Advertisement

Advertisement

How can education systems improve? A systematic literature review

  • Published: 07 April 2022
  • Volume 24 , pages 479–499, ( 2023 )

Cite this article

research paper education system

  • Ignacio Barrenechea   ORCID: orcid.org/0000-0002-4673-3862 1 ,
  • Jason Beech 2 &
  • Axel Rivas 1  

2059 Accesses

9 Citations

11 Altmetric

Explore all metrics

Understanding what contributes to improving a system will help us tackle the problems in education systems that usually fail disproportionately in providing quality education for all, especially for the most disadvantage sectors of the population. This paper presents the results of a qualitative systematic literature review aimed at providing a comprehensive overview of what education research can say about the factors that promote education systems’ improvement. This literature is emerging as a topic of empirical research that merges comparative education and school effectiveness studies as standardized assessments make it possible to compare results across systems and time. To examine and synthesize the papers included in this review we followed a thematic analysis approach. We identify, analyze, and report patterns in the papers included in this systematic review. From the coding process, four drivers for system improvement emerged: (1) system-wide approaches; (2) human capital; (3) governance and macro–micro level bridges; and (4) availability of resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

The use of cronbach’s alpha when developing and reporting research instruments in science education.

research paper education system

Ethical Considerations of Conducting Systematic Reviews in Educational Research

research paper education system

A Medical Science Educator’s Guide to Selecting a Research Paradigm: Building a Basis for Better Research

For example, Improving schools https://journals.sagepub.com/aims-scope/IMP .

School effectiveness and school improvement https://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=nses20 .

For example, International Congress for School Effectiveness and Improvement https://www.icsei.net/about-icsei/ .

Our search countries were Albania, Qatar, Estonia, Portugal, Poland, Peru, Ireland, Russia, Israel, and Slovenia.

Addey, C., Sellar, S., Steiner-Khamsi, G., Lingard, B., & Verger, A. (2017). The rise of international large-scale assessments and rationales for participation.  Compare: A Journal of Comparative and International Education ,  47 (3), 434–452.

Alves, F. (2008). Educational policies and school performance in the Brazilian capitals of states. Cadernos De Pesquisa, 38 (34), 413–440.

Article   Google Scholar  

Arnove, R. F. (2015). Comparative education: Dimensions and trends: A contribution to the 50th anniversary celebration of the Japan comparative education society. Comparative Education, 2015 (50), 168–177.

Auld, E., & Morris, P. (2016). PISA, policy and persuasion: Translating complex conditions into education' best practice'. Comparative Education , 52 (2), 202–229. https://doi.org/10.1080/03050068.2016.1143278 .

Barber, M., Kihn, P., & Moffit, A. (2011). Deliverology 101: A field guide for educational leaders . Corwin Press.

Barber, M., & Mourshed, M. (2007). How the world’s best-performing school systems come out on top . McKinsey & Company.

Becker, G. S. (1976). The economic approach to human behavior . University of Chicago Press.

Beech, J., & Lista, E. (2012). Flowing Discourses and Border Crossing: The Slogan of ‘Respect for Diversity’in Latin America. In World Yearbook of Education 2012 (pp. 391–410). Routledge.

Beech, J., & Rizvi, F. (2017). Revisiting Jullien in an era of globalisation. Compare: A Journal of Comparative and International Education , 47 (3), 374–387.

Betts, J. R., Zau, A., & King, K. (2005). From blueprint to reality: San Diego’s education reforms . Public Policy Institute of California.

Bin Mahfooz, S., & Hovde, K. (2010). Successful education reform: lessons from Poland.  ECA Knowledge Brief ,  34 (11).

Boman, B. (2020). What makes Estonia and Singapore so good? Globalisation, Societies and Education, 18 (2), 181–193.

Booth, A., Papaioannou, D., & Sutton, A. (2012). Systematic approaches to a successful literature review . Sage Publications.

Campbell, C. (2020). Educational equity in Canada: The case of Ontario’s strategies and actions to advance excellence and equity for students. School Leadership & Management , 1–20.

Carvalho, L. M., Costa, E., & Gonçalves, C. (2017). Fifteen years looking at the mirror: On the presence of PISA in education policy processes (Portugal, 2000–2016). European Journal of Education, 52 (2), 154–166.

Coffield, F. (2012). Why the McKinsey reports will not improve school systems. Journal of Education Policy, 27 (1), 131–149.

Coffield, F., & Williamson, B. (2011). From Exam Factories to Communities of Discovery. Adults Learning, 23 (2), 24–25.

Cogan, L. S., Schmidt, W. H., & Wiley, D. E. (2001). Who takes what math and in which track? Using TIMSS to characterize US students’ eighth-grade mathematics learning opportunities. Educational Evaluation and Policy Analysis, 23 (4), 323–341.

Cohen, D. K., & Spillane, J. P. (1992). Chapter 1: Policy and practice: The relations between governance and instruction. Review of research in education , 18 (1), 3–49. American Educational Research Association.

Cox, C. (2004). Innovation and reform to improve the quality of primary education: Chile. Unpublished manuscript, Ministry of Education, Santiago .

Crato, N. (2021). Setting up the Scene: Lessons Learned from PISA 2018 Statistics and Other International Student Assessments. In  Improving a Country’s Education  (pp. 1–24). Springer, Cham.

Cueto, S., Miranda, A., León, J., & Vásquez, M. C. (2016b). Education trajectories: From early childhood to early adulthood in Peru.

Cueto, S., León, J., & Muñoz, I. G. (2016a). Conductas, estrategias y rendimiento en lectura en PISA: análisis para el Perú. REICE: Revista Iberoamericana sobre Calidad, Eficacia y Cambio en Educación , 14 (3), 5–31.

David, J. L., & Talbert, J. E. (2012). Turning around a high-poverty school district: Learning from Sanger Unified’s success. SH Cowell Foundation .

Deaton, A. (2020). Randomization in the tropics revisited: A theme and eleven variations . Working Paper No. 27600. National Bureau Of Economic Research.

Dhaliwal, I., Duflo, E., Glennerster, R., & Tulloch, C. (2013). Comparative costeffectiveness analysis to inform policy in developing countries: a general framework with applications for education. Education policy in developing countries, 17 , 285–338.

Dinham, S., Crowther, F., Robinson, V. M., McNaughton, S., & Timperley, H. (2011). Building capacity in a self‐managing schooling system: The New Zealand experience. Journal of Educational Administration .

Dykstra, T. (2006). High performance and success in education in Flemish Belgium and the Netherlands . National Center on Education and the Economy.

Edwards, D. B., Jr. (2018). Global education policy, impact evaluations, and alternatives: The political economy of knowledge production . Springer.

Elmore, R. (2007). Educational improvement in Victoria. Unpublished internal communication.

Elmore, R. F., & Burney, D. (1998). Continuous improvement in community district# 2 . University of Pittsburgh, HPLC Project, Learning Research, and Development Center.

Fazlagić, J., & Erkol, A. (2015). Knowledge mobilisation in the Polish education system. Journal of Education for Teaching, 41 (5), 541–554.

Feniger, Y., & Lefstein, A. (2014). How not to reason with PISA data: An ironic investigation. Journal of Education Policy, 29 (6), 845–855.

Fernandez Cano, A. (2016). A methodological critique of the PISA evaluations. Relieve, 22 (1), 1–16. Disponible en: https://www.uv.es/RELIEVE/v22n1/RELIEVEv22n1_M15eng.pdf .

Fleisch, B. (2016). System-wide improvement at the instructional core: Changing reading teaching in South Africa. Journal of Educational Change, 17 (4), 437–451.

Fuhrman, S. (1993). Designing coherent education policy: Improving the system . Jossey-Bass.

Fullan, M., & Rincon-Gallardo, S. (2016). Developing high-quality public education in Canada: The case of Ontario. In Global Education Reform (pp. 169–193). Routledge.

Fullan, M. (2016). The elusive nature of whole system improvement in education. Journal of Educational Change, 17 (4), 539–544.

Glaser, B. G., & Strauss, A. (1967). The discovery of grounded theory . Aldine.

Gómez, R. L., & Suárez, A. M. (2020). Do inquiry-based teaching and school climate influence science achievement and critical thinking? Evidence from PISA 2015. International Journal of STEM Education, 7 (1), 1–11.

Graczewski, C., Knudson, J., & Holtzman, D. J. (2009). Instructional leadership in practice: What does it look like, and what influence does it have? Journal of Education for Students Placed at Risk, 14 (1), 72–96.

Hallinger, P., & Heck, R. H. (2011). Collaborative leadership and school improvement: Understanding the impact on school capacity and student learning. In International handbook of leadership for learning (pp. 469–485). Springer.

Hanushek, E. A. & Woessmann, L. (2007). Calidad de la educación y crecimiento económico . En Documento N° 39. PREAL.

Harris, A. (2010). Leading system transformation. School Leadership and Management, 30 (3), 197–207.

Harris, A., & Jones, M. S. (2017). Professional learning communities: A strategy for school and system improvement? Wales Journal of Education, 19 (1), 16–38.

Hood, C. (1991). A public management for all seasons? Public Administration, 69 (1), 3–19.

Hopfenbeck, T. N., Lenkeit, J., El Masri, Y., Cantrell, K., Ryan, J., & Baird, J. A. (2018). Lessons learned from PISA: A systematic review of peer-reviewed articles on the programme for international student assessment. Scandinavian Journal of Educational Research, 62 (3), 333–353.

Hopkins, D. (2007). Every school a great school: Realizing the potential of system leadership . McGraw-Hill Education.

Hopkins, D., Ahtaridou, E., Matthews, P., Posner, C., & Toledo, F. D. (2007). An analysis of the Mexican school system in light of PISA 2006 . London Centre for Leadership in Learning, University of London.

Hussen, T. (1994). Problems of Educational Reforms in a Changing Society. En A. Yogev y V. Rust (Eds.), International perspectives on education and society . Jai Press.

Jakubowski, M. (2015). Opening up opportunities: Education reforms in Poland. IBS Policy Paper, 1 , 2015.

Google Scholar  

Jessop, B. (1998). The narrative of enterprise and the enterprise of narrative: Place marketing and the entrepreneurial city. En The entrepreneurial city: Geographies of politics, regime and representation . John Wiley.

Lapping, M. B. (2004). Education in a restoration democracy: The case of Estonia. Citizenship, Social and Economics Education, 6 (2), 101–115.

Levin, B. (2012). System-wide improvement in education. Education Policy Series, 13 , 1–38.

Lindblad, S., Pettersson, D., & Popkewitz, T. S. (2015). International comparisons of school results: A systematic review of research on large-scale assessments in education . Swedish Research Council.

LLECE-UNESCO. (2013). Análisis del clima escolar: ¿Poderoso factor que explica el aprendizaje en América Latina y el Caribe? OREALC-UNESCO Santiago.

