, the interim action is usually removed once the permanent solution is ready for implementation.

Root Cause Analysis and Escape Point : Finding the root of the issue and where in the process it could’ve been found but was not will help identify where and why the issue happened.

Permanent Corrective Action : Incorporating key criteria into the solution, including requirements and wants, will help ensure buy-in from the team and your champion.

Implement and Validate the Permanent Corrective Action : Measuring results from the fix implemented validates it or sends the team back to the drawing board to identity a more robust solution.

Prevent Recurrence : Updating work procedure documents and regular communication about the changes are important to keep old habits in check.

Closure and Team Celebration : Taking time to praise the team for their efforts in resolving the problem acknowledges the part each person played and offers a way to move forward.

8. ARMY PROBLEM SOLVING PROCESS

The US Army has been solving problems for more than a couple of centuries , so why not take a look at the problem-solving process they’ve refined over many years? They recommend this five step process:

Identify the Problem : Take time to understand the situation and define a scope and limitations before moving forward.

Gather Information : Uncover facts, assumptions, and opinions about the problem, and challenge them to get to the truth.

Develop Screening and Evaluation Criteria :

Five screening items should be questioned. Is it feasible, acceptable, distinguishable, and complete?

Evaluation criteria should have these 5 elements: short title, definition, unit of measure, benchmark, and formula.

Generate, Analyze, and Compare Possible Solutions : Most fixes are analyzed, but do you compare yours to one another as a final vetting method?

Choose a Solution and Implement : Put the fix into practice and follow up to ensure it is being followed consistently and having the desired effect.

9. HURSON'S PRODUCTIVE THINKING MODEL

Thinking Man

Tim Hurson introduced this model in 2007 with his book, Think Better. It consists of the following six actions.

Ask "What is going on?" : Define the impact of the problem and the aim of its solution.

Ask "What is success?" : Spell out the expected outcome, what should not be in fix, values to be considered, and how things will be evaluated.

Ask "What is the question?" : Tailor questions to the problem type. Valuable resources can be wasted asking questions that aren’t truly relevant to the issue.

Generate answers : Prioritize answers that are the most relevant to solutions, without excluding any suggestion to present to the decision-makers.

Forge the solution : Refine the raw list of prioritized fixes, looking for ways to combine them for a more powerful solution or eliminate fixes that don’t fit the evaluation criteria.

Align resources: Identify resources, team, and stakeholders needed to implement and maintain the solution.

STEAL THIS THOROUGH 8-STEP PROBLEM-SOLVING PROCESS

Little Girl Reaching For Strawberries On The Counter

Now that we’ve reviewed a number of problem-solving methods, we’ve compiled the various steps into a straightforward, yet in-depth, s tep-by-step process to use the best of all methods.

1. DIG DEEP: IDENTIFY, DEFINE, AND CLARIFY THE ISSUE

“Elementary, my dear Watson,” you might say.

This is true, but we often forget the fundamentals before trying to solve a problem. So take some time to gain understanding of critical stakeholder’s viewpoints to clarify the problem and cement consensus behind what the issue really is.

Sometimes it feels like you’re on the same page, but minor misunderstandings mean you’re not really in full agreement.. It’s better to take the time to drill down on an issue before you get too far into solving a problem that may not be the exact problem . Which leads us to…

2. DIG DEEPER: ROOT CAUSE ANALYSIS

Root Cause Analysis

This part of the process involves identifying these three items :

What happened?

Why did it happen?

What process do we need to employ to significantly reduce the chances of it happening again ?

You’ll usually need to sort through a series of situations to find the primary cause. So be careful not to stop at the first cause you uncover . Dig further into the situation to expose the root of the issue. We don’t want to install a solution that only fixes a surface-level issue and not the root. T here are typically three types of causes :

Physical: Perhaps a part failed due to poor design or manufacturing.

Human error: A person either did something wrong or didn’t do what needed to be done.

Organizational: This one is mostly about a system, process, or policy that contributed to the error .

When searching for the root cause, it is important to ensure people that you aren’t there to assign blame to a person but rather identify the problem so a fix can prevent future issues.

3. PRODUCE A VARIETY OF SOLUTION OPTIONS

So far, you’ve approached the problem as a data scientist, searching for clues to the real issue. Now, it’s important to keep your eyes and ears open, in case you run across a fix suggested by one of those involved in the process failure. Because they are closest to the problem, they will often have an idea of how to fix things. In other cases, they may be too close, and unable to see how the process could change.

The bottom line is to solicit solution ideas from a variety of sources , both close to and far away from the process you’re trying to improve.

You just never know where the top fix might come from!

4. FULLY EVALUATE AND SELECT PLANNED FIX(ES)

"Time To Evaluate" Written on a Notepad with Pink Glasses & Pen

Evaluating solutions to a defined problem can be tricky since each one will have cost, political, or other factors associated with it. Running each fix through a filter of cost and impact is a vital step toward identifying a solid solution and hopefully settling on the one with the highest impact and low or acceptable cost.

Categorizing each solution in one of these four categoriescan help teams sift through them:

High Cost/Low Impact: Implement these last, if at all, since t hey are expensive and won’t move the needle much .

Low Cost/Low Impact: These are cheap, but you won’t get much impact.

High Cost/High Impact: These can be used but should be second to the next category.

Low Cost/High Impact: Getting a solid “bang for your buck” is what these fixes are all about. Start with these first .

5. DOCUMENT THE FINAL SOLUTION AND WHAT SUCCESS LOOKS LIKE

Formalize a document that all interested parties (front-line staff, supervisors, leadership, etc.) agree to follow. This will go a long way towards making sure everyone fully understands what the new process looks like, as well as what success will look like .

While it might seem tedious, try to be overly descriptive in the explanation of the solution and how success will be achieved. This is usually necessary to gain full buy-in and commitment to continually following the solution. We often assume certain things that others may not know unless we are more explicit with our communications.

6. SUCCESSFULLY SELL AND EXECUTE THE FIX

Execution Etched In to a Gear

Arriving at this stage in the process only to forget to consistently apply the solution would be a waste of time, yet many organizations fall down in the execution phase . Part of making sure that doesn’t happen is to communicate the fix and ask for questions multiple times until all parties have a solid grasp on what is now required of them.

One often-overlooked element of this is the politics involved in gaining approval for your solution. Knowing and anticipating objections of those in senior or key leadership positions is central to gaining buy-in before fix implementation.

7. RINSE AND REPEAT: EVALUATE, MONITOR, AND FOLLOW UP

Next, doing check-ins with the new process will ensure that the solution is working (or identity if further reforms are necessary) . You’ll also see if the measure of predefined success has been attained (or is making progress in that regard).

Without regularly monitoring the fix, you can only gauge the success or failure of the solution by speculation and hearsay. And without hard data to review, most people will tell their own version of the story.

8. COLLABORATIVE CONTINGENCIES, ITERATION, AND COURSE CORRECTION

Man Looking Up at a Success Roadmap

Going into any problem-solving process, we should take note that we will not be done once the solution is implemented (or even if it seems to be working better at the moment). Any part of any process will always be subject to the need for future iterations and course corrections . To think otherwise would be either foolish or naive.

There might need to be slight, moderate, or wholesale changes to the solution previously implemented as new information is gained, new technologies are discovered, etc.

14 FRUITFUL RESOURCES AND EXERCISES FOR YOUR PROBLEM-SOLVING JOURNEY

Resources | People Working Together At A Large Table With Laptops, Tablets & Paperwork Everywhere

Want to test your problem-solving skills?

Take a look at these twenty case study scenario exercises to see how well you can come up with solutions to these problems.

Still have a desire to discover more about solving problems?

Check out these 14 articles and books...

1. THE LEAN SIX SIGMA POCKET TOOLBOOK: A QUICK REFERENCE GUIDE TO NEARLY 100 TOOLS FOR IMPROVING QUALITY AND SPEED

This book is like a Bible for Lean Six Sigma , all in a pocket-sized package.

2. SOME SAGE PROBLEM SOLVING ADVICE

Hands Holding Up a Comment Bubble That Says "Advice"

The American Society for Quality has a short article on how it’s important to focus on the problem before searching for a solution.

3. THE SECRET TO BETTER PROBLEM SOLVING: HARVARD BUSINESS REVIEW

Wondering if you are solving the right problems? Check out this Harvard Business Review article.

4. PROBLEM SOLVING 101 : A SIMPLE BOOK FOR SMART PEOPLE

Looking for a fun and easy problem-solving book that was written by a McKinsey consultant? Take a look!

5. THE BASICS OF CREATIVE PROBLEM SOLVING – CPS

A Drawn Lightbulb Where The Lightbulb is a Crumbled Piece Of Yellow Paper

If you want a deeper dive into the seven steps of Creative Problem Solving , see this article.

6. APPRECIATIVE INQUIRY : A POSITIVE REVOLUTION IN CHANGE

Appreciative Inquiry has been proven effective in organizations ranging from Roadway Express and British Airways to the United Nations and the United States Navy. Review this book to join the positive revolution.

7. PROBLEM SOLVING: NINE CASE STUDIES AND LESSONS LEARNED

The Seattle Police Department has put together nine case studies that you can practice solving . While they are about police work, they have practical application in the sleuthing of work-related problems.

8. ROOT CAUSE ANALYSIS : THE CORE OF PROBLEM SOLVING AND CORRECTIVE ACTION

Need a resource to delve further into Root Cause Analysis? Look no further than this book for answers to your most vexing questions .