Masino, S., & Niño-Zarazúa, M. (2016). What works to improve the quality of student learning in developing countries? International Journal of Educational Development, 48 , 53–65.

McAleavy, T., & Elwick, A. (2016). School improvement in London: A global perspective . Education Development Trust. Highbridge House, 16–18 Duke Street, Reading Berkshire, England RG1 4RU, United Kingdom.

McEwan, P. J. (2015). Improving learning in primary schools of developing countries: A meta-analysis of randomized experiments. Review of Educational Research, 85 (3), 353–394.

Mikk, J. (2015). Explaining the difference between PISA 2009 reading scores in Finland and Estonia. Educational Research and Evaluation, 21 (4), 324–342.

Morris, P. (2015). Comparative education, PISA, politics and educational reform: A cautionary note. Compare: A Journal of Comparative and International Education , 45 (3), 470–474.

Morris, P. (1996). Asia’s four little tigers: A comparison of the role of education in their development. Comparative Education, 32 (1), 95–110.

Mourshed, M., Chijioke, C., & Barber, M. (2010). How the world’s most improved school systems keep getting better. McKinsey & Company (En español: Mourshed, M., Chijioke, C. y Barber, M. (2012). Cómo continúan mejorando los sistemas educativos de mayor progreso en el mundo. Documento N° 61. PREAL).

Murnane, R. J., & Ganimian, A. (2014). Improving educational outcomes in developing countries: Lessons from rigorous impact evaluations . Working Paper No. 20284. NBER.

Murphy, J., & Hallinger, P. (1988). Characteristics of instructionally effective school districts. The Journal of Educational Research, 81 (3), 175–181.

Nguyen, X. T., Roemmele, D., & Peel, D. (2013). Education reform in Vietnam: A critical analysis of inclusion and management discourses. Journal of Asian Critical Education , 2 .

Noah, H. J., & Eckstein, M. A. (1969). Toward a science of comparative education . Macmillan.

Nóvoa, A., & Yariv-Mashal, T. (2014). Comparative research in education: A model of governance or a historical journey. En T. Fenwick, E. Mangez y J. Ozga (Eds.), World yearbook of education 2014: Governing knowledge comparison, knowledge-based technologies and expertise in the regulation of education. Routledge.

O’Day, J. A., & Smith, M. S. (2016). Quality and equality in American education: Systemic problems, systemic solutions. In The dynamics of opportunity in America (pp. 297–358). Springer.

O’Day, J., & Quick, H. E. (2009). Assessing instructional reform in San Diego: A theory-based approach. Journal of Education for Students Placed at Risk, 14 (1), 1–16.

OECD. (2019).  PISA 2018 assessment and analytical framework . PISA, OECD Publishing.  https://doi.org/10.1787/b25efab8-en .

Osborne, D., & Gaebler, T. (1992). Reinventing government . Reading, MA: Addison-Wesley.

Osmond-Johnson, P., & Campbell, C. (2018). Transforming an education system through professional learning: Developing educational change at scale in Ontario. Educational Research for Policy and Practice, 17 (3), 241–256.

Pang, N. S. K., & Miao, Z. (2017). The roles of teacher leadership in Shanghai education success. Bulgarian Comparative Education Society .

Paterson, G. D. (2019). Improving student learning through professional learning communities: Employing a system-wide approach. Canadian Journal for New Scholars in Education/Revue canadienne des jeunes chercheures et chercheurs en éducation , 10 (1).

Porter, C. (2002). Measuring the content of instruction: Uses in research and practice. In 2002 Presidential address . University of Wisconsin.

Quick, H. E., Holtzman, D. J., & Chaney, K. R. (2009). Professional development and instructional practice: Conceptions and evidence of effectiveness. Journal of Education for Students Placed at Risk, 14 (1), 45–71.

Rindermann, H., & Ceci, S. J. (2009). Educational policy and country outcomes in international cognitive competence studies. Perspectives on Psychological Science, 4 (6), 551–568.

Rivas, A. (2015). América Latina después de PISA: Lecciones aprendidas sobre la educación en siete países . CIPPEC, Natura e Instituto Natura.

Rivas, A. et al. (2020): Las llaves de la educación. Estudio comparado sobre la mejora de los sistemas educativos subnacionales en América Latina, Fundación Santillana, Madrid.

Rivas, A., & Scasso, M. G. (2021). Low stakes, high risks: The problem of intertemporal validity of PISA in Latin America. Journal of Education Policy, 36 (2), 279–302.

Rizvi, F., & Beech, J. (2017). Global mobilities and the possibilities of a cosmopolitan curriculum. Curriculum Inquiry, 47 (1), 125–134.

Sahlberg, P. (2011). The fourth way of Finland. Journal of Educational Change, 12 (2), 173–185.

Sam, C., & Riggan, M. (2013). Building district capacity for system-wide instructional improvement in Cincinnati public schools. Working Paper. GE Foundation" Developing Futures "™ in Education Evaluation Series. Consortium for Policy Research in Education .

Schleicher, A. (2012). Preparing teachers and developing school leaders for the 21st century: Lessons from around the world . OECD Publishing. 2, rue Andre Pascal, F-75775 Paris Cedex 16, France.

Schleicher, A. (2018). How to build a 21st-century school system . OECD Publishing.

Schmidt, W. H., & Prawat, R. S. (2006). Curriculum coherence and national control of education: Issue or non-issue? Journal of Curriculum Studies, 38 (6), 641–658.

Schmidt, W. H., Wang, H. C., & McKnight, C. C. (2005). Curriculum coherence: An examination of US mathematics and science content standards from an international perspective. Journal of Curriculum Studies, 37 , 525–559.

Schneider, B. R., Estarellas, P. C., & Bruns, B. (2019). The politics of transforming education in Ecuador: Confrontation and continuity, 2006–2017. Comparative Education Review, 63 (2), 259–280.

Sellar, S., & Lingard, B. (2013). The OECD and the expansion of PISA: New global modes of governance in education. British Educational Research Journal, 40 (6), 917–936.

Snilstveit, B., Stevenson, J., Menon, R., Phillips, D., Gallagher, E., Geleen, M., et al. (2016). The impact of education programmes on learning and school participation in low-and middle-income countries.

Snipes, J., Doolittle, F., & Herlihy, C. (2002). Foundations for success: Case studies of how urban school systems improve student achievement. Council of the Great City Schools.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104 , 333–339.

Steiner-Khamsi, G. (2019a). Randomized controlled trials: League leader in the hierarchy of evidence?. En R. Gorur y S. Sellar (Eds.), World yearbook of education 2019a: Comparative methodology in the era of big data and global networks . Routledge.

Steiner-Khamsi, G. (2019b). Conclusions: What policy-makers do with PISA. Understanding PISA’s attractiveness: Critical analyses in comparative policy studies , 233.

Steiner-Khamsi, G. (2016). New directions in policy borrowing research. Asia Pacific Education Review, 17 (3), 381–390.

Tan, C. (2019). Parental responses to education reform in Singapore, Shanghai and Hong Kong. Asia Pacific Education Review, 20 (1), 91–99.

Trace, A. (1961) What Ivan knows that Johnny doesn’t: A comparison of Soviet and American school programs. Harper.

Tucker, M. (Ed.). (2011). Surpassing Shanghai. An agenda for American education built on the world’s leading systems . Harvard Education Press.

Tyack, D. B. and Cuban, L. (1995). Tinkering toward utopia . Harvard University Press.

Valverde, G. A. (2014). Educational quality: global politics, comparative inquiry, and opportunities to learn. Comparative Education Review, 58 (4), 575–589.

Verger, A., Novelli, M., & Altinyelken, H. K. (2012). Global education policy and international development: An introductory framework.  Global education policy and international development: New agendas, issues and policies , 3–32.

Wenger, E., McDermott, R. A., & Snyder, W. (2002). Cultivating communities of practice: A guide to managing knowledge . Harvard Business Press.

Zavadsky, H. (2016). Bringing effective instructional practice to scale in American schools: Lessons from the Long Beach Unified School District. Journal of Educational Change, 17 (4), 505–527.

Download references

Author information

Authors and affiliations.

Universidad de San Andrés, Victoria, Argentina

Ignacio Barrenechea & Axel Rivas

Monash University, Clayton, VIC, Australia

Jason Beech

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ignacio Barrenechea .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Barrenechea, I., Beech, J. & Rivas, A. How can education systems improve? A systematic literature review. J Educ Change 24 , 479–499 (2023). https://doi.org/10.1007/s10833-022-09453-7

Download citation

Accepted : 03 March 2022

Published : 07 April 2022

Issue Date : September 2023

DOI : https://doi.org/10.1007/s10833-022-09453-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Educational change
  • System-wide improvement
  • Comparative education
  • International education
  • Find a journal
  • Publish with us
  • Track your research

Building Resilient Education Systems: Evidence from Large-Scale Randomized Trials in Five Countries

Education systems need to withstand frequent shocks, including conflict, disease, natural disasters, and climate events, all of which routinely close schools. During these emergencies, alternative models are needed to deliver education. However, rigorous evaluation of effective educational approaches in these settings is challenging and rare, especially across multiple countries. We present results from large-scale randomized trials evaluating the provision of education in emergency settings across five countries: India, Kenya, Nepal, Philippines, and Uganda. We test multiple scalable models of remote instruction for primary school children during COVID-19, which disrupted education for over 1 billion schoolchildren worldwide. Despite heterogeneous contexts, results show that the effectiveness of phone call tutorials can scale across contexts. We find consistently large and robust effect sizes on learning, with average effects of 0.30-0.35 standard deviations. These effects are highly cost-effective, delivering up to four years of high-quality instruction per $100 spent, ranking in the top percentile of education programs and policies. In a subset of trials, we randomized whether the intervention was provided by NGO instructors or government teachers. Results show similar effects, indicating scalability within government systems. These results reveal it is possible to strengthen the resilience of education systems, enabling education provision amidst disruptions, and to deliver cost-effective learning gains across contexts and with governments.

We are grateful to an incredible coalition of partners who enabled this multi-country response. Implementing and research partners include: Youth Impact, J-PAL, Learning Collider (supported by Schmidt Futures and Citadel), Oxford University, World Bank, Ministry of Education, Science and Technology of Nepal, Teach for Nepal, Street Child, Department of Education in the Philippines, IPA, Building Tomorrow, NewGlobe, Alokit, and Global School Leaders. Funding partners include UBS Optimus Foundation, Mulago Foundation, Douglas B. Marshall Foundation, Echidna Giving, Stavros Niarchos Foundation, Jacobs Foundation, JPAL Innovation in Government Initiative, Northwestern’s ‘Economics of Nonprofits’ class, the Peter Cundill Foundation, and the World Bank. Cullen received funding from the UKRI GCRF & Oxford’s OPEN Fellowship. We thank Natasha Ahuja, Amy Jung, and Rachel Zhou who provided excellent research assistance. Special thank you to implementation and research teams including Nassreena Baddiri, Mariel Bayangos, Kshitiz Basnet, John Lawrence Carandang, Clotilde de Maricourt, Pratik Ghimire, Faith Karanja, Manoj Karki, Karisha Cruz, Usha Limbu, Roger Masapol, Edward Munyaneza, Sunil Poudel, Karthika Radhakrishnan-Nair, Pratigya Regmi, Uttam Sharma, Swastika Shrestha, and Kishor Subedi. Thank you for thoughtful comments from participants of various seminars and conferences: ASSA, BREAD, CSAE, NEUDC, PacDev. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

More from NBER

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

15th Annual Feldstein Lecture, Mario Draghi, "The Next Flight of the Bumblebee: The Path to Common Fiscal Policy in the Eurozone cover slide

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 12 February 2024

Education reform and change driven by digital technology: a bibliometric study from a global perspective

  • Chengliang Wang 1 ,
  • Xiaojiao Chen 1 ,
  • Teng Yu   ORCID: orcid.org/0000-0001-5198-7261 2 , 3 ,
  • Yidan Liu 1 , 4 &
  • Yuhui Jing 1  

Humanities and Social Sciences Communications volume  11 , Article number:  256 ( 2024 ) Cite this article

7589 Accesses

1 Citations

1 Altmetric

Metrics details

  • Development studies
  • Science, technology and society

Amidst the global digital transformation of educational institutions, digital technology has emerged as a significant area of interest among scholars. Such technologies have played an instrumental role in enhancing learner performance and improving the effectiveness of teaching and learning. These digital technologies also ensure the sustainability and stability of education during the epidemic. Despite this, a dearth of systematic reviews exists regarding the current state of digital technology application in education. To address this gap, this study utilized the Web of Science Core Collection as a data source (specifically selecting the high-quality SSCI and SCIE) and implemented a topic search by setting keywords, yielding 1849 initial publications. Furthermore, following the PRISMA guidelines, we refined the selection to 588 high-quality articles. Using software tools such as CiteSpace, VOSviewer, and Charticulator, we reviewed these 588 publications to identify core authors (such as Selwyn, Henderson, Edwards), highly productive countries/regions (England, Australia, USA), key institutions (Monash University, Australian Catholic University), and crucial journals in the field ( Education and Information Technologies , Computers & Education , British Journal of Educational Technology ). Evolutionary analysis reveals four developmental periods in the research field of digital technology education application: the embryonic period, the preliminary development period, the key exploration, and the acceleration period of change. The study highlights the dual influence of technological factors and historical context on the research topic. Technology is a key factor in enabling education to transform and upgrade, and the context of the times is an important driving force in promoting the adoption of new technologies in the education system and the transformation and upgrading of education. Additionally, the study identifies three frontier hotspots in the field: physical education, digital transformation, and professional development under the promotion of digital technology. This study presents a clear framework for digital technology application in education, which can serve as a valuable reference for researchers and educational practitioners concerned with digital technology education application in theory and practice.

Similar content being viewed by others

research paper education system

A bibliometric analysis of knowledge mapping in Chinese education digitalization research from 2012 to 2022

research paper education system

Digital transformation and digital literacy in the context of complexity within higher education institutions: a systematic literature review

research paper education system

Education big data and learning analytics: a bibliometric analysis

Introduction.

Digital technology has become an essential component of modern education, facilitating the extension of temporal and spatial boundaries and enriching the pedagogical contexts (Selwyn and Facer, 2014 ). The advent of mobile communication technology has enabled learning through social media platforms (Szeto et al. 2015 ; Pires et al. 2022 ), while the advancement of augmented reality technology has disrupted traditional conceptions of learning environments and spaces (Perez-Sanagustin et al., 2014 ; Kyza and Georgiou, 2018 ). A wide range of digital technologies has enabled learning to become a norm in various settings, including the workplace (Sjöberg and Holmgren, 2021 ), home (Nazare et al. 2022 ), and online communities (Tang and Lam, 2014 ). Education is no longer limited to fixed locations and schedules, but has permeated all aspects of life, allowing learning to continue at any time and any place (Camilleri and Camilleri, 2016 ; Selwyn and Facer, 2014 ).

The advent of digital technology has led to the creation of several informal learning environments (Greenhow and Lewin, 2015 ) that exhibit divergent form, function, features, and patterns in comparison to conventional learning environments (Nygren et al. 2019 ). Consequently, the associated teaching and learning processes, as well as the strategies for the creation, dissemination, and acquisition of learning resources, have undergone a complete overhaul. The ensuing transformations have posed a myriad of novel issues, such as the optimal structuring of teaching methods by instructors and the adoption of appropriate learning strategies by students in the new digital technology environment. Consequently, an examination of the principles that underpin effective teaching and learning in this environment is a topic of significant interest to numerous scholars engaged in digital technology education research.

Over the course of the last two decades, digital technology has made significant strides in the field of education, notably in extending education time and space and creating novel educational contexts with sustainability. Despite research attempts to consolidate the application of digital technology in education, previous studies have only focused on specific aspects of digital technology, such as Pinto and Leite’s ( 2020 ) investigation into digital technology in higher education and Mustapha et al.’s ( 2021 ) examination of the role and value of digital technology in education during the pandemic. While these studies have provided valuable insights into the practical applications of digital technology in particular educational domains, they have not comprehensively explored the macro-mechanisms and internal logic of digital technology implementation in education. Additionally, these studies were conducted over a relatively brief period, making it challenging to gain a comprehensive understanding of the macro-dynamics and evolutionary process of digital technology in education. Some studies have provided an overview of digital education from an educational perspective but lack a precise understanding of technological advancement and change (Yang et al. 2022 ). Therefore, this study seeks to employ a systematic scientific approach to collate relevant research from 2000 to 2022, comprehend the internal logic and development trends of digital technology in education, and grasp the outstanding contribution of digital technology in promoting the sustainability of education in time and space. In summary, this study aims to address the following questions:

RQ1: Since the turn of the century, what is the productivity distribution of the field of digital technology education application research in terms of authorship, country/region, institutional and journal level?

RQ2: What is the development trend of research on the application of digital technology in education in the past two decades?

RQ3: What are the current frontiers of research on the application of digital technology in education?

Literature review

Although the term “digital technology” has become ubiquitous, a unified definition has yet to be agreed upon by scholars. Because the meaning of the word digital technology is closely related to the specific context. Within the educational research domain, Selwyn’s ( 2016 ) definition is widely favored by scholars (Pinto and Leite, 2020 ). Selwyn ( 2016 ) provides a comprehensive view of various concrete digital technologies and their applications in education through ten specific cases, such as immediate feedback in classes, orchestrating teaching, and community learning. Through these specific application scenarios, Selwyn ( 2016 ) argues that digital technology encompasses technologies associated with digital devices, including but not limited to tablets, smartphones, computers, and social media platforms (such as Facebook and YouTube). Furthermore, Further, the behavior of accessing the internet at any location through portable devices can be taken as an extension of the behavior of applying digital technology.

The evolving nature of digital technology has significant implications in the field of education. In the 1890s, the focus of digital technology in education was on comprehending the nuances of digital space, digital culture, and educational methodologies, with its connotations aligned more towards the idea of e-learning. The advent and subsequent widespread usage of mobile devices since the dawn of the new millennium have been instrumental in the rapid expansion of the concept of digital technology. Notably, mobile learning devices such as smartphones and tablets, along with social media platforms, have become integral components of digital technology (Conole and Alevizou, 2010 ; Batista et al. 2016 ). In recent times, the burgeoning application of AI technology in the education sector has played a vital role in enriching the digital technology lexicon (Banerjee et al. 2021 ). ChatGPT, for instance, is identified as a novel educational technology that has immense potential to revolutionize future education (Rospigliosi, 2023 ; Arif, Munaf and Ul-Haque, 2023 ).

Pinto and Leite ( 2020 ) conducted a comprehensive macroscopic survey of the use of digital technologies in the education sector and identified three distinct categories, namely technologies for assessment and feedback, mobile technologies, and Information Communication Technologies (ICT). This classification criterion is both macroscopic and highly condensed. In light of the established concept definitions of digital technology in the educational research literature, this study has adopted the characterizations of digital technology proposed by Selwyn ( 2016 ) and Pinto and Leite ( 2020 ) as crucial criteria for analysis and research inclusion. Specifically, this criterion encompasses several distinct types of digital technologies, including Information and Communication Technologies (ICT), Mobile tools, eXtended Reality (XR) Technologies, Assessment and Feedback systems, Learning Management Systems (LMS), Publish and Share tools, Collaborative systems, Social media, Interpersonal Communication tools, and Content Aggregation tools.

Methodology and materials

Research method: bibliometric.

The research on econometric properties has been present in various aspects of human production and life, yet systematic scientific theoretical guidance has been lacking, resulting in disorganization. In 1969, British scholar Pritchard ( 1969 ) proposed “bibliometrics,” which subsequently emerged as an independent discipline in scientific quantification research. Initially, Pritchard defined bibliometrics as “the application of mathematical and statistical methods to books and other media of communication,” however, the definition was not entirely rigorous. To remedy this, Hawkins ( 2001 ) expanded Pritchard’s definition to “the quantitative analysis of the bibliographic features of a body of literature.” De Bellis further clarified the objectives of bibliometrics, stating that it aims to analyze and identify patterns in literature, such as the most productive authors, institutions, countries, and journals in scientific disciplines, trends in literary production over time, and collaboration networks (De Bellis, 2009 ). According to Garfield ( 2006 ), bibliometric research enables the examination of the history and structure of a field, the flow of information within the field, the impact of journals, and the citation status of publications over a longer time scale. All of these definitions illustrate the unique role of bibliometrics as a research method for evaluating specific research fields.

This study uses CiteSpace, VOSviewer, and Charticulator to analyze data and create visualizations. Each of these three tools has its own strengths and can complement each other. CiteSpace and VOSviewer use set theory and probability theory to provide various visualization views in fields such as keywords, co-occurrence, and co-authors. They are easy to use and produce visually appealing graphics (Chen, 2006 ; van Eck and Waltman, 2009 ) and are currently the two most widely used bibliometric tools in the field of visualization (Pan et al. 2018 ). In this study, VOSviewer provided the data necessary for the Performance Analysis; Charticulator was then used to redraw using the tabular data exported from VOSviewer (for creating the chord diagram of country collaboration); this was to complement the mapping process, while CiteSpace was primarily utilized to generate keyword maps and conduct burst word analysis.