9. SOLVING BUSINESS PROBLEMS : THE CASE OF POOR FRANK

Business Team Looking At Multi-Colored Sticky Notes On A Wall

This solid case study illustrates the complexities of solving problems in business.

10. THE 8-DISCIPLINES PROBLEM SOLVING METHODOLOGY

Learn all about the “8Ds” with this concise primer.

11. THE PROBLEM-SOLVING PROCESS THAT PREVENTS GROUPTHINK HBR

Need to reduce groupthink in your organization’s problem-solving process ? Check out this article from the Harvard Business Review.

12. THINK BETTER : AN INNOVATOR'S GUIDE TO PRODUCTIVE THINKING

Woman Thinking Against A Yellow Wall

Tim Hurson details his own Productive Thinking Model at great length in this book from the author.

13. 5 STEPS TO SOLVING THE PROBLEMS WITH YOUR PROBLEM SOLVING INC MAGAZINE

This simple five-step process will help you break down the problem, analyze it, prioritize solutions, and sell them internally.

14. CRITICAL THINKING : A BEGINNER'S GUIDE TO CRITICAL THINKING, BETTER DECISION MAKING, AND PROBLEM SOLVING!

LOOKING FOR ASSISTANCE WITH YOUR PROBLEM-SOLVING PROCESS?

There's a lot to take in here, but following some of these methods are sure to improve your problem-solving process. However, if you really want to take problem-solving to the next level, InitiativeOne can come alongside your team to help you solve problems much faster than you ever have before.

There are several parts to this leadership transformation process provided by InitiativeOne, including a personal profile assessment, cognitive learning, group sessions with real-world challenges, personal discovery, and a toolkit to empower leaders to perform at their best.

There are really only two things stopping good teams from being great. One is how they make decisions and two is how they solve problems. Contact us today to grow your team’s leadership performance by making decisions and solving problems more swiftly than ever before!

  • Featured Post

Recent Posts

Does Your Leadership Deserve Two Thumbs Up?

3 Ways to Harness the Power of Inspiration

Leadership Self-Check

psychology

Definition:

Problem Solving is the process of identifying, analyzing, and finding effective solutions to complex issues or challenges.

Key Steps in Problem Solving:

  • Identification of the problem: Recognizing and clearly defining the issue that needs to be resolved.
  • Analysis and research: Gathering relevant information, data, and facts to understand the problem in-depth.
  • Formulating strategies: Developing various approaches and plans to tackle the problem effectively.
  • Evaluation and selection: Assessing the viability and potential outcomes of the proposed solutions and selecting the most appropriate one.
  • Implementation: Putting the chosen solution into action and executing the necessary steps to resolve the problem.
  • Monitoring and feedback: Continuously evaluating the implemented solution and obtaining feedback to ensure its effectiveness.
  • Adaptation and improvement: Modifying and refining the solution as needed to optimize results and prevent similar problems from arising in the future.

Skills and Qualities for Effective Problem Solving:

  • Analytical thinking: The ability to break down complex problems into smaller, manageable components and analyze them thoroughly.
  • Creativity: Thinking outside the box and generating innovative solutions.
  • Decision making: Making logical and informed choices based on available data and critical thinking.
  • Communication: Clearly conveying ideas, listening actively, and collaborating with others to solve problems as a team.
  • Resilience: Maintaining a positive mindset, perseverance, and adaptability in the face of challenges.
  • Resourcefulness: Utilizing available resources and seeking new approaches when confronted with obstacles.
  • Time management: Effectively organizing and prioritizing tasks to optimize problem-solving efficiency.
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

MindManager Blog

The 5 steps of the solving problem process

August 17, 2023 by MindManager Blog

Whether you run a business, manage a team, or work in an industry where change is the norm, it may feel like something is always going wrong. Thankfully, becoming proficient in the problem solving process can alleviate a great deal of the stress that business issues can create.

Understanding the right way to solve problems not only takes the guesswork out of how to deal with difficult, unexpected, or complex situations, it can lead to more effective long-term solutions.

In this article, we’ll walk you through the 5 steps of problem solving, and help you explore a few examples of problem solving scenarios where you can see the problem solving process in action before putting it to work.

Understanding the problem solving process

When something isn’t working, it’s important to understand what’s at the root of the problem so you can fix it and prevent it from happening again. That’s why resolving difficult or complex issues works best when you apply proven business problem solving tools and techniques – from soft skills, to software.

The problem solving process typically includes:

  • Pinpointing what’s broken by gathering data and consulting with team members.
  • Figuring out why it’s not working by mapping out and troubleshooting the problem.
  • Deciding on the most effective way to fix it by brainstorming and then implementing a solution.

While skills like active listening, collaboration, and leadership play an important role in problem solving, tools like visual mapping software make it easier to define and share problem solving objectives, play out various solutions, and even put the best fit to work.

Before you can take your first step toward solving a problem, you need to have a clear idea of what the issue is and the outcome you want to achieve by resolving it.

For example, if your company currently manufactures 50 widgets a day, but you’ve started processing orders for 75 widgets a day, you could simply say you have a production deficit.

However, the problem solving process will prove far more valuable if you define the start and end point by clarifying that production is running short by 25 widgets a day, and you need to increase daily production by 50%.

Once you know where you’re at and where you need to end up, these five steps will take you from Point A to Point B:

  • Figure out what’s causing the problem . You may need to gather knowledge and evaluate input from different documents, departments, and personnel to isolate the factors that are contributing to your problem. Knowledge visualization software like MindManager can help.
  • Come up with a few viable solutions . Since hitting on exactly the right solution – right away – can be tough, brainstorming with your team and mapping out various scenarios is the best way to move forward. If your first strategy doesn’t pan out, you’ll have others on tap you can turn to.
  • Choose the best option . Decision-making skills, and software that lets you lay out process relationships, priorities, and criteria, are invaluable for selecting the most promising solution. Whether it’s you or someone higher up making that choice, it should include weighing costs, time commitments, and any implementation hurdles.
  • Put your chosen solution to work . Before implementing your fix of choice, you should make key personnel aware of changes that might affect their daily workflow, and set up benchmarks that will make it easy to see if your solution is working.
  • Evaluate your outcome . Now comes the moment of truth: did the solution you implemented solve your problem? Do your benchmarks show you achieved the outcome you wanted? If so, congratulations! If not, you’ll need to tweak your solution to meet your problem solving goal.

In practice, you might not hit a home-run with every solution you execute. But the beauty of a repeatable process like problem solving is that you can carry out steps 4 and 5 again by drawing from the brainstorm options you documented during step 2.

Examples of problem solving scenarios

The best way to get a sense of how the problem solving process works before you try it for yourself is to work through some simple scenarios.

Here are three examples of how you can apply business problem solving techniques to common workplace challenges.

Scenario #1: Manufacturing

Building on our original manufacturing example, you determine that your company is consistently short producing 25 widgets a day and needs to increase daily production by 50%.

Since you’d like to gather data and input from both your manufacturing and sales order departments, you schedule a brainstorming session to discover the root cause of the shortage.

After examining four key production areas – machines, materials, methods, and management – you determine the cause of the problem: the material used to manufacture your widgets can only be fed into your equipment once the machinery warms up to a specific temperature for the day.

Your team comes up with three possible solutions.

  • Leave your machinery running 24 hours so it’s always at temperature.
  • Invest in equipment that heats up faster.
  • Find an alternate material for your widgets.

After weighing the expense of the first two solutions, and conducting some online research, you decide that switching to a comparable but less expensive material that can be worked at a lower temperature is your best option.

You implement your plan, monitor your widget quality and output over the following week, and declare your solution a success when daily production increases by 100%.

Scenario #2: Service Delivery

Business training is booming and you’ve had to onboard new staff over the past month. Now you learn that several clients have expressed concern about the quality of your recent training sessions.

After speaking with both clients and staff, you discover there are actually two distinct factors contributing to your quality problem:

  • The additional conference room you’ve leased to accommodate your expanding training sessions has terrible acoustics
  • The AV equipment you’ve purchased to accommodate your expanding workforce is on back-order – and your new hires have been making do without

You could look for a new conference room or re-schedule upcoming training sessions until after your new equipment arrives. But your team collaboratively determines that the best way to mitigate both issues at once is by temporarily renting the high-quality sound and visual system they need.

Using benchmarks that include several weeks of feedback from session attendees, and random session spot-checks you conduct personally, you conclude the solution has worked.

Scenario #3: Marketing

You’ve invested heavily in product marketing, but still can’t meet your sales goals. Specifically, you missed your revenue target by 30% last year and would like to meet that same target this year.

After collecting and examining reams of information from your sales and accounting departments, you sit down with your marketing team to figure out what’s hindering your success in the marketplace.

Determining that your product isn’t competitively priced, you map out two viable solutions.

  • Hire a third-party specialist to conduct a detailed market analysis.
  • Drop the price of your product to undercut competitors.

Since you’re in a hurry for results, you decide to immediately reduce the price of your product and market it accordingly.

When revenue figures for the following quarter show sales have declined even further – and marketing surveys show potential customers are doubting the quality of your product – you revert back to your original pricing, revisit your problem solving process, and implement the market analysis solution instead.

With the valuable information you gain, you finally arrive at just the right product price for your target market and sales begin to pick up. Although you miss your revenue target again this year, you meet it by the second quarter of the following year.

Kickstart your collaborative brainstorming sessions and  try MindManager for free today !

Ready to take the next step?