Data retrieval

This study selected documents from the Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) in the Web of Science Core Collection as the data source, for the following reasons:

(1) The Web of Science Core Collection, as a high-quality digital literature resource database, has been widely accepted by many researchers and is currently considered the most suitable database for bibliometric analysis (Jing et al. 2023a ). Compared to other databases, Web of Science provides more comprehensive data information (Chen et al. 2022a ), and also provides data formats suitable for analysis using VOSviewer and CiteSpace (Gaviria-Marin et al. 2019 ).

(2) The application of digital technology in the field of education is an interdisciplinary research topic, involving technical knowledge literature belonging to the natural sciences and education-related literature belonging to the social sciences. Therefore, it is necessary to select Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) as the sources of research data, ensuring the comprehensiveness of data while ensuring the reliability and persuasiveness of bibliometric research (Hwang and Tsai, 2011 ; Wang et al. 2022 ).

After establishing the source of research data, it is necessary to determine a retrieval strategy (Jing et al. 2023b ). The choice of a retrieval strategy should consider a balance between the breadth and precision of the search formula. That is to say, it should encompass all the literature pertaining to the research topic while excluding irrelevant documents as much as possible. In light of this, this study has set a retrieval strategy informed by multiple related papers (Mustapha et al. 2021 ; Luo et al. 2021 ). The research by Mustapha et al. ( 2021 ) guided us in selecting keywords (“digital” AND “technolog*”) to target digital technology, while Luo et al. ( 2021 ) informed the selection of terms (such as “instruct*,” “teach*,” and “education”) to establish links with the field of education. Then, based on the current application of digital technology in the educational domain and the scope of selection criteria, we constructed the final retrieval strategy. Following the general patterns of past research (Jing et al. 2023a , 2023b ), we conducted a specific screening using the topic search (Topics, TS) function in Web of Science. For the specific criteria used in the screening for this study, please refer to Table 1 .

Literature screening

Literature acquired through keyword searches may contain ostensibly related yet actually unrelated works. Therefore, to ensure the close relevance of literature included in the analysis to the research topic, it is often necessary to perform a manual screening process to identify the final literature to be analyzed, subsequent to completing the initial literature search.

The manual screening process consists of two steps. Initially, irrelevant literature is weeded out based on the title and abstract, with two members of the research team involved in this phase. This stage lasted about one week, resulting in 1106 articles being retained. Subsequently, a comprehensive review of the full text is conducted to accurately identify the literature required for the study. To carry out the second phase of manual screening effectively and scientifically, and to minimize the potential for researcher bias, the research team established the inclusion criteria presented in Table 2 . Three members were engaged in this phase, which took approximately 2 weeks, culminating in the retention of 588 articles after meticulous screening. The entire screening process is depicted in Fig. 1 , adhering to the PRISMA guidelines (Page et al. 2021 ).

figure 1

The process of obtaining and filtering the necessary literature data for research.

Data standardization

Nguyen and Hallinger ( 2020 ) pointed out that raw data extracted from scientific databases often contains multiple expressions of the same term, and not addressing these synonymous expressions could affect research results in bibliometric analysis. For instance, in the original data, the author list may include “Tsai, C. C.” and “Tsai, C.-C.”, while the keyword list may include “professional-development” and “professional development,” which often require merging. Therefore, before analyzing the selected literature, a data disambiguation process is necessary to standardize the data (Strotmann and Zhao, 2012 ; Van Eck and Waltman, 2019 ). This study adopted the data standardization process proposed by Taskin and Al ( 2019 ), mainly including the following standardization operations:

Firstly, the author and source fields in the data are corrected and standardized to differentiate authors with similar names.

Secondly, the study checks whether the journals to which the literature belongs have been renamed in the past over 20 years, so as to avoid the influence of periodical name change on the analysis results.

Finally, the keyword field is standardized by unifying parts of speech and singular/plural forms of keywords, which can help eliminate redundant entries in the knowledge graph.

Performance analysis (RQ1)

This section offers a thorough and detailed analysis of the state of research in the field of digital technology education. By utilizing descriptive statistics and visual maps, it provides a comprehensive overview of the development trends, authors, countries, institutions, and journal distribution within the field. The insights presented in this section are of great significance in advancing our understanding of the current state of research in this field and identifying areas for further investigation. The use of visual aids to display inter-country cooperation and the evolution of the field adds to the clarity and coherence of the analysis.

Time trend of the publications

To understand a research field, it is first necessary to understand the most basic quantitative information, among which the change in the number of publications per year best reflects the development trend of a research field. Figure 2 shows the distribution of publication dates.

figure 2

Time trend of the publications on application of digital technology in education.

From the Fig. 2 , it can be seen that the development of this field over the past over 20 years can be roughly divided into three stages. The first stage was from 2000 to 2007, during which the number of publications was relatively low. Due to various factors such as technological maturity, the academic community did not pay widespread attention to the role of digital technology in expanding the scope of teaching and learning. The second stage was from 2008 to 2019, during which the overall number of publications showed an upward trend, and the development of the field entered an accelerated period, attracting more and more scholars’ attention. The third stage was from 2020 to 2022, during which the number of publications stabilized at around 100. During this period, the impact of the pandemic led to a large number of scholars focusing on the role of digital technology in education during the pandemic, and research on the application of digital technology in education became a core topic in social science research.

Analysis of authors

An analysis of the author’s publication volume provides information about the representative scholars and core research strengths of a research area. Table 3 presents information on the core authors in adaptive learning research, including name, publication number, and average number of citations per article (based on the analysis and statistics from VOSviewer).

Variations in research foci among scholars abound. Within the field of digital technology education application research over the past two decades, Neil Selwyn stands as the most productive author, having published 15 papers garnering a total of 1027 citations, resulting in an average of 68.47 citations per paper. As a Professor at the Faculty of Education at Monash University, Selwyn concentrates on exploring the application of digital technology in higher education contexts (Selwyn et al. 2021 ), as well as related products in higher education such as Coursera, edX, and Udacity MOOC platforms (Bulfin et al. 2014 ). Selwyn’s contributions to the educational sociology perspective include extensive research on the impact of digital technology on education, highlighting the spatiotemporal extension of educational processes and practices through technological means as the greatest value of educational technology (Selwyn, 2012 ; Selwyn and Facer, 2014 ). In addition, he provides a blueprint for the development of future schools in 2030 based on the present impact of digital technology on education (Selwyn et al. 2019 ). The second most productive author in this field, Henderson, also offers significant contributions to the understanding of the important value of digital technology in education, specifically in the higher education setting, with a focus on the impact of the pandemic (Henderson et al. 2015 ; Cohen et al. 2022 ). In contrast, Edwards’ research interests focus on early childhood education, particularly the application of digital technology in this context (Edwards, 2013 ; Bird and Edwards, 2015 ). Additionally, on the technical level, Edwards also mainly prefers digital game technology, because it is a digital technology that children are relatively easy to accept (Edwards, 2015 ).

Analysis of countries/regions and organization

The present study aimed to ascertain the leading countries in digital technology education application research by analyzing 75 countries related to 558 works of literature. Table 4 depicts the top ten countries that have contributed significantly to this field in terms of publication count (based on the analysis and statistics from VOSviewer). Our analysis of Table 4 data shows that England emerged as the most influential country/region, with 92 published papers and 2401 citations. Australia and the United States secured the second and third ranks, respectively, with 90 papers (2187 citations) and 70 papers (1331 citations) published. Geographically, most of the countries featured in the top ten publication volumes are situated in Australia, North America, and Europe, with China being the only exception. Notably, all these countries, except China, belong to the group of developed nations, suggesting that economic strength is a prerequisite for fostering research in the digital technology education application field.

This study presents a visual representation of the publication output and cooperation relationships among different countries in the field of digital technology education application research. Specifically, a chord diagram is employed to display the top 30 countries in terms of publication output, as depicted in Fig. 3 . The chord diagram is composed of nodes and chords, where the nodes are positioned as scattered points along the circumference, and the length of each node corresponds to the publication output, with longer lengths indicating higher publication output. The chords, on the other hand, represent the cooperation relationships between any two countries, and are weighted based on the degree of closeness of the cooperation, with wider chords indicating closer cooperation. Through the analysis of the cooperation relationships, the findings suggest that the main publishing countries in this field are engaged in cooperative relationships with each other, indicating a relatively high level of international academic exchange and research internationalization.

figure 3

In the diagram, nodes are scattered along the circumference of a circle, with the length of each node representing the volume of publications. The weighted arcs connecting any two points on the circle are known as chords, representing the collaborative relationship between the two, with the width of the arc indicating the closeness of the collaboration.

Further analyzing Fig. 3 , we can extract more valuable information, enabling a deeper understanding of the connections between countries in the research field of digital technology in educational applications. It is evident that certain countries, such as the United States, China, and England, display thicker connections, indicating robust collaborative relationships in terms of productivity. These thicker lines signify substantial mutual contributions and shared objectives in certain sectors or fields, highlighting the interconnectedness and global integration in these areas. By delving deeper, we can also explore potential future collaboration opportunities through the chord diagram, identifying possible partners to propel research and development in this field. In essence, the chord diagram successfully encapsulates and conveys the multi-dimensionality of global productivity and cooperation, allowing for a comprehensive understanding of the intricate inter-country relationships and networks in a global context, providing valuable guidance and insights for future research and collaborations.

An in-depth examination of the publishing institutions is provided in Table 5 , showcasing the foremost 10 institutions ranked by their publication volume. Notably, Monash University and Australian Catholic University, situated in Australia, have recorded the most prolific publications within the digital technology education application realm, with 22 and 10 publications respectively. Moreover, the University of Oslo from Norway is featured among the top 10 publishing institutions, with an impressive average citation count of 64 per publication. It is worth highlighting that six institutions based in the United Kingdom were also ranked within the top 10 publishing institutions, signifying their leading position in this area of research.

Analysis of journals

Journals are the main carriers for publishing high-quality papers. Some scholars point out that the two key factors to measure the influence of journals in the specified field are the number of articles published and the number of citations. The more papers published in a magazine and the more citations, the greater its influence (Dzikowski, 2018 ). Therefore, this study utilized VOSviewer to statistically analyze the top 10 journals with the most publications in the field of digital technology in education and calculated the average citations per article (see Table 6 ).

Based on Table 6 , it is apparent that the highest number of articles in the domain of digital technology in education research were published in Education and Information Technologies (47 articles), Computers & Education (34 articles), and British Journal of Educational Technology (32 articles), indicating a higher article output compared to other journals. This underscores the fact that these three journals concentrate more on the application of digital technology in education. Furthermore, several other journals, such as Technology Pedagogy and Education and Sustainability, have published more than 15 articles in this domain. Sustainability represents the open access movement, which has notably facilitated research progress in this field, indicating that the development of open access journals in recent years has had a significant impact. Although there is still considerable disagreement among scholars on the optimal approach to achieve open access, the notion that research outcomes should be accessible to all is widely recognized (Huang et al. 2020 ). On further analysis of the research fields to which these journals belong, except for Sustainability, it is evident that they all pertain to educational technology, thus providing a qualitative definition of the research area of digital technology education from the perspective of journals.

Temporal keyword analysis: thematic evolution (RQ2)

The evolution of research themes is a dynamic process, and previous studies have attempted to present the developmental trajectory of fields by drawing keyword networks in phases (Kumar et al. 2021 ; Chen et al. 2022b ). To understand the shifts in research topics across different periods, this study follows past research and, based on the significant changes in the research field and corresponding technological advancements during the outlined periods, divides the timeline into four stages (the first stage from January 2000 to December 2005, the second stage from January 2006 to December 2011, the third stage from January 2012 to December 2017; and the fourth stage from January 2018 to December 2022). The division into these four stages was determined through a combination of bibliometric analysis and literature review, which presented a clear trajectory of the field’s development. The research analyzes the keyword networks for each time period (as there are only three articles in the first stage, it was not possible to generate an appropriate keyword co-occurrence map, hence only the keyword co-occurrence maps from the second to the fourth stages are provided), to understand the evolutionary track of the digital technology education application research field over time.

2000.1–2005.12: germination period

From January 2000 to December 2005, digital technology education application research was in its infancy. Only three studies focused on digital technology, all of which were related to computers. Due to the popularity of computers, the home became a new learning environment, highlighting the important role of digital technology in expanding the scope of learning spaces (Sutherland et al. 2000 ). In specific disciplines and contexts, digital technology was first favored in medical clinical practice, becoming an important tool for supporting the learning of clinical knowledge and practice (Tegtmeyer et al. 2001 ; Durfee et al. 2003 ).

2006.1–2011.12: initial development period

Between January 2006 and December 2011, it was the initial development period of digital technology education research. Significant growth was observed in research related to digital technology, and discussions and theoretical analyses about “digital natives” emerged. During this phase, scholars focused on the debate about “how to use digital technology reasonably” and “whether current educational models and school curriculum design need to be adjusted on a large scale” (Bennett and Maton, 2010 ; Selwyn, 2009 ; Margaryan et al. 2011 ). These theoretical and speculative arguments provided a unique perspective on the impact of cognitive digital technology on education and teaching. As can be seen from the vocabulary such as “rethinking”, “disruptive pedagogy”, and “attitude” in Fig. 4 , many scholars joined the calm reflection and analysis under the trend of digital technology (Laurillard, 2008 ; Vratulis et al. 2011 ). During this phase, technology was still undergoing dramatic changes. The development of mobile technology had already caught the attention of many scholars (Wong et al. 2011 ), but digital technology represented by computers was still very active (Selwyn et al. 2011 ). The change in technological form would inevitably lead to educational transformation. Collins and Halverson ( 2010 ) summarized the prospects and challenges of using digital technology for learning and educational practices, believing that digital technology would bring a disruptive revolution to the education field and bring about a new educational system. In addition, the term “teacher education” in Fig. 4 reflects the impact of digital technology development on teachers. The rapid development of technology has widened the generation gap between teachers and students. To ensure smooth communication between teachers and students, teachers must keep up with the trend of technological development and establish a lifelong learning concept (Donnison, 2009 ).

figure 4

In the diagram, each node represents a keyword, with the size of the node indicating the frequency of occurrence of the keyword. The connections represent the co-occurrence relationships between keywords, with a higher frequency of co-occurrence resulting in tighter connections.

2012.1–2017.12: critical exploration period

During the period spanning January 2012 to December 2017, the application of digital technology in education research underwent a significant exploration phase. As can be seen from Fig. 5 , different from the previous stage, the specific elements of specific digital technology have started to increase significantly, including the enrichment of technological contexts, the greater variety of research methods, and the diversification of learning modes. Moreover, the temporal and spatial dimensions of the learning environment were further de-emphasized, as noted in previous literature (Za et al. 2014 ). Given the rapidly accelerating pace of technological development, the education system in the digital era is in urgent need of collaborative evolution and reconstruction, as argued by Davis, Eickelmann, and Zaka ( 2013 ).

figure 5

In the domain of digital technology, social media has garnered substantial scholarly attention as a promising avenue for learning, as noted by Pasquini and Evangelopoulos ( 2016 ). The implementation of social media in education presents several benefits, including the liberation of education from the restrictions of physical distance and time, as well as the erasure of conventional educational boundaries. The user-generated content (UGC) model in social media has emerged as a crucial source for knowledge creation and distribution, with the widespread adoption of mobile devices. Moreover, social networks have become an integral component of ubiquitous learning environments (Hwang et al. 2013 ). The utilization of social media allows individuals to function as both knowledge producers and recipients, which leads to a blurring of the conventional roles of learners and teachers. On mobile platforms, the roles of learners and teachers are not fixed, but instead interchangeable.

In terms of research methodology, the prevalence of empirical studies with survey designs in the field of educational technology during this period is evident from the vocabulary used, such as “achievement,” “acceptance,” “attitude,” and “ict.” in Fig. 5 . These studies aim to understand learners’ willingness to adopt and attitudes towards new technologies, and some seek to investigate the impact of digital technologies on learning outcomes through quasi-experimental designs (Domínguez et al. 2013 ). Among these empirical studies, mobile learning emerged as a hot topic, and this is not surprising. First, the advantages of mobile learning environments over traditional ones have been empirically demonstrated (Hwang et al. 2013 ). Second, learners born around the turn of the century have been heavily influenced by digital technologies and have developed their own learning styles that are more open to mobile devices as a means of learning. Consequently, analyzing mobile learning as a relatively novel mode of learning has become an important issue for scholars in the field of educational technology.

The intervention of technology has led to the emergence of several novel learning modes, with the blended learning model being the most representative one in the current phase. Blended learning, a novel concept introduced in the information age, emphasizes the integration of the benefits of traditional learning methods and online learning. This learning mode not only highlights the prominent role of teachers in guiding, inspiring, and monitoring the learning process but also underlines the importance of learners’ initiative, enthusiasm, and creativity in the learning process. Despite being an early conceptualization, blended learning’s meaning has been expanded by the widespread use of mobile technology and social media in education. The implementation of new technologies, particularly mobile devices, has resulted in the transformation of curriculum design and increased flexibility and autonomy in students’ learning processes (Trujillo Maza et al. 2016 ), rekindling scholarly attention to this learning mode. However, some scholars have raised concerns about the potential drawbacks of the blended learning model, such as its significant impact on the traditional teaching system, the lack of systematic coping strategies and relevant policies in several schools and regions (Moskal et al. 2013 ).

2018.1–2022.12: accelerated transformation period

The period spanning from January 2018 to December 2022 witnessed a rapid transformation in the application of digital technology in education research. The field of digital technology education research reached a peak period of publication, largely influenced by factors such as the COVID-19 pandemic (Yu et al. 2023 ). Research during this period was built upon the achievements, attitudes, and social media of the previous phase, and included more elements that reflect the characteristics of this research field, such as digital literacy, digital competence, and professional development, as depicted in Fig. 6 . Alongside this, scholars’ expectations for the value of digital technology have expanded, and the pursuit of improving learning efficiency and performance is no longer the sole focus. Some research now aims to cultivate learners’ motivation and enhance their self-efficacy by applying digital technology in a reasonable manner, as demonstrated by recent studies (Beardsley et al. 2021 ; Creely et al. 2021 ).

figure 6

The COVID-19 pandemic has emerged as a crucial backdrop for the digital technology’s role in sustaining global education, as highlighted by recent scholarly research (Zhou et al. 2022 ; Pan and Zhang, 2020 ; Mo et al. 2022 ). The online learning environment, which is supported by digital technology, has become the primary battleground for global education (Yu, 2022 ). This social context has led to various studies being conducted, with some scholars positing that the pandemic has impacted the traditional teaching order while also expanding learning possibilities in terms of patterns and forms (Alabdulaziz, 2021 ). Furthermore, the pandemic has acted as a catalyst for teacher teaching and technological innovation, and this viewpoint has been empirically substantiated (Moorhouse and Wong, 2021 ). Additionally, some scholars believe that the pandemic’s push is a crucial driving force for the digital transformation of the education system, serving as an essential mechanism for overcoming the system’s inertia (Romero et al. 2021 ).

The rapid outbreak of the pandemic posed a challenge to the large-scale implementation of digital technologies, which was influenced by a complex interplay of subjective and objective factors. Objective constraints included the lack of infrastructure in some regions to support digital technologies, while subjective obstacles included psychological resistance among certain students and teachers (Moorhouse, 2021 ). These factors greatly impacted the progress of online learning during the pandemic. Additionally, Timotheou et al. ( 2023 ) conducted a comprehensive systematic review of existing research on digital technology use during the pandemic, highlighting the critical role played by various factors such as learners’ and teachers’ digital skills, teachers’ personal attributes and professional development, school leadership and management, and administration in facilitating the digitalization and transformation of schools.

The current stage of research is characterized by the pivotal term “digital literacy,” denoting a growing interest in learners’ attitudes and adoption of emerging technologies. Initially, the term “literacy” was restricted to fundamental abilities and knowledge associated with books and print materials (McMillan, 1996 ). However, with the swift advancement of computers and digital technology, there have been various attempts to broaden the scope of literacy beyond its traditional meaning, including game literacy (Buckingham and Burn, 2007 ), information literacy (Eisenberg, 2008 ), and media literacy (Turin and Friesem, 2020 ). Similarly, digital literacy has emerged as a crucial concept, and Gilster and Glister ( 1997 ) were the first to introduce this concept, referring to the proficiency in utilizing technology and processing digital information in academic, professional, and daily life settings. In practical educational settings, learners who possess higher digital literacy often exhibit an aptitude for quickly mastering digital devices and applying them intelligently to education and teaching (Yu, 2022 ).

The utilization of digital technology in education has undergone significant changes over the past two decades, and has been a crucial driver of educational reform with each new technological revolution. The impact of these changes on the underlying logic of digital technology education applications has been noticeable. From computer technology to more recent developments such as virtual reality (VR), augmented reality (AR), and artificial intelligence (AI), the acceleration in digital technology development has been ongoing. Educational reforms spurred by digital technology development continue to be dynamic, as each new digital innovation presents new possibilities and models for teaching practice. This is especially relevant in the post-pandemic era, where the importance of technological progress in supporting teaching cannot be overstated (Mughal et al. 2022 ). Existing digital technologies have already greatly expanded the dimensions of education in both time and space, while future digital technologies aim to expand learners’ perceptions. Researchers have highlighted the potential of integrated technology and immersive technology in the development of the educational metaverse, which is highly anticipated to create a new dimension for the teaching and learning environment, foster a new value system for the discipline of educational technology, and more effectively and efficiently achieve the grand educational blueprint of the United Nations’ Sustainable Development Goals (Zhang et al. 2022 ; Li and Yu, 2023 ).