MindManager helps boost collaboration and productivity among remote and hybrid teams to achieve better results, faster.

three stages of problem solving

Why choose MindManager?

MindManager® helps individuals, teams, and enterprises bring greater clarity and structure to plans, projects, and processes. It provides visual productivity tools and mind mapping software to help take you and your organization to where you want to be.

Explore MindManager

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Psychology Spot

All About Psychology

The 5 phases of problem solving

phases of problem solving

Problem solving is a complex psychological process through which we try to find the best way to overcome an obstacle or face a challenge. Unfortunately, this process is not always linear, but can follow tortuous paths, plunging us into a situation of psychological anguish when we believe that there is no possible solution.

On the other hand, knowing the phases of problem solving will save us a lot of headaches. Providing a coherent structure to the situation that concerns us, and having a common thread that guides us along the way, will help us to put some order in the mental chaos that problems usually generate.

To Solve a Problem, Experience Does not Always Work in Our Favor

Experience can be a plus or, on the contrary, become an impediment to solving problems. Psychologists from the universities of Hong Kong and Princeton examined how we implement problem-solving strategies by asking a group of people to solve a series of problems with matches.

Participants were presented with a series of linked squares. Each square in the matrix was made up of separate pieces, and people had to remove a certain number of matches while keeping a specified number of squares intact. The interesting thing about these types of problems is that they generally have more than one solution, different strategies can be used and these must change according to the configuration of the matrix, just as it usually happens with life problems.

These researchers found that participants went through two major stages in problem solving. At first they let themselves be carried away by the perceptual characteristics of the problem and began to explore different strategies, some successful and others not.

In a second moment they used the accumulated experience to narrow their options of strategies, focusing on those that were more successful. The problem is that the more the participants trusted their strategic knowledge, the more difficulties they had in solving problems that demanded the application of novel strategies. In practice, they suffered from a kind of functional fixation.

These series of experiments show us that to solve a problem we must keep an open mind because along the way circumstances are likely to change and we need the mental flexibility necessary to change our problem-solving strategies.

The Stages of Problem Solving We Can All Apply

1. Identify the problem

It may seem like a truism, but the truth is that identifying the real problem is not as easy as it seems, especially when it comes to a situation that affects us emotionally. In fact, when the problem is too scary or we sense that we do not have the psychological tools to solve it, we usually put into practice defense mechanisms such as displacement that allow us to erase the problematic situation from our conscious mind.

Instead, being able to identify the problem is the first step in finding a solution. Many times that means stopping looking outside for the culprits and searching within, wondering why a situation is particularly bothering or hindering us.

2. Understand the problem

Many times the problem brings with it the seed of the solution. So one of the steps in solving a problem is making sure we understand it. It is not enough to identify the problem, we need to define it. For this we need to analyze it from different perspectives.

For example, if we are trying to carry out a professional project that does not finish taking off, we have to clarify the reasons. Do we need more training? Are we in an overly competitive sector? Do we have enough resources? We need to understand the source of the problem.

Organizing the information available is another crucial step in the problem-solving process. We have to ask ourselves both, what we know about the problem and everything we do not know. Ultimately, the accuracy of the solution will largely depend on the amount of information available.

3. Assume a psychological distance

Most of the major problems in life have the potential to generate an emotional tsunami. However, many times that affective involvement obfuscates and prevents us from thinking clearly. That is why on many occasions one of the most important but least known phases for solving problems consists of moving away from what concerns us. To assume a psychological distance , we can take a few days away from the problematic environment or try to stop thinking about what worries us for a while.

During that time the unconscious mind will continue to work and is likely to generate creative and perfectly valid insights that lead to the solution of the problem. That distance to allow us to overcome the functional fixations that prevent us from thinking outside the box, giving way to a mental restructuring that will allow us to see the problem from another perspective.

4. Find solutions and develop strategies

Each problem is different, so it will require a specific solution. A solution cannot always be reached by insight, so it will be necessary to think of possible alternatives to solve the problem. Synectics , for example, is a problem-solving method that uses creativity to find original solutions.

The next step is to develop a strategy, since solutions that do not materialize in concrete steps are very difficult to implement. Therefore, we must ask ourselves how we are going to implement our solution. In this phase of problem solving it is important to be honest with ourselves and “land” that strategy taking into account our resources and real availability. It is useless to develop a great strategy if we cannot apply it later.

5. Evaluation of progress

Very few problems are solved overnight. These are generally complex situations that we must patiently “unwind” over time. Therefore, another of the phases to solve a problem consists of monitoring the results that we are achieving. This way we make sure that we are on the right track and we are not wasting energy and time uselessly.

In this last stage of problem solving it is important to be able to adapt our expectations. It is difficult for a professional project to take off in the blink of an eye, so we must focus on the small steps that indicate that the solution is paying off. To do this, it is important to sit down and reflect on the impact of the solution from time to time.

We must also bear in mind that circumstances often change, so we may need to make adjustments to our initial solution. This requires great mental flexibility to change course when we realize that the strategy is not as effective as we would like.

Fedor, A. et. Al. (2015) Problem solving stages in the five square problem.  Front. Psychol ; 6: 1050.

Louis Lee, N. Y. & Johnson-Laird, P. N. (2013) Strategic changes in problem solving.  Journal of Cognitive Psychology ; 25: 165–173. 

Gillen, G. (2009) Managing Executive Function Impairments to Optimize Function.  Cognitive and Perceptual Rehabilitation ; 245-283.

Jennifer Delgado

Psychologist Jennifer Delgado

I am a psychologist and I spent several years writing articles for scientific journals specialized in Health and Psychology. I want to help you create great experiences. Learn more about me .

three stages of problem solving

Coming Out of Complacency: Growth Outside of Your Comfort Zone

10/07/2024 By Jennifer Delgado

three stages of problem solving

Living on autopilot is not living

three stages of problem solving

Behind the excesses hides an existential void

09/07/2024 By Jennifer Delgado

4 Main problem-solving strategies

Photo of author

In Psychology, you get to read about a ton of therapies. It’s mind-boggling how different theorists have looked at human nature differently and have come up with different, often somewhat contradictory, theoretical approaches.

Yet, you can’t deny the kernel of truth that’s there in all of them. All therapies, despite being different, have one thing in common- they all aim to solve people’s problems. They all aim to equip people with problem-solving strategies to help them deal with their life problems.

Problem-solving is really at the core of everything we do. Throughout our lives, we’re constantly trying to solve one problem or another. When we can’t, all sorts of psychological problems take hold. Getting good at solving problems is a fundamental life skill.

Problem-solving stages

What problem-solving does is take you from an initial state (A) where a problem exists to a final or goal state (B), where the problem no longer exists.

To move from A to B, you need to perform some actions called operators. Engaging in the right operators moves you from A to B. So, the stages of problem-solving are:

  • Initial state

The problem itself can either be well-defined or ill-defined. A well-defined problem is one where you can clearly see where you are (A), where you want to go (B), and what you need to do to get there (engaging the right operators).

For example, feeling hungry and wanting to eat can be seen as a problem, albeit a simple one for many. Your initial state is hunger (A) and your final state is satisfaction or no hunger (B). Going to the kitchen and finding something to eat is using the right operator.

In contrast, ill-defined or complex problems are those where one or more of the three problem solving stages aren’t clear. For example, if your goal is to bring about world peace, what is it exactly that you want to do?

It’s been rightly said that a problem well-defined is a problem half-solved. Whenever you face an ill-defined problem, the first thing you need to do is get clear about all the three stages.

Often, people will have a decent idea of where they are (A) and where they want to be (B). What they usually get stuck on is finding the right operators.

Initial theory in problem-solving

When people first attempt to solve a problem, i.e. when they first engage their operators, they often have an initial theory of solving the problem. As I mentioned in my article on overcoming challenges for complex problems, this initial theory is often wrong.

But, at the time, it’s usually the result of the best information the individual can gather about the problem. When this initial theory fails, the problem-solver gets more data, and he refines the theory. Eventually, he finds an actual theory i.e. a theory that works. This finally allows him to engage the right operators to move from A to B.

Problem-solving strategies

These are operators that a problem solver tries to move from A to B. There are several problem-solving strategies but the main ones are:

  • Trial and error

1. Algorithms

When you follow a step-by-step procedure to solve a problem or reach a goal, you’re using an algorithm. If you follow the steps exactly, you’re guaranteed to find the solution. The drawback of this strategy is that it can get cumbersome and time-consuming for large problems.

Say I hand you a 200-page book and ask you to read out to me what’s written on page 100. If you start from page 1 and keep turning the pages, you’ll eventually reach page 100. There’s no question about it. But the process is time-consuming. So instead you use what’s called a heuristic.

2. Heuristics

Heuristics are rules of thumb that people use to simplify problems. They’re often based on memories from past experiences. They cut down the number of steps needed to solve a problem, but they don’t always guarantee a solution. Heuristics save us time and effort if they work.

You know that page 100 lies in the middle of the book. Instead of starting from page one, you try to open the book in the middle. Of course, you may not hit page 100, but you can get really close with just a couple of tries.

If you open page 90, for instance, you can then algorithmically move from 90 to 100. Thus, you can use a combination of heuristics and algorithms to solve the problem. In real life, we often solve problems like this.

When police are looking for suspects in an investigation, they try to narrow down the problem similarly. Knowing the suspect is 6 feet tall isn’t enough, as there could be thousands of people out there with that height.

Knowing the suspect is 6 feet tall, male, wears glasses, and has blond hair narrows down the problem significantly.