Hotspot evolution analysis (RQ3)

The examination of keyword evolution reveals a consistent trend in the advancement of digital technology education application research. The emergence and transformation of keywords serve as indicators of the varying research interests in this field. Thus, the utilization of the burst detection function available in CiteSpace allowed for the identification of the top 10 burst words that exhibited a high level of burst strength. This outcome is illustrated in Table 7 .

According to the results presented in Table 7 , the explosive terminology within the realm of digital technology education research has exhibited a concentration mainly between the years 2018 and 2022. Prior to this time frame, the emerging keywords were limited to “information technology” and “computer”. Notably, among them, computer, as an emergent keyword, has always had a high explosive intensity from 2008 to 2018, which reflects the important position of computer in digital technology and is the main carrier of many digital technologies such as Learning Management Systems (LMS) and Assessment and Feedback systems (Barlovits et al. 2022 ).

Since 2018, an increasing number of research studies have focused on evaluating the capabilities of learners to accept, apply, and comprehend digital technologies. As indicated by the use of terms such as “digital literacy” and “digital skill,” the assessment of learners’ digital literacy has become a critical task. Scholarly efforts have been directed towards the development of literacy assessment tools and the implementation of empirical assessments. Furthermore, enhancing the digital literacy of both learners and educators has garnered significant attention. (Nagle, 2018 ; Yu, 2022 ). Simultaneously, given the widespread use of various digital technologies in different formal and informal learning settings, promoting learners’ digital skills has become a crucial objective for contemporary schools (Nygren et al. 2019 ; Forde and OBrien, 2022 ).

Since 2020, the field of applied research on digital technology education has witnessed the emergence of three new hotspots, all of which have been affected to some extent by the pandemic. Firstly, digital technology has been widely applied in physical education, which is one of the subjects that has been severely affected by the pandemic (Parris et al. 2022 ; Jiang and Ning, 2022 ). Secondly, digital transformation has become an important measure for most schools, especially higher education institutions, to cope with the impact of the pandemic globally (García-Morales et al. 2021 ). Although the concept of digital transformation was proposed earlier, the COVID-19 pandemic has greatly accelerated this transformation process. Educational institutions must carefully redesign their educational products to face this new situation, providing timely digital learning methods, environments, tools, and support systems that have far-reaching impacts on modern society (Krishnamurthy, 2020 ; Salas-Pilco et al. 2022 ). Moreover, the professional development of teachers has become a key mission of educational institutions in the post-pandemic era. Teachers need to have a certain level of digital literacy and be familiar with the tools and online teaching resources used in online teaching, which has become a research hotspot today. Organizing digital skills training for teachers to cope with the application of emerging technologies in education is an important issue for teacher professional development and lifelong learning (Garzón-Artacho et al. 2021 ). As the main organizers and practitioners of emergency remote teaching (ERT) during the pandemic, teachers must put cognitive effort into their professional development to ensure effective implementation of ERT (Romero-Hall and Jaramillo Cherrez, 2022 ).

The burst word “digital transformation” reveals that we are in the midst of an ongoing digital technology revolution. With the emergence of innovative digital technologies such as ChatGPT and Microsoft 365 Copilot, technology trends will continue to evolve, albeit unpredictably. While the impact of these advancements on school education remains uncertain, it is anticipated that the widespread integration of technology will significantly affect the current education system. Rejecting emerging technologies without careful consideration is unwise. Like any revolution, the technological revolution in the education field has both positive and negative aspects. Detractors argue that digital technology disrupts learning and memory (Baron, 2021 ) or causes learners to become addicted and distracted from learning (Selwyn and Aagaard, 2020 ). On the other hand, the prudent use of digital technology in education offers a glimpse of a golden age of open learning. Educational leaders and practitioners have the opportunity to leverage cutting-edge digital technologies to address current educational challenges and develop a rational path for the sustainable and healthy growth of education.

Discussion on performance analysis (RQ1)

The field of digital technology education application research has experienced substantial growth since the turn of the century, a phenomenon that is quantifiably apparent through an analysis of authorship, country/region contributions, and institutional engagement. This expansion reflects the increased integration of digital technologies in educational settings and the heightened scholarly interest in understanding and optimizing their use.

Discussion on authorship productivity in digital technology education research

The authorship distribution within digital technology education research is indicative of the field’s intellectual structure and depth. A primary figure in this domain is Neil Selwyn, whose substantial citation rate underscores the profound impact of his work. His focus on the implications of digital technology in higher education and educational sociology has proven to be seminal. Selwyn’s research trajectory, especially the exploration of spatiotemporal extensions of education through technology, provides valuable insights into the multifaceted role of digital tools in learning processes (Selwyn et al. 2019 ).

Other notable contributors, like Henderson and Edwards, present diversified research interests, such as the impact of digital technologies during the pandemic and their application in early childhood education, respectively. Their varied focuses highlight the breadth of digital technology education research, encompassing pedagogical innovation, technological adaptation, and policy development.

Discussion on country/region-level productivity and collaboration

At the country/region level, the United Kingdom, specifically England, emerges as a leading contributor with 92 published papers and a significant citation count. This is closely followed by Australia and the United States, indicating a strong English-speaking research axis. Such geographical concentration of scholarly output often correlates with investment in research and development, technological infrastructure, and the prevalence of higher education institutions engaging in cutting-edge research.

China’s notable inclusion as the only non-Western country among the top contributors to the field suggests a growing research capacity and interest in digital technology in education. However, the lower average citation per paper for China could reflect emerging engagement or different research focuses that may not yet have achieved the same international recognition as Western counterparts.

The chord diagram analysis furthers this understanding, revealing dense interconnections between countries like the United States, China, and England, which indicates robust collaborations. Such collaborations are fundamental in addressing global educational challenges and shaping international research agendas.

Discussion on institutional-level contributions to digital technology education

Institutional productivity in digital technology education research reveals a constellation of universities driving the field forward. Monash University and the Australian Catholic University have the highest publication output, signaling Australia’s significant role in advancing digital education research. The University of Oslo’s remarkable average citation count per publication indicates influential research contributions, potentially reflecting high-quality studies that resonate with the broader academic community.

The strong showing of UK institutions, including the University of London, The Open University, and the University of Cambridge, reinforces the UK’s prominence in this research field. Such institutions are often at the forefront of pedagogical innovation, benefiting from established research cultures and funding mechanisms that support sustained inquiry into digital education.

Discussion on journal publication analysis

An examination of journal outputs offers a lens into the communicative channels of the field’s knowledge base. Journals such as Education and Information Technologies , Computers & Education , and the British Journal of Educational Technology not only serve as the primary disseminators of research findings but also as indicators of research quality and relevance. The impact factor (IF) serves as a proxy for the quality and influence of these journals within the academic community.

The high citation counts for articles published in Computers & Education suggest that research disseminated through this medium has a wide-reaching impact and is of particular interest to the field. This is further evidenced by its significant IF of 11.182, indicating that the journal is a pivotal platform for seminal work in the application of digital technology in education.

The authorship, regional, and institutional productivity in the field of digital technology education application research collectively narrate the evolution of this domain since the turn of the century. The prominence of certain authors and countries underscores the importance of socioeconomic factors and existing academic infrastructure in fostering research productivity. Meanwhile, the centrality of specific journals as outlets for high-impact research emphasizes the role of academic publishing in shaping the research landscape.

As the field continues to grow, future research may benefit from leveraging the collaborative networks that have been elucidated through this analysis, perhaps focusing on underrepresented regions to broaden the scope and diversity of research. Furthermore, the stabilization of publication numbers in recent years invites a deeper exploration into potential plateaus in research trends or saturation in certain sub-fields, signaling an opportunity for novel inquiries and methodological innovations.

Discussion on the evolutionary trends (RQ2)

The evolution of the research field concerning the application of digital technology in education over the past two decades is a story of convergence, diversification, and transformation, shaped by rapid technological advancements and shifting educational paradigms.

At the turn of the century, the inception of digital technology in education was largely exploratory, with a focus on how emerging computer technologies could be harnessed to enhance traditional learning environments. Research from this early period was primarily descriptive, reflecting on the potential and challenges of incorporating digital tools into the educational setting. This phase was critical in establishing the fundamental discourse that would guide subsequent research, as it set the stage for understanding the scope and impact of digital technology in learning spaces (Wang et al. 2023 ).

As the first decade progressed, the narrative expanded to encompass the pedagogical implications of digital technologies. This was a period of conceptual debates, where terms like “digital natives” and “disruptive pedagogy” entered the academic lexicon, underscoring the growing acknowledgment of digital technology as a transformative force within education (Bennett and Maton, 2010 ). During this time, the research began to reflect a more nuanced understanding of the integration of technology, considering not only its potential to change where and how learning occurred but also its implications for educational equity and access.

In the second decade, with the maturation of internet connectivity and mobile technology, the focus of research shifted from theoretical speculations to empirical investigations. The proliferation of digital devices and the ubiquity of social media influenced how learners interacted with information and each other, prompting a surge in studies that sought to measure the impact of these tools on learning outcomes. The digital divide and issues related to digital literacy became central concerns, as scholars explored the varying capacities of students and educators to engage with technology effectively.

Throughout this period, there was an increasing emphasis on the individualization of learning experiences, facilitated by adaptive technologies that could cater to the unique needs and pacing of learners (Jing et al. 2023a ). This individualization was coupled with a growing recognition of the importance of collaborative learning, both online and offline, and the role of digital tools in supporting these processes. Blended learning models, which combined face-to-face instruction with online resources, emerged as a significant trend, advocating for a balance between traditional pedagogies and innovative digital strategies.

The later years, particularly marked by the COVID-19 pandemic, accelerated the necessity for digital technology in education, transforming it from a supplementary tool to an essential platform for delivering education globally (Mo et al. 2022 ; Mustapha et al. 2021 ). This era brought about an unprecedented focus on online learning environments, distance education, and virtual classrooms. Research became more granular, examining not just the pedagogical effectiveness of digital tools, but also their role in maintaining continuity of education during crises, their impact on teacher and student well-being, and their implications for the future of educational policy and infrastructure.

Across these two decades, the research field has seen a shift from examining digital technology as an external addition to the educational process, to viewing it as an integral component of curriculum design, instructional strategies, and even assessment methods. The emergent themes have broadened from a narrow focus on specific tools or platforms to include wider considerations such as data privacy, ethical use of technology, and the environmental impact of digital tools.

Moreover, the field has moved from considering the application of digital technology in education as a primarily cognitive endeavor to recognizing its role in facilitating socio-emotional learning, digital citizenship, and global competencies. Researchers have increasingly turned their attention to the ways in which technology can support collaborative skills, cultural understanding, and ethical reasoning within diverse student populations.

In summary, the past over twenty years in the research field of digital technology applications in education have been characterized by a progression from foundational inquiries to complex analyses of digital integration. This evolution has mirrored the trajectory of technology itself, from a facilitative tool to a pervasive ecosystem defining contemporary educational experiences. As we look to the future, the field is poised to delve into the implications of emerging technologies like AI, AR, and VR, and their potential to redefine the educational landscape even further. This ongoing metamorphosis suggests that the application of digital technology in education will continue to be a rich area of inquiry, demanding continual adaptation and forward-thinking from educators and researchers alike.

Discussion on the study of research hotspots (RQ3)

The analysis of keyword evolution in digital technology education application research elucidates the current frontiers in the field, reflecting a trajectory that is in tandem with the rapidly advancing digital age. This landscape is sculpted by emergent technological innovations and shaped by the demands of an increasingly digital society.

Interdisciplinary integration and pedagogical transformation

One of the frontiers identified from recent keyword bursts includes the integration of digital technology into diverse educational contexts, particularly noted with the keyword “physical education.” The digitalization of disciplines traditionally characterized by physical presence illustrates the pervasive reach of technology and signifies a push towards interdisciplinary integration where technology is not only a facilitator but also a transformative agent. This integration challenges educators to reconceptualize curriculum delivery to accommodate digital tools that can enhance or simulate the physical aspects of learning.

Digital literacy and skills acquisition

Another pivotal frontier is the focus on “digital literacy” and “digital skill”, which has intensified in recent years. This suggests a shift from mere access to technology towards a comprehensive understanding and utilization of digital tools. In this realm, the emphasis is not only on the ability to use technology but also on critical thinking, problem-solving, and the ethical use of digital resources (Yu, 2022 ). The acquisition of digital literacy is no longer an additive skill but a fundamental aspect of modern education, essential for navigating and contributing to the digital world.

Educational digital transformation

The keyword “digital transformation” marks a significant research frontier, emphasizing the systemic changes that education institutions must undergo to align with the digital era (Romero et al. 2021 ). This transformation includes the redesigning of learning environments, pedagogical strategies, and assessment methods to harness digital technology’s full potential. Research in this area explores the complexity of institutional change, addressing the infrastructural, cultural, and policy adjustments needed for a seamless digital transition.

Engagement and participation

Further exploration into “engagement” and “participation” underscores the importance of student-centered learning environments that are mediated by technology. The current frontiers examine how digital platforms can foster collaboration, inclusivity, and active learning, potentially leading to more meaningful and personalized educational experiences. Here, the use of technology seeks to support the emotional and cognitive aspects of learning, moving beyond the transactional view of education to one that is relational and interactive.

Professional development and teacher readiness

As the field evolves, “professional development” emerges as a crucial area, particularly in light of the pandemic which necessitated emergency remote teaching. The need for teacher readiness in a digital age is a pressing frontier, with research focusing on the competencies required for educators to effectively integrate technology into their teaching practices. This includes familiarity with digital tools, pedagogical innovation, and an ongoing commitment to personal and professional growth in the digital domain.

Pandemic as a catalyst

The recent pandemic has acted as a catalyst for accelerated research and application in this field, particularly in the domains of “digital transformation,” “professional development,” and “physical education.” This period has been a litmus test for the resilience and adaptability of educational systems to continue their operations in an emergency. Research has thus been directed at understanding how digital technologies can support not only continuity but also enhance the quality and reach of education in such contexts.

Ethical and societal considerations

The frontier of digital technology in education is also expanding to consider broader ethical and societal implications. This includes issues of digital equity, data privacy, and the sociocultural impact of technology on learning communities. The research explores how educational technology can be leveraged to address inequities and create more equitable learning opportunities for all students, regardless of their socioeconomic background.

Innovation and emerging technologies

Looking forward, the frontiers are set to be influenced by ongoing and future technological innovations, such as artificial intelligence (AI) (Wu and Yu, 2023 ; Chen et al. 2022a ). The exploration into how these technologies can be integrated into educational practices to create immersive and adaptive learning experiences represents a bold new chapter for the field.

In conclusion, the current frontiers of research on the application of digital technology in education are multifaceted and dynamic. They reflect an overarching movement towards deeper integration of technology in educational systems and pedagogical practices, where the goals are not only to facilitate learning but to redefine it. As these frontiers continue to expand and evolve, they will shape the educational landscape, requiring a concerted effort from researchers, educators, policymakers, and technologists to navigate the challenges and harness the opportunities presented by the digital revolution in education.

Conclusions and future research

Conclusions.

The utilization of digital technology in education is a research area that cuts across multiple technical and educational domains and continues to experience dynamic growth due to the continuous progress of technology. In this study, a systematic review of this field was conducted through bibliometric techniques to examine its development trajectory. The primary focus of the review was to investigate the leading contributors, productive national institutions, significant publications, and evolving development patterns. The study’s quantitative analysis resulted in several key conclusions that shed light on this research field’s current state and future prospects.

(1) The research field of digital technology education applications has entered a stage of rapid development, particularly in recent years due to the impact of the pandemic, resulting in a peak of publications. Within this field, several key authors (Selwyn, Henderson, Edwards, etc.) and countries/regions (England, Australia, USA, etc.) have emerged, who have made significant contributions. International exchanges in this field have become frequent, with a high degree of internationalization in academic research. Higher education institutions in the UK and Australia are the core productive forces in this field at the institutional level.

(2) Education and Information Technologies , Computers & Education , and the British Journal of Educational Technology are notable journals that publish research related to digital technology education applications. These journals are affiliated with the research field of educational technology and provide effective communication platforms for sharing digital technology education applications.

(3) Over the past two decades, research on digital technology education applications has progressed from its early stages of budding, initial development, and critical exploration to accelerated transformation, and it is currently approaching maturity. Technological progress and changes in the times have been key driving forces for educational transformation and innovation, and both have played important roles in promoting the continuous development of education.

(4) Influenced by the pandemic, three emerging frontiers have emerged in current research on digital technology education applications, which are physical education, digital transformation, and professional development under the promotion of digital technology. These frontier research hotspots reflect the core issues that the education system faces when encountering new technologies. The evolution of research hotspots shows that technology breakthroughs in education’s original boundaries of time and space create new challenges. The continuous self-renewal of education is achieved by solving one hotspot problem after another.

The present study offers significant practical implications for scholars and practitioners in the field of digital technology education applications. Firstly, it presents a well-defined framework of the existing research in this area, serving as a comprehensive guide for new entrants to the field and shedding light on the developmental trajectory of this research domain. Secondly, the study identifies several contemporary research hotspots, thus offering a valuable decision-making resource for scholars aiming to explore potential research directions. Thirdly, the study undertakes an exhaustive analysis of published literature to identify core journals in the field of digital technology education applications, with Sustainability being identified as a promising open access journal that publishes extensively on this topic. This finding can potentially facilitate scholars in selecting appropriate journals for their research outputs.

Limitation and future research

Influenced by some objective factors, this study also has some limitations. First of all, the bibliometrics analysis software has high standards for data. In order to ensure the quality and integrity of the collected data, the research only selects the periodical papers in SCIE and SSCI indexes, which are the core collection of Web of Science database, and excludes other databases, conference papers, editorials and other publications, which may ignore some scientific research and original opinions in the field of digital technology education and application research. In addition, although this study used professional software to carry out bibliometric analysis and obtained more objective quantitative data, the analysis and interpretation of data will inevitably have a certain subjective color, and the influence of subjectivity on data analysis cannot be completely avoided. As such, future research endeavors will broaden the scope of literature screening and proactively engage scholars in the field to gain objective and state-of-the-art insights, while minimizing the adverse impact of personal subjectivity on research analysis.

Data availability

The datasets analyzed during the current study are available in the Dataverse repository: https://doi.org/10.7910/DVN/F9QMHY

Alabdulaziz MS (2021) COVID-19 and the use of digital technology in mathematics education. Educ Inf Technol 26(6):7609–7633. https://doi.org/10.1007/s10639-021-10602-3

Arif TB, Munaf U, Ul-Haque I (2023) The future of medical education and research: is ChatGPT a blessing or blight in disguise? Med Educ Online 28. https://doi.org/10.1080/10872981.2023.2181052

Banerjee M, Chiew D, Patel KT, Johns I, Chappell D, Linton N, Cole GD, Francis DP, Szram J, Ross J, Zaman S (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21. https://doi.org/10.1186/s12909-021-02870-x

Barlovits S, Caldeira A, Fesakis G, Jablonski S, Koutsomanoli Filippaki D, Lázaro C, Ludwig M, Mammana MF, Moura A, Oehler DXK, Recio T, Taranto E, Volika S(2022) Adaptive, synchronous, and mobile online education: developing the ASYMPTOTE learning environment. Mathematics 10:1628. https://doi.org/10.3390/math10101628

Article   Google Scholar  

Baron NS(2021) Know what? How digital technologies undermine learning and remembering J Pragmat 175:27–37. https://doi.org/10.1016/j.pragma.2021.01.011

Batista J, Morais NS, Ramos F (2016) Researching the use of communication technologies in higher education institutions in Portugal. https://doi.org/10.4018/978-1-5225-0571-6.ch057

Beardsley M, Albó L, Aragón P, Hernández-Leo D (2021) Emergency education effects on teacher abilities and motivation to use digital technologies. Br J Educ Technol 52. https://doi.org/10.1111/bjet.13101

Bennett S, Maton K(2010) Beyond the “digital natives” debate: towards a more nuanced understanding of students’ technology experiences J Comput Assist Learn 26:321–331. https://doi.org/10.1111/j.1365-2729.2010.00360.x

Buckingham D, Burn A (2007) Game literacy in theory and practice 16:323–349

Google Scholar  

Bulfin S, Pangrazio L, Selwyn N (2014) Making “MOOCs”: the construction of a new digital higher education within news media discourse. In: The International Review of Research in Open and Distributed Learning 15. https://doi.org/10.19173/irrodl.v15i5.1856

Camilleri MA, Camilleri AC(2016) Digital learning resources and ubiquitous technologies in education Technol Knowl Learn 22:65–82. https://doi.org/10.1007/s10758-016-9287-7

Chen C(2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature J Am Soc Inf Sci Technol 57:359–377. https://doi.org/10.1002/asi.20317

Chen J, Dai J, Zhu K, Xu L(2022) Effects of extended reality on language learning: a meta-analysis Front Psychol 13:1016519. https://doi.org/10.3389/fpsyg.2022.1016519

Article   PubMed   PubMed Central   Google Scholar  

Chen J, Wang CL, Tang Y (2022b) Knowledge mapping of volunteer motivation: a bibliometric analysis and cross-cultural comparative study. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.883150