3. Trial and error

When you have an initial theory to solve a problem, you try it out. If you fail, you refine or change your theory and try again. This is the trial-and-error process of solving problems. Behavioral and cognitive trial and error often go hand in hand, but for many problems, we start with behavioural trial and error until we’re forced to think.

Say you’re in a maze, trying to find your way out. You try one route without giving it much thought and you find it leads to nowhere. Then you try another route and fail again. This is behavioural trial and error because you aren’t putting any thought into your trials. You’re just throwing things at the wall to see what sticks.

This isn’t an ideal strategy but can be useful in situations where it’s impossible to get any information about the problem without doing some trials.

Then, when you have enough information about the problem, you shuffle that information in your mind to find a solution. This is cognitive trial and error or analytical thinking. Behavioral trial and error can take a lot of time, so using cognitive trial and error as much as possible is advisable. You got to sharpen your axe before you cut the tree.

When solving complex problems, people get frustrated after having tried several operators that didn’t work. They abandon their problem and go on with their routine activities. Suddenly, they get a flash of insight that makes them confident they can now solve the problem.

I’ve done an entire article on the underlying mechanics of insight . Long story short, when you take a step back from your problem, it helps you see things in a new light. You make use of associations that were previously unavailable to you.

You get more puzzle pieces to work with and this increases the odds of you finding a path from A to B, i.e. finding operators that work.

Pilot problem-solving

No matter what problem-solving strategy you employ, it’s all about finding out what works. Your actual theory tells you what operators will take you from A to B. Complex problems don’t reveal their actual theories easily solely because they are complex.

Therefore, the first step to solving a complex problem is getting as clear as you can about what you’re trying to accomplish- collecting as much information as you can about the problem.

This gives you enough raw materials to formulate an initial theory. We want our initial theory to be as close to an actual theory as possible. This saves time and resources.

Solving a complex problem can mean investing a lot of resources. Therefore, it is recommended you verify your initial theory if you can. I call this pilot problem-solving.

Before businesses invest in making a product, they sometimes distribute free versions to a small sample of potential customers to ensure their target audience will be receptive to the product.

Before making a series of TV episodes, TV show producers often release pilot episodes to figure out whether the show can take off.

Before conducting a large study, researchers do a pilot study to survey a small sample of the population to determine if the study is worth carrying out.

The same ‘testing the waters’ approach needs to be applied to solving any complex problem you might be facing. Is your problem worth investing a lot of resources in? In management, we’re constantly taught about Return On Investment (ROI). The ROI should justify the investment.

If the answer is yes, go ahead and formulate your initial theory based on extensive research. Find a way to verify your initial theory. You need this reassurance that you’re going in the right direction, especially for complex problems that take a long time to solve.

memories of murder movie scene

Getting your causal thinking right

Problem solving boils down to getting your causal thinking right. Finding solutions is all about finding out what works, i.e. finding operators that take you from A to B. To succeed, you need to be confident in your initial theory (If I do X and Y, they’ll lead me to B). You need to be sure that doing X and Y will lead you to B- doing X and Y will cause B.

All obstacles to problem-solving or goal-accomplishing are rooted in faulty causal thinking leading to not engaging the right operators. When your causal thinking is on point, you’ll have no problem engaging the right operators.

As you can imagine, for complex problems, getting our causal thinking right isn’t easy. That’s why we need to formulate an initial theory and refine it over time.

I like to think of problem-solving as the ability to project the present into the past or into the future. When you’re solving problems, you’re basically looking at your present situation and asking yourself two questions:

“What caused this?” (Projecting present into the past)

“What will this cause?” (Projecting present into the future)

The first question is more relevant to problem-solving and the second to goal-accomplishing.

If you find yourself in a mess , you need to answer the “What caused this?” question correctly. For the operators you’re currently engaging to reach your goal, ask yourself, “What will this cause?” If you think they cannot cause B, it’s time to refine your initial theory.

hanan parvez

Hi, I’m Hanan Parvez (MA Psychology). I’ve published over 500 articles and authored one book. My work has been featured in Forbes , Business Insider , Reader’s Digest , and Entrepreneur .

Humor That Works

The 5 Steps of Problem Solving

5-steps-of-problem-solving-humor-that-works-3

Problem solving is a critical skill for success in business – in fact it’s often what you are hired and paid to do. This article explains the five problem solving steps and provides strategies on how to execute each one.

Defining Problem Solving

Before we talk about the stages of problem solving, it’s important to have a definition of what it is. Let’s look at the two roots of problem solving — problems and solutions.

Problem – a state of desire for reaching a definite goal from a present condition [1] Solution – the management of a problem in a way that successfully meets the goals set for treating it

[1] Problem solving on Wikipedia

One important call-out is the importance of having a goal. As defined above, the solution may not completely solve problem, but it does meet the goals you establish for treating it–you may not be able to completely resolve the problem (end world hunger), but you can have a goal to help it (reduce the number of starving children by 10%).

The Five Steps of Problem Solving

With that understanding of problem solving, let’s talk about the steps that can get you there. The five problem solving steps are shown in the chart below:

problem solving steps

However this chart as is a little misleading. Not all problems follow these steps linearly, especially for very challenging problems. Instead, you’ll likely move back and forth between the steps as you continue to work on the problem, as shown below:

problem solving steps iterative

Let’s explore of these steps in more detail, understanding what it is and the inputs and outputs of each phase.

1. Define the Problem

aka What are you trying to solve? In addition to getting clear on what the problem is, defining the problem also establishes a goal for what you want to achieve.

Input:  something is wrong or something could be improved. Output: a clear definition of the opportunity and a goal for fixing it.

2. Brainstorm Ideas

aka What are some ways to solve the problem? The goal is to create a list of possible solutions to choose from. The harder the problem, the more solutions you may need.

Input: a goal; research of the problem and possible solutions; imagination. Output: pick-list of possible solutions that would achieve the stated goal.

3. Decide on a Solution

aka What are you going to do? The ideal solution is effective (it will meet the goal), efficient (is affordable), and has the fewest side effects (limited consequences from implementation).

Input:  pick-list of possible solutions; decision-making criteria. Output: decision of what solution you will implement.

4. Implement the Solution

aka What are you doing? The implementation of a solution requires planning and execution. It’s often iterative, where the focus should be on short implementation cycles with testing and feedback, not trying to get it “perfect” the first time.

Input:  decision; planning; hard work. Output:  resolution to the problem.

5. Review the Results

aka What did you do? To know you successfully solved the problem, it’s important to review what worked, what didn’t and what impact the solution had. It also helps you improve long-term problem solving skills and keeps you from re-inventing the wheel.

Input:  resolutions; results of the implementation. Output: insights; case-studies; bullets on your resume.

Improving Problem Solving Skills

Once you understand the five steps of problem solving, you can build your skill level in each one. Often we’re naturally good at a couple of the phases and not as naturally good at others. Some people are great at generating ideas but struggle implementing them. Other people have great execution skills but can’t make decisions on which solutions to use. Knowing the different problem solving steps allows you to work on your weak areas, or team-up with someone who’s strengths complement yours.

Want to improve your problem solving skills? Want to perfect the art of problem solving?  Check out our training programs or try these 20 problem solving activities to improve creativity .

THIS FREE 129 SECOND QUIZ WILL SHOW YOU

what is your humor persona?

Humor is a skill that can be learned. And when used correctly, it is a superpower that can be your greatest asset for building a happier, healthier and more productive life.  See for yourself...

you might also be interested in...

2013 Corporate Humor Awards Finalists

Congratulations to the Finalists for the 2013 Corporate Humor Awards! Be sure to check out each award category to learn […]

Stand Out In The Inbox With These Funny Email Signatures (Examples)

Email is a substantial part of our daily lives. As of 2011, the average user sent and received 105 email […]

Humor Lessons from Scrambled Leggs Book Review

Humor has many benefits. It can bring you closer to another person and ease the tension in a room. It […]

22 thoughts on “The 5 Steps of Problem Solving”

three stages of problem solving

very helpful and informative training

three stages of problem solving

Thank you for the information

three stages of problem solving

YOU ARE AFOOL

three stages of problem solving

I’m writing my 7th edition of Effective Security Management. I would like to use your circular graphic illustration in a new chapter on problem solving. You’re welcome to phone me at — with attribution.

three stages of problem solving

Sure thing, shoot us an email at [email protected] .

three stages of problem solving

i love your presentation. It’s very clear. I think I would use it in teaching my class problem solving procedures. Thank you

three stages of problem solving

It is well defined steps, thank you.

three stages of problem solving

these step can you email them to me so I can print them out these steps are very helpful

three stages of problem solving

I like the content of this article, it is really helpful. I would like to know much on how PAID process (i.e. Problem statement, Analyze the problem, Identify likely causes, and Define the actual causes) works in Problem Solving.

three stages of problem solving

very useful information on problem solving process.Thank you for the update.

Pingback: Let’s Look at Work Is Working with the Environment | #EnviroSociety

three stages of problem solving

It makes sense that a business would want to have an effective problem solving strategy. Things could get bad if they can’t find solutions! I think one of the most important things about problem solving is communication.

three stages of problem solving

Well in our school teacher teach us –

1) problem ldentification 2) structuring the problem 3) looking for possible solutions 4) lmplementation 5) monitoring or seeking feedback 6) decision making

Pleace write about it …

three stages of problem solving

I teach Professional communication (Speech) and I find the 5 steps to problem solving as described here the best method. Your teacher actually uses 4 steps. The Feedback and decision making are follow up to the actual implementation and solving of the problem.

three stages of problem solving

i know the steps of doing some guideline for problem solving

three stages of problem solving

steps are very useful to solve my problem

three stages of problem solving

The steps given are very effective. Thank you for the wonderful presentation of the cycle/steps/procedure and their connections.

three stages of problem solving

I like the steps for problem solving

three stages of problem solving

It is very useful for solving difficult problem i would reccomend it to a friend

three stages of problem solving

this is very interesting because once u have learned you will always differentiate the right from the wrong.

three stages of problem solving

I like the contents of the problem solving steps. informative.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Humor Persona - Template B2B

I make an effort to appreciate the humor of everyday life....

This question helps us further the advancement of humor research to make it more equitable.

Humor Persona - Main B2C

The home of mathematics education in New Zealand.

  • Forgot password ?
  • Teaching material
  • Problem solving activities
  • Problem Solving Information
  • What is Problem Solving?

What is problem solving?

Thanks for visiting NZMaths. We are preparing to close this site by the end of August 2024. Maths content is still being migrated onto Tāhūrangi, and we will be progressively making enhancements to Tāhūrangi to improve the findability and presentation of content.  

For more information visit https://tahurangi.education.govt.nz/updates-to-nzmaths

On this page we discuss "What is problem polving?" under three headings: introduction, four stages of problem solving, and the scientific approach.

Introduction

Naturally enough, problem solving is about solving problems. And we’ll restrict ourselves to thinking about mathematical problems here even though problem solving in school has a wider goal. When you think about it, the whole aim of education is to equip students to solve problems. 

But problem solving also contributes to mathematics itself. Mathematics consists of skills and processes. The skills are things that we are all familiar with. These include the basic arithmetical processes and the algorithms that go with them. They include algebra in all its levels as well as sophisticated areas such as the calculus. This is the side of the subject that is largely represented in the Strands of Number and Algebra, Geometry and Measurement and Statistics.

On the other hand, the processes of mathematics are the ways of using the skills creatively in new situations. Mathematical processes include problem solving, logic and reasoning, and communicating ideas. These are the parts of mathematics that enable us to use the skills in a wide variety of situations.

It is worth starting by distinguishing between the three words "method", "answer" and "solution". By "method" we mean the means used to get an answer. This will generally involve one or more Problem Solving Strategies . On the other hand, we use "answer" to mean a number, quantity or some other entity that the problem is asking for. Finally, a "solution" is the whole process of solving a problem, including the method of obtaining an answer and the answer itself.

method + answer = solution

But how do we do Problem Solving? There are four basic steps. Pólya enunciated these in 1945 but all of them were known and used well before then. Pólya’s four stages of problem solving are listed below.

Four stages of problem solving                             

1. Understand and explore the problem  2. Find a strategy  3. Use the strategy to solve the problem  4. Look back and reflect on the solution.

Although we have listed the four stages in order, for difficult problems it may not be possible to simply move through them consecutively to produce an answer. It is frequently the case that students move backwards and forwards between and across the steps.

You can't solve a problem unless you can first understand it. This requires not only knowing what you have to find but also the key pieces of information that need to be put together to obtain the answer.

Students will often not be able to absorb all the important information of a problem in one go. It will almost always be necessary to read a problem several times, both at the start and while working on it. With younger students it is worth repeating the problem and then asking them to put the question in their own words. Older students might use a highlighter to mark the important parts of the problem.

Finding a strategy tends to suggest that it is a simple matter to think of an appropriate strategy. However, for many problems students may find it necessary to play around with the information before they are able to think of a strategy that might produce a solution. This exploratory phase will also help them to understand the problem better and may make them aware of some piece of information that they had neglected after the first reading.

Having explored the problem and decided on a strategy, the third step, solve the problem , can be attempted. Hopefully now the problem will be solved and an answer obtained. During this phase it is important for the students to keep a track of what they are doing. This is useful to show others what they have done and it is also helpful in finding errors should the right answer not be found.

At this point many students, especially mathematically able ones, will stop. But it is worth getting them into the habit of looking back over what they have done. There are several good reasons for this. First of all it is good practice for them to check their working and make sure that they have not made any errors. Second, it is vital to make sure that the answer they obtained is in fact the answer to the problem. Third, in looking back and thinking a little more about the problem, students are often able to see another way of solving the problem. This new solution may be a nicer solution than the original and may give more insight into what is really going on. Finally, students may be able to generalise or extend the problem.

Generalising a problem means creating a problem that has the original problem as a special case. So a problem about three pigs may be changed into one which has any number of pigs.

In Problem 4 of What is a Problem? , there is a problem on towers. The last part of that problem asks how many towers can be built for any particular height. The answer to this problem will contain the answer to the previous three questions. There we were asked for the number of towers of height one, two and three. If we have some sort of formula, or expression, for any height, then we can substitute into that formula to get the answer for height three, for instance. So the "any" height formula is a generalisation of the height three case. It contains the height three case as a special example.

Extending a problem is a related idea. Here though, we are looking at a new problem that is somehow related to the first one. For instance, a problem that involves addition might be looked at to see if it makes any sense with multiplication. A rather nice problem is to take any whole number and divide it by two if it’s even and multiply it by three and add one if it’s odd. Keep repeating this manipulation. Is the answer you get eventually 1? We’ll do an example. Let’s start with 34. Then we get

34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

We certainly got to 1 then. Now it turns out that no one in the world knows if you will always get to 1 this way, no matter where you start. That’s something for you to worry about. But where does the extension come in? Well we can extend this problem, by just changing the 3 to 5. So this time instead of dividing by 2 if the number is even and multiplying it by three and adding one if it’s odd, try dividing by 2 if the number is even and multiplying it by 5 and adding one if it’s odd. This new problem doesn’t contain the first one as a special case, so it’s not a generalisation. It is an extension though – it’s a problem that is closely related to the original. 

It is by this method of generalisation and extension that mathematics makes great strides forward. Up until Pythagoras’ time, many right-angled triangles were known. For instance, it was known that a triangle with sides 3, 4 and 5 was a right-angled triangle. Similarly people knew that triangles with sides 5, 12 and 13, and 7, 24 and 25 were right angled. Pythagoras’ generalisation was to show that EVERY triangle with sides a, b, c was a right-angled triangle if and only if a 2 + b 2 = c 2 .

This brings us to an aspect of problem solving that we haven’t mentioned so far. That is justification (or proof). Your students may often be able to guess what the answer to a problem is but their solution is not complete until they can justify their answer.

Now in some problems it is hard to find a justification. Indeed you may believe that it is not something that any of the class can do. So you may be happy that the students can find an answer. However, bear in mind that this justification is what sets mathematics apart from every other discipline. Consequently the justification step is an important one that shouldn’t be missed too often.

Scientific approach                                   

Another way of looking at the Problem Solving process is what might be called the scientific approach. We show this in the diagram below.

Here the problem is given and initially the idea is to experiment with it or explore it in order to get some feeling as to how to proceed. After a while it is hoped that the solver is able to make a conjecture or guess what the answer might be. If the conjecture is true it might be possible to prove or justify it. In that case the looking back process sets in and an effort is made to generalise or extend the problem. In this case you have essentially chosen a new problem and so the whole process starts over again.

Sometimes, however, the conjecture is wrong and so a counter-example is found. This is an example that contradicts the conjecture. In that case another conjecture is sought and you have to look for a proof or another counterexample.

Some problems are too hard so it is necessary to give up. Now you may give up so that you can take a rest, in which case it is a ‘for now’ giving up. Actually this is a good problem solving strategy. Often when you give up for a while your subconscious takes over and comes up with a good idea that you can follow. On the other hand, some problems are so hard that you eventually have to give up ‘for ever’. There have been many difficult problems throughout history that mathematicians have had to give up on.

More From Forbes

Stumped five ways to hone your problem-solving skills.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Respect the worth of other people's insights

Problems continuously arise in organizational life, making problem-solving an essential skill for leaders. Leaders who are good at tackling conundrums are likely to be more effective at overcoming obstacles and guiding their teams to achieve their goals. So, what’s the secret to better problem-solving skills?

1. Understand the root cause of the problem

“Too often, people fail because they haven’t correctly defined what the problem is,” says David Ross, an international strategist, founder of consultancy Phoenix Strategic Management and author of Confronting the Storm: Regenerating Leadership and Hope in the Age of Uncertainty .

Ross explains that as teams grapple with “wicked” problems – those where there can be several root causes for why a problem exists – there can often be disagreement on the initial assumptions made. As a result, their chances of successfully solving the problem are low.

“Before commencing the process of solving the problem, it is worthwhile identifying who your key stakeholders are and talking to them about the issue,” Ross recommends. “Who could be affected by the issue? What is the problem – and why? How are people affected?”

He argues that if leaders treat people with dignity, respecting the worth of their insights, they are more likely to successfully solve problems.

Best High-Yield Savings Accounts Of 2024

Best 5% interest savings accounts of 2024, 2. unfocus the mind.

“To solve problems, we need to commit to making time to face a problem in its full complexity, which also requires that we take back control of our thinking,” says Chris Griffiths, an expert on creativity and innovative thinking skills, founder and CEO of software provider OpenGenius, and co-author of The Focus Fix: Finding Clarity, Creativity and Resilience in an Overwhelming World .

To do this, it’s necessary to harness the power of the unfocused mind, according to Griffiths. “It might sound oxymoronic, but just like our devices, our brain needs time to recharge,” he says. “ A plethora of research has shown that daydreaming allows us to make creative connections and see abstract solutions that are not obvious when we’re engaged in direct work.”

To make use of the unfocused mind in problem solving, you must begin by getting to know the problem from all angles. “At this stage, don’t worry about actually solving the problem,” says Griffiths. “You’re simply giving your subconscious mind the information it needs to get creative with when you zone out. From here, pick a monotonous or rhythmic activity that will help you to activate the daydreaming state – that might be a walk, some doodling, or even some chores.”

Do this regularly, argues Griffiths, and you’ll soon find that flashes of inspiration and novel solutions naturally present themselves while you’re ostensibly thinking of other things. He says: “By allowing you to access the fullest creative potential of your own brain, daydreaming acts as a skeleton key for a wide range of problems.”

3. Be comfortable making judgment calls

“Admitting to not knowing the future takes courage,” says Professor Stephen Wyatt, founder and lead consultant at consultancy Corporate Rebirth and author of Antidote to the Crisis of Leadership: Opportunity in Complexity . “Leaders are worried our teams won’t respect us and our boards will lose faith in us, but what doesn’t work is drawing up plans and forecasts and holding yourself or others rigidly to them.”

Wyatt advises leaders to heighten their situational awareness – to look broadly, integrate more perspectives and be able to connect the dots. “We need to be comfortable in making judgment calls as the future is unknown,” he says. “There is no data on it. But equally, very few initiatives cannot be adjusted, refined or reviewed while in motion.”

Leaders need to stay vigilant, according to Wyatt, create the capacity of the enterprise to adapt and maintain the support of stakeholders. “The concept of the infallible leader needs to be updated,” he concludes.

4. Be prepared to fail and learn

“Organisations, and arguably society more widely, are obsessed with problems and the notion of problems,” says Steve Hearsum, founder of organizational change consultancy Edge + Stretch and author of No Silver Bullet: Bursting the Bubble of the Organisational Quick Fix .

Hearsum argues that this tendency is complicated by the myth of fixability, namely the idea that all problems, however complex, have a solution. “Our need for certainty, to minimize and dampen the anxiety of ‘not knowing,’ leads us to oversimplify and ignore or filter out anything that challenges the idea that there is a solution,” he says.

Leaders need to shift their mindset to cultivate their comfort with not knowing and couple that with being OK with being wrong, sometimes, notes Hearsum. He adds: “That means developing reflexivity to understand your own beliefs and judgments, and what influences these, asking questions and experimenting.”

5. Unleash the power of empathy

Leaders must be able to communicate problems in order to find solutions to them. But they should avoid bombarding their teams with complex, technical details since these can overwhelm their people’s cognitive load, says Dr Jessica Barker MBE , author of Hacked: The Secrets Behind Cyber Attacks .

Instead, she recommends that leaders frame their messages in ways that cut through jargon and ensure that their advice is relevant, accessible and actionable. “An essential leadership skill for this is empathy,” Barker explains. “When you’re trying to build a positive culture, it is crucial to understand why people are not practicing the behaviors you want rather than trying to force that behavioral change with fear, uncertainty and doubt.”

Sally Percy

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

What are the 7 Steps to Problem-Solving? & Its Examples

' src=

By Teach Educator

Published on: February 4, 2024

7 Steps to Problem-Solving

7 Steps to Problem-Solving is a systematic process that involves analyzing a situation, generating possible solutions, and implementing the best course of action. While different problem-solving models exist, a common approach often involves the following seven steps:

Define the Problem:

  • Clearly articulate and understand the nature of the problem. Define the issue, its scope, and its impact on individuals or the organization.

Gather Information:

  • Collect relevant data and information related to the problem. This may involve research, observation, interviews, or any other method to gain a comprehensive understanding.

Generate Possible Solutions:

  • Brainstorm and generate a variety of potential solutions to the problem. Encourage creativity and consider different perspectives during this phase.

Evaluate Options:

  • Assess the strengths and weaknesses of each potential solution. Consider the feasibility, potential risks, and the likely outcomes associated with each option.

Make a Decision:

  • Based on the evaluation, choose the most suitable solution. This decision should align with the goals and values of the individual or organization facing the problem.

Implement the Solution:

  • Put the chosen solution into action. Develop an implementation plan, allocate resources, and carry out the necessary steps to address the problem effectively.

Evaluate the Results:

  • Assess the outcomes of the implemented solution. Did it solve the problem as intended? What can be learned from the process? Use this information to refine future problem-solving efforts.

It’s important to note that these steps are not always linear and may involve iteration. Problem-solving is often an ongoing process, and feedback from the implementation and evaluation stages may lead to adjustments in the chosen solution or the identification of new issues that need to be addressed.

Problem-Solving Example in Education

  • Certainly: Let’s consider a problem-solving example in the context of education.
  • Problem: Declining Student Engagement in Mathematics Classes

Background:

A high school has noticed a decline in student engagement and performance in mathematics classes over the past few years. Students seem disinterested, and there is a noticeable decrease in test scores. The traditional teaching methods are not effectively capturing students’ attention, and there’s a need for innovative solutions to rekindle interest in mathematics.

Steps in Problem-Solving

Identify the problem:.

  • Clearly define the issue: declining student engagement and performance in mathematics classes.
  • Gather data on student performance, attendance, and feedback from teachers and students.

Root Cause Analysis

  • Conduct surveys, interviews, and classroom observations to identify the root causes of disengagement.
  • Identify potential factors such as teaching methods, curriculum relevance, or lack of real-world applications.

Brainstorm Solutions

  • Organize a team of educators, administrators, and even students to brainstorm creative solutions.
  • Consider integrating technology, real-world applications, project-based learning, or other interactive teaching methods.

Evaluate and Prioritize Solutions

  • Evaluate each solution based on feasibility, cost, and potential impact.
  • Prioritize solutions that are likely to address the root causes and have a positive impact on student engagement.

Implement the Chosen Solution

  • Develop an action plan for implementing the chosen solution.
  • Provide training and resources for teachers to adapt to new teaching methods or technologies.

Monitor and Evaluate

  • Continuously monitor the implementation of the solution.
  • Collect feedback from teachers and students to assess the effectiveness of the changes.

Adjust as Needed

  • Be willing to make adjustments based on ongoing feedback and data analysis.
  • Fine-tune the solution to address any unforeseen challenges or issues.

Example Solution

  • Introduce a project-based learning approach in mathematics classes, where students work on real-world problems that require mathematical skills.
  • Incorporate technology, such as educational apps or interactive simulations, to make learning more engaging.
  • Provide professional development for teachers to enhance their skills in implementing these new teaching methods.

Expected Outcomes:

  • Increased student engagement and interest in mathematics.
  • Improvement in test scores and overall academic performance.
  • Positive feedback from both teachers and students.

Final Words

This problem-solving approach in education involves a systematic process of identifying, analyzing, and addressing issues to enhance the learning experience for students.

Related Post

Cybersecurity guide for beginners – latest.

Cybersecurity Guide for Beginners A guide to cybersecurity for beginners typically covers essential topics such as understanding common cyber threats, securing your devices and accounts, creating strong passwords, ...

Download Mental Math Tricks Workout MOD APK (Pro Unlocked) Latest

Mental Math Tricks Workout MOD APK Creating functions for a specific mobile application like “Mental Math Tricks Workout MOD APK Pro Unlocked” involves understanding the key features and ...

What Principles Of Research Ethics? Definition & Guidelines

Principles Of Research Ethics Research ethics refers to the principles and guidelines that govern the conduct of research involving human subjects. These principles are designed to protect the ...

What Is The Project-Based Learning? (PBL) Benefits & Works

Project-Based Learning Project-Based Learning (PBL) is a teaching approach that involves students working on an extended project. That requires them to explore a complex question, problem, or challenge. ...

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Latest Post

Different teacher assessment used by in primary science, how do education and training affect the economy, teach educator.

"Teach Educator aims to empower learners and educators alike through its comprehensive services. Dedicated to bridging educational gaps, it offers a range of resources designed to enhance teaching methodologies, provide updated curriculum insights, and foster professional development. With a commitment to accessibility, Teach Educator ensures that educational tools and information are readily available to all, promoting inclusivity in learning.

© Teach Educator 2021 - 2024 | All Rights Reserved

Privacy policy

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

agronomy-logo

Article Menu

three stages of problem solving

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Algorithm for corn crop row recognition during different growth stages based on st-yolov8s network.

three stages of problem solving

1. Introduction

2. materials and methods, 2.1. dataset construction, 2.2. model construction, 2.2.1. swin transformer model construction, 2.2.2. st-yolov8s model construction, 2.3. improved supergreen method, 2.4. local–global detection method, 3. results and discussion, 3.1. experimental platform, 3.2. crop row segment detection experiment, 3.3. crop row segment segmentation experiment, 3.4. crop row line detection experiment, 4. conclusions, author contributions, data availability statement, conflicts of interest.

  • Diao, Z.H.; Yan, J.N.; He, Z.D.; Zhao, S.N.; Guo, P.L. Corn seedling recognition algorithm based on hyperspectral image and lightweight-3D-CNN. Comput. Electron. Agric. 2022 , 201 , 107343. [ Google Scholar ] [ CrossRef ]
  • Bai, Y.H.; Zhang, B.H.; Xu, N.M.; Zhou, J.; Shi, J.Y.; Diao, Z.H. Vision-based navigation and guidance for agricultural autonomous vehicles and robots: A review. Comput. Electron. Agric. 2023 , 205 , 107584. [ Google Scholar ] [ CrossRef ]
  • Wang, T.H.; Chen, B.; Zhang, Z.Q.; Li, H.; Zhang, M. Applications of machine vision in agricultural robot navigation: A review. Comput. Electron. Agric. 2022 , 198 , 107085. [ Google Scholar ] [ CrossRef ]
  • Li, Y.; Guo, Z.Q.; Shuang, F.; Zhang, M.; Li, X. H Key technologies of machine vision for weeding robots: A review and benchmark. Comput. Electron. Agric. 2022 , 196 , 106880. [ Google Scholar ] [ CrossRef ]
  • Solimani, F.; Cardellicchio, A.; Dimauro, G.; Petrozza, A.; Summerer, S.; Cellini, F.; Renò, V. Optimizing tomato plant phenotyping detection: Boosting YOLOv8 architecture to tackle data complexity. Comput. Electron. Agric. 2024 , 218 , 108728. [ Google Scholar ] [ CrossRef ]
  • Xiao, B.J.; Nguyen, M.; Yan, W.Q. Fruit ripeness identification using YOLOv8 model. Multimed. Tools Appl. 2024 , 83 , 28039–28056. [ Google Scholar ] [ CrossRef ]
  • Liu, S.C.; Huang, Z.; Xu, Z.H.; Zhao, F.J.; Xiong, D.L.; Peng, S.B.; Huang, J.L. High-throughput measurement method for rice seedling based on improved UNet model. Comput. Electron. Agric. 2024 , 219 , 108770. [ Google Scholar ] [ CrossRef ]
  • Yu, J.Y.; Zhang, J.Y.; Shu, A.J.; Chen, Y.J.; Chen, J.N.; Yang, Y.J.; Tang, W.; Zhang, Y.C. Study of convolutional neural network-based semantic segmentation methods on edge intelligence devices for field agricultural robot navigation line extraction. Comput. Electron. Agric. 2023 , 209 , 107811. [ Google Scholar ] [ CrossRef ]
  • Li, D.F.; Li, B.L.; Long, S.F.; Feng, H.Q.; Xi, T.; Kang, S.; Wang, J. Rice seedling row detection based on morphological anchor points of rice stems. Biosyst. Eng. 2023 , 226 , 71–85. [ Google Scholar ] [ CrossRef ]
  • He, Y.; Zhang, X.Y.; Zhang, Z.Q.; Fang, H. Automated detection of boundary line in paddy field using MobileV2-UNet and RANSAC. Comput. Electron. Agric. 2022 , 194 , 106697. [ Google Scholar ] [ CrossRef ]
  • Liu, F.C.; Yang, Y.; Zeng, Y.M.; Liu, Z.Y. Bending diagnosis of rice seedling lines and guidance line extraction of automatic weeding equipment in paddy field. Mech. Syst. Signal Process. 2020 , 142 , 106791. [ Google Scholar ] [ CrossRef ]
  • Quan, L.Z.; Feng, H.Q.; Lv, Y.J.; Wang, Q.; Zhang, C.B.; Liu, J.G.; Yuan, Z.Y. Maize seedling detection under different growth stages and complex field environments based on an improved Faster R–CNN. Biosyst. Eng. 2019 , 184 , 1–23. [ Google Scholar ] [ CrossRef ]
  • Yang, Y.; Zhou, Y.; Yue, X.; Zhang, G.; Wen, X.; Ma, B.; Xu, L.Y.; Chen, L.Q. Real-time detection of crop rows in maize fields based on autonomous extraction of ROI. Expert Syst. Appl. 2023 , 213 , 118826. [ Google Scholar ] [ CrossRef ]
  • Jiang, H.H.; Zhang, C.Y.; Qiao, Y.L.; Zhang, Z.; Zhang, W.J.; Song, C.Q. CNN feature based graph convolutional network for weed and crop recognition in smart farming. Comput. Electron. Agric. 2020 , 174 , 105450. [ Google Scholar ] [ CrossRef ]
  • Diao, Z.H.; Guo, P.L.; Zhang, B.H.; Zhang, D.Y.; Yan, J.N.; He, Z.D.; Zhao, S.N.; Zhao, C.J. Maize crop row recognition algorithm based on improved UNet network. Comput. Electron. Agric. 2023 , 210 , 107940. [ Google Scholar ] [ CrossRef ]
  • Zhang, Q.; Wang, J.H.; Li, B. Extraction method for centerlines of rice seedings based on YOLOv3 target detection. Trans. CSAM 2020 , 51 , 34–43. [ Google Scholar ] [ CrossRef ]
  • Yang, R.B.; Zhai, Y.M.; Zhang, J.; Zhang, H.; Tian, G.B.; Zhang, J.; Huang, P.C.; Li, L. Potato visual navigation line detection based on deep learning and feature midpoint adaptation. Agriculture 2022 , 12 , 1363. [ Google Scholar ] [ CrossRef ]
  • Hu, Y.; Huang, H. Extraction method for centerlines of crop row based on improved lightweight yolov4. In Proceedings of the 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT), Changsha, China, 11–13 June 2021; pp. 127–132. [ Google Scholar ] [ CrossRef ]
  • Bah, M.D.; Hafiane, A.; Canals, R. CRowNet: Deep network for crop row detection in UAV images. IEEE Access 2019 , 8 , 5189–5200. [ Google Scholar ] [ CrossRef ]
  • Wang, S.S.; Yu, S.S.; Zhang, W.Y.; Wang, X.S.; Li, J. The seedling line extraction of automatic weeding machinery in paddy field. Comput. Electron. Agric. 2023 , 205 , 107648. [ Google Scholar ] [ CrossRef ]
  • Everingham, M.; Gool, L.V.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010 , 88 , 303–338. [ Google Scholar ] [ CrossRef ]
  • Zhu, Y.J.; Li, S.S.; Du, W.S.; Du, Y.P.; Liu, P.; Li, X. Identification of table grapes in the natural environment based on an improved Yolov5 and localization of picking points. Precis. Agric. 2023 , 24 , 1333–1354. [ Google Scholar ] [ CrossRef ]
  • Diao, Z.H.; Guo, P.L.; Zhang, B.K.; Yan, J.N.; He, Z.D.; Zhao, S.N.; Zhao, C.J.; Zhang, J.C. Spatial-spectral attention-enhanced Res-3D-OctConv for corn and weed identification utilizing hyperspectral imaging and deep learning. Comput. Electron. Agric. 2023 , 212 , 108092. [ Google Scholar ] [ CrossRef ]
  • Gallo, I.; Rehman, A.U.; Dehkordi, R.H.; Landro, N.; Grassa, R.L.; Boschetti, M. Deep object detection of crop weeds: Performance of YOLOv7 on a real case dataset from UAV images. Remote Sens. 2023 , 15 , 539. [ Google Scholar ] [ CrossRef ]
  • Lee, S.H.; Chan, C.S.; Wilkin, P.; Remagnino, P. Deep-plant: Plant identification with convolutional neural networks. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 452–456. [ Google Scholar ] [ CrossRef ]
  • Wang, S.S.; Zhang, W.Y.; Wang, X.S.; Yu, S.S. Recognition of rice seedling rows based on row vector grid classification. Comput. Electron. Agric. 2021 , 190 , 106454. [ Google Scholar ] [ CrossRef ]
  • Liu, G.X.; Nouaze, J.C.; Touko Mbouembe, P.L.; Kim, J.H. YOLO-tomato: A robust algorithm for tomato detection based on YOLOv3. Sensors 2020 , 20 , 2145. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Diao, Z.H.; Guo, P.L.; Zhang, B.H.; Zhang, D.Y.; Yan, J.N.; He, Z.D.; Zhao, S.N.; Zhao, C.J.; Zhang, J.C. Navigation line extraction algorithm for corn spraying robot based on improved YOLOv8s network. Comput. Electron. Agric. 2023 , 212 , 108049. [ Google Scholar ] [ CrossRef ]
  • Liu, Z.; Lin, Y.T.; Cao, Y.; Hu, H.; Wei, Y.X.; Zhang, Z.; Lin, S.; Guo, B.N. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10012–10022. [ Google Scholar ] [ CrossRef ]
  • Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation through attention. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual Event, 18–24 July 2021; pp. 10347–10357. [ Google Scholar ] [ CrossRef ]
  • Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020 , arXiv:2010.11929. [ Google Scholar ] [ CrossRef ]
  • Tan, M.X.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [ Google Scholar ] [ CrossRef ]
  • Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [ Google Scholar ]

Click here to enlarge figure

MethodAdvantageDisadvantage
GNSSGlobal coverage and high accuracyPoor stability and signal susceptibility to environmental influences
LiDARHighly accurate and unaffected by the environmentHigher cost and complexity of operation
Computer visionGood autonomy and real timeSensitivity to environmental factors
TargetMethodAccuracyAuthor
-ENet84.94%Yu et al. (2023)
RiceTransformer92.93%Li et al. (2023)
RiceUNet + MobileNet V290.8%He et al. (2022)
RiceSSD + MobileNet92.8%Liu et al. (2020)
CornFaster-RCNN + VGG1997.71%Quan et al. (2019)
CornYOLOv597.8%Yang et al. (2023)
-GCN + ResNet-10197.5%Jiang et al. (2020)
CornUNet + ASPP90.18%Diao et al. (2023)
RiceYOLOv391.47%Zhang et al. (2020)
PotatoUNet + VGG1697.29%Yang et al. (2022)
-YOLOv4 + MobileNet V393.6%Hu et al. (2021)
-SegNet93.58%Bah et al. (2019)
RiceYOLOv5 + PFocal Loss-Wang et al. (2023)
CategoryNumber
Seedling stage5328
Mid-growth stage4672
NameRelated Configuration
Operating systemWindows 10 (64 bit)
CPUIntel(R) Xeon(R) CPU E5-2678 v3 @ 2.50 GHz
GPUNVIDIA GeForce RTX 3080 Ti
Software and environmentPyCharm 2021.3, Python 3.8, Pytorch 1.10
Growth StageNetworkMAP
ST-YOLOv5s91.13%
Seedling stageST-YOLOv785.36%
ST-YOLOv8s93.89%
ST-YOLOv5s91.78%
Mid-growth stageST-YOLOv784.77%
ST-YOLOv8s92.27%
Evaluation MetricsDetection Frame Midpoint + Least Squares MethodFAST Corner Point Detection + Least Squares MethodSUSAN Corner Point Detection + Least Squares MethodThis Paper
Accuracy W79.41%86.32%90.80%96.79%
Average angle error N4.36°2.19°1.28°0.58°
Average fitting time T52.30 ms65.00 ms80.77 ms47.00 ms
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Diao, Z.; Ma, S.; Zhang, D.; Zhang, J.; Guo, P.; He, Z.; Zhao, S.; Zhang, B. Algorithm for Corn Crop Row Recognition during Different Growth Stages Based on ST-YOLOv8s Network. Agronomy 2024 , 14 , 1466. https://doi.org/10.3390/agronomy14071466

Diao Z, Ma S, Zhang D, Zhang J, Guo P, He Z, Zhao S, Zhang B. Algorithm for Corn Crop Row Recognition during Different Growth Stages Based on ST-YOLOv8s Network. Agronomy . 2024; 14(7):1466. https://doi.org/10.3390/agronomy14071466

Diao, Zhihua, Shushuai Ma, Dongyan Zhang, Jingcheng Zhang, Peiliang Guo, Zhendong He, Suna Zhao, and Baohua Zhang. 2024. "Algorithm for Corn Crop Row Recognition during Different Growth Stages Based on ST-YOLOv8s Network" Agronomy 14, no. 7: 1466. https://doi.org/10.3390/agronomy14071466

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

IMAGES

  1. 3 Steps Problem Solving Process Example Of Ppt

    three stages of problem solving

  2. The 3-Step Problem Solving Cycle

    three stages of problem solving

  3. How to Build and Use Problem-solving Skills [Dev Concepts #41

    three stages of problem solving

  4. Stages of problem solving presentation

    three stages of problem solving

  5. PPT

    three stages of problem solving

  6. different stages of problem solving

    three stages of problem solving

VIDEO

  1. Mastering Mathematics: Unlocking the 3 Key Stages of Problem Solving

  2. Stages of Problem Solving

  3. stages in problem solving #problemsolving

  4. Stages of Problem Solving

  5. What is Alzheimer's disease?🔥🔥#alzhemer

  6. Test your 🧩🤔 brainpower with Brain Test 4! #gameplay #gaming #funny #games #dop2 #dop #game

COMMENTS

  1. What is Problem Solving? Steps, Process & Techniques

    Seek alternatives that may solve the problem ; 3. Evaluate and select an alternative: ... Brainstorming and team problem-solving techniques are both useful tools in this stage of problem solving. Many alternative solutions to the problem should be generated before final evaluation. A common mistake in problem solving is that alternatives are ...

  2. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  3. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  4. Problem Solving

    3 Basic Steps of Problem Solving. As the name suggests, problem solving starts with a problem and ends with solutions. The step in the middle is the analysis. The level of detail within a problem changes based on the magnitude of an issue, but the basic steps of problem solving remain the same regardless of the type of problem: ...

  5. The Art of Effective Problem Solving: A Step-by-Step Guide

    Step 1 - Define the Problem. The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause.

  6. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    This step of the problem-solving process is all about thinking outside of the box, challenging old assumptions, and thinking laterally. This stage is the one that tends to cause the most overwhelm in teams because it requires just the right balance of creativity and critical thinking, which tends to cause a lot of friction.

  7. The Three Stages of Problem Solving: From Preparation to Judgment

    Conclusion. The three stages of problem solving - preparation, production, and judgment - form a cognitive framework that underpins effective decision-making and resolving challenges. Each stage is interconnected and builds upon the previous one, allowing individuals to develop a comprehensive understanding of the problem, explore various ...

  8. The Three Stages of the Problem-Solving Cycle

    Essentially every problem-solving heuristic in mathematics goes back to George Polya's How to Solve It; my approach is no exception. However, this cyclic description might help to keep the process cognitively present. A few months ago, I produced a video describing this the three stages of the problem-solving cycle: Understand, Strategize, and Implement.

  9. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  10. The 5 Stages of Problem-Solving

    From Why Groups Struggle to Solve Problems Together , Nov 07, 2019. Find new ideas and classic advice on strategy, innovation and leadership, for global leaders from the world's best business and ...

  11. 40 problem-solving techniques and processes

    7. Solution evaluation. 1. Problem identification. The first stage of any problem solving process is to identify the problem (s) you need to solve. This often looks like using group discussions and activities to help a group surface and effectively articulate the challenges they're facing and wish to resolve.

  12. The Problem-Solving Process

    Get unlimited access to all our career-boosting content and member benefits with our 7-day free trial. Although problem-solving is something everyone does on a daily basis, many people lack confidence in their ability. Here we look at the basic problem-solving process to help keep you on the right track.

  13. Problem solving techniques: Steps and methods

    Evaluate the options. Select the best solution. Create an implementation plan. Communicate your solution. Let's look at each step in a little more detail. The first solution you come up with won't always be the best - taking the time to consider your options is an essential problem solving technique. 1.

  14. How to master the seven-step problem-solving process

    To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and also with Charles Conn. Charles is a former McKinsey partner, entrepreneur, executive, and coauthor of the book Bulletproof Problem Solving: The One Skill That Changes Everything [John Wiley & Sons, 2018].

  15. Problem Solving

    This page continues from Problem Solving an Introduction that introduces problem solving as a concept and outlines the stages used to successfully solve problems.. This page covers the first two stages in the problem solving process: Identifying the Problem and Structuring the Problem. Stage One: Identifying the Problem. Before being able to confront a problem its existence needs to be identified.

  16. The Ultimate Problem-Solving Process Guide: 31 Steps & Resources

    It starts with an "affirmative topic," followed by the "positive core (strengths).". Then this method delves into the following stages: Discovery (fact-finding) Dream (visioning the future) Design (strategic purpose) Destiny (continuous improvement) 3. "FIVE WHYS" METHOD. The 5 Whys of Problem-Solving Method.

  17. Problem Solving

    Problem Solving is the process of identifying, analyzing, and finding effective solutions to complex issues or challenges. Key Steps in Problem Solving: Identification of the problem: Recognizing and clearly defining the issue that needs to be resolved. Analysis and research: Gathering relevant information, data, and facts to understand the ...

  18. The 5 steps of the solving problem process

    The problem solving process typically includes: Pinpointing what's broken by gathering data and consulting with team members. Figuring out why it's not working by mapping out and troubleshooting the problem. Deciding on the most effective way to fix it by brainstorming and then implementing a solution. While skills like active listening ...

  19. The 5 phases of problem solving

    The Stages of Problem Solving We Can All Apply. 1. Identify the problem. SEE ALSO Ipse dixit, the widespread fallacy of "gratuitous affirmation". It may seem like a truism, but the truth is that identifying the real problem is not as easy as it seems, especially when it comes to a situation that affects us emotionally.

  20. 4 Main problem-solving strategies

    Problem-solving stages. What problem-solving does is take you from an initial state (A) where a problem exists to a final or goal state (B), where the problem no longer exists. To move from A to B, you need to perform some actions called operators. Engaging in the right operators moves you from A to B. So, the stages of problem-solving are ...

  21. The 5 Steps of Problem Solving

    The implementation of a solution requires planning and execution. It's often iterative, where the focus should be on short implementation cycles with testing and feedback, not trying to get it "perfect" the first time. Input: decision; planning; hard work. Output: resolution to the problem. 5.

  22. What is problem solving?

    Pólya's four stages of problem solving are listed below. Four stages of problem solving . 1. Understand and explore the problem 2. Find a strategy 3. Use the strategy to solve the problem 4. Look back and reflect on the solution. Although we have listed the four stages in order, for difficult problems it may not be possible to simply move ...

  23. Stumped? Five Ways To Hone Your Problem-Solving Skills

    "At this stage, don't worry about actually solving the problem," says Griffiths. "You're simply giving your subconscious mind the information it needs to get creative with when you zone out.

  24. What are the 7 Steps to Problem-Solving? & Its Examples

    Problem-solving is often an ongoing process, and feedback from the implementation and evaluation stages may lead to adjustments in the chosen solution or the identification of new issues that need to be addressed. Problem-Solving Example in Education. Certainly: Let's consider a problem-solving example in the context of education.

  25. Algorithm for Corn Crop Row Recognition during Different Growth Stages

    Corn crop row recognition during different growth stages is a major difficulty faced by the current development of visual navigation technology for agricultural robots. In order to solve this problem, an algorithm for recognizing corn crop rows during different growth stages is presented based on the ST-YOLOv8s network. Firstly, a dataset of corn crop rows during different growth stages ...