Cohen A, Soffer T, Henderson M(2022) Students’ use of technology and their perceptions of its usefulness in higher education: International comparison J Comput Assist Learn 38(5):1321–1331. https://doi.org/10.1111/jcal.12678

Collins A, Halverson R(2010) The second educational revolution: rethinking education in the age of technology J Comput Assist Learn 26:18–27. https://doi.org/10.1111/j.1365-2729.2009.00339.x

Conole G, Alevizou P (2010) A literature review of the use of Web 2.0 tools in higher education. Walton Hall, Milton Keynes, UK: the Open University, retrieved 17 February

Creely E, Henriksen D, Crawford R, Henderson M(2021) Exploring creative risk-taking and productive failure in classroom practice. A case study of the perceived self-efficacy and agency of teachers at one school Think Ski Creat 42:100951. https://doi.org/10.1016/j.tsc.2021.100951

Davis N, Eickelmann B, Zaka P(2013) Restructuring of educational systems in the digital age from a co-evolutionary perspective J Comput Assist Learn 29:438–450. https://doi.org/10.1111/jcal.12032

De Belli N (2009) Bibliometrics and citation analysis: from the science citation index to cybermetrics, Scarecrow Press. https://doi.org/10.1111/jcal.12032

Domínguez A, Saenz-de-Navarrete J, de-Marcos L, Fernández-Sanz L, Pagés C, Martínez-Herráiz JJ(2013) Gamifying learning experiences: practical implications and outcomes Comput Educ 63:380–392. https://doi.org/10.1016/j.compedu.2012.12.020

Donnison S (2009) Discourses in conflict: the relationship between Gen Y pre-service teachers, digital technologies and lifelong learning. Australasian J Educ Technol 25. https://doi.org/10.14742/ajet.1138

Durfee SM, Jain S, Shaffer K (2003) Incorporating electronic media into medical student education. Acad Radiol 10:205–210. https://doi.org/10.1016/s1076-6332(03)80046-6

Dzikowski P(2018) A bibliometric analysis of born global firms J Bus Res 85:281–294. https://doi.org/10.1016/j.jbusres.2017.12.054

van Eck NJ, Waltman L(2009) Software survey: VOSviewer, a computer program for bibliometric mapping Scientometrics 84:523–538 https://doi.org/10.1007/s11192-009-0146-3

Edwards S(2013) Digital play in the early years: a contextual response to the problem of integrating technologies and play-based pedagogies in the early childhood curriculum Eur Early Child Educ Res J 21:199–212. https://doi.org/10.1080/1350293x.2013.789190

Edwards S(2015) New concepts of play and the problem of technology, digital media and popular-culture integration with play-based learning in early childhood education Technol Pedagogy Educ 25:513–532 https://doi.org/10.1080/1475939x.2015.1108929

Article   MathSciNet   Google Scholar  

Eisenberg MB(2008) Information literacy: essential skills for the information age DESIDOC J Libr Inf Technol 28:39–47. https://doi.org/10.14429/djlit.28.2.166

Forde C, OBrien A (2022) A literature review of barriers and opportunities presented by digitally enhanced practical skill teaching and learning in health science education. Med Educ Online 27. https://doi.org/10.1080/10872981.2022.2068210

García-Morales VJ, Garrido-Moreno A, Martín-Rojas R (2021) The transformation of higher education after the COVID disruption: emerging challenges in an online learning scenario. Front Psychol 12. https://doi.org/10.3389/fpsyg.2021.616059

Garfield E(2006) The history and meaning of the journal impact factor JAMA 295:90. https://doi.org/10.1001/jama.295.1.90

Article   PubMed   Google Scholar  

Garzón-Artacho E, Sola-Martínez T, Romero-Rodríguez JM, Gómez-García G(2021) Teachers’ perceptions of digital competence at the lifelong learning stage Heliyon 7:e07513. https://doi.org/10.1016/j.heliyon.2021.e07513

Gaviria-Marin M, Merigó JM, Baier-Fuentes H(2019) Knowledge management: a global examination based on bibliometric analysis Technol Forecast Soc Change 140:194–220. https://doi.org/10.1016/j.techfore.2018.07.006

Gilster P, Glister P (1997) Digital literacy. Wiley Computer Pub, New York

Greenhow C, Lewin C(2015) Social media and education: reconceptualizing the boundaries of formal and informal learning Learn Media Technol 41:6–30. https://doi.org/10.1080/17439884.2015.1064954

Hawkins DT(2001) Bibliometrics of electronic journals in information science Infor Res 7(1):7–1. http://informationr.net/ir/7-1/paper120.html

Henderson M, Selwyn N, Finger G, Aston R(2015) Students’ everyday engagement with digital technology in university: exploring patterns of use and “usefulness J High Educ Policy Manag 37:308–319 https://doi.org/10.1080/1360080x.2015.1034424

Huang CK, Neylon C, Hosking R, Montgomery L, Wilson KS, Ozaygen A, Brookes-Kenworthy C (2020) Evaluating the impact of open access policies on research institutions. eLife 9. https://doi.org/10.7554/elife.57067

Hwang GJ, Tsai CC(2011) Research trends in mobile and ubiquitous learning: a review of publications in selected journals from 2001 to 2010 Br J Educ Technol 42:E65–E70. https://doi.org/10.1111/j.1467-8535.2011.01183.x

Hwang GJ, Wu PH, Zhuang YY, Huang YM(2013) Effects of the inquiry-based mobile learning model on the cognitive load and learning achievement of students Interact Learn Environ 21:338–354. https://doi.org/10.1080/10494820.2011.575789

Jiang S, Ning CF (2022) Interactive communication in the process of physical education: are social media contributing to the improvement of physical training performance. Universal Access Inf Soc, 1–10. https://doi.org/10.1007/s10209-022-00911-w

Jing Y, Zhao L, Zhu KK, Wang H, Wang CL, Xia Q(2023) Research landscape of adaptive learning in education: a bibliometric study on research publications from 2000 to 2022 Sustainability 15:3115–3115. https://doi.org/10.3390/su15043115

Jing Y, Wang CL, Chen Y, Wang H, Yu T, Shadiev R (2023b) Bibliometric mapping techniques in educational technology research: a systematic literature review. Educ Inf Technol 1–29. https://doi.org/10.1007/s10639-023-12178-6

Krishnamurthy S (2020) The future of business education: a commentary in the shadow of the Covid-19 pandemic. J Bus Res. https://doi.org/10.1016/j.jbusres.2020.05.034

Kumar S, Lim WM, Pandey N, Christopher Westland J (2021) 20 years of electronic commerce research. Electron Commer Res 21:1–40

Kyza EA, Georgiou Y(2018) Scaffolding augmented reality inquiry learning: the design and investigation of the TraceReaders location-based, augmented reality platform Interact Learn Environ 27:211–225. https://doi.org/10.1080/10494820.2018.1458039

Laurillard D(2008) Technology enhanced learning as a tool for pedagogical innovation J Philos Educ 42:521–533. https://doi.org/10.1111/j.1467-9752.2008.00658.x

Li M, Yu Z (2023) A systematic review on the metaverse-based blended English learning. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.1087508

Luo H, Li G, Feng Q, Yang Y, Zuo M (2021) Virtual reality in K-12 and higher education: a systematic review of the literature from 2000 to 2019. J Comput Assist Learn. https://doi.org/10.1111/jcal.12538

Margaryan A, Littlejohn A, Vojt G(2011) Are digital natives a myth or reality? University students’ use of digital technologies Comput Educ 56:429–440. https://doi.org/10.1016/j.compedu.2010.09.004

McMillan S(1996) Literacy and computer literacy: definitions and comparisons Comput Educ 27:161–170. https://doi.org/10.1016/s0360-1315(96)00026-7

Mo CY, Wang CL, Dai J, Jin P (2022) Video playback speed influence on learning effect from the perspective of personalized adaptive learning: a study based on cognitive load theory. Front Psychology 13. https://doi.org/10.3389/fpsyg.2022.839982

Moorhouse BL (2021) Beginning teaching during COVID-19: newly qualified Hong Kong teachers’ preparedness for online teaching. Educ Stud 1–17. https://doi.org/10.1080/03055698.2021.1964939

Moorhouse BL, Wong KM (2021) The COVID-19 Pandemic as a catalyst for teacher pedagogical and technological innovation and development: teachers’ perspectives. Asia Pac J Educ 1–16. https://doi.org/10.1080/02188791.2021.1988511

Moskal P, Dziuban C, Hartman J (2013) Blended learning: a dangerous idea? Internet High Educ 18:15–23

Mughal MY, Andleeb N, Khurram AFA, Ali MY, Aslam MS, Saleem MN (2022) Perceptions of teaching-learning force about Metaverse for education: a qualitative study. J. Positive School Psychol 6:1738–1745

Mustapha I, Thuy Van N, Shahverdi M, Qureshi MI, Khan N (2021) Effectiveness of digital technology in education during COVID-19 pandemic. a bibliometric analysis. Int J Interact Mob Technol 15:136

Nagle J (2018) Twitter, cyber-violence, and the need for a critical social media literacy in teacher education: a review of the literature. Teach Teach Education 76:86–94

Nazare J, Woolf A, Sysoev I, Ballinger S, Saveski M, Walker M, Roy D (2022) Technology-assisted coaching can increase engagement with learning technology at home and caregivers’ awareness of it. Comput Educ 188:104565

Nguyen UP, Hallinger P (2020) Assessing the distinctive contributions of simulation & gaming to the literature, 1970-2019: a bibliometric review. Simul Gaming 104687812094156. https://doi.org/10.1177/1046878120941569

Nygren H, Nissinen K, Hämäläinen R, Wever B(2019) Lifelong learning: formal, non-formal and informal learning in the context of the use of problem-solving skills in technology-rich environments Br J Educ Technol 50:1759–1770. https://doi.org/10.1111/bjet.12807

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 88:105906

Pan SL, Zhang S(2020) From fighting COVID-19 pandemic to tackling sustainable development goals: an opportunity for responsible information systems research Int J Inf Manage 55:102196. https://doi.org/10.1016/j.ijinfomgt.2020.102196

Pan X, Yan E, Cui M, Hua W(2018) Examining the usage, citation, and diffusion patterns of bibliometric mapping software: a comparative study of three tools J Informetr 12:481–493. https://doi.org/10.1016/j.joi.2018.03.005

Parris Z, Cale L, Harris J, Casey A (2022) Physical activity for health, covid-19 and social media: what, where and why?. Movimento, 28. https://doi.org/10.22456/1982-8918.122533

Pasquini LA, Evangelopoulos N (2016) Sociotechnical stewardship in higher education: a field study of social media policy documents. J Comput High Educ 29:218–239

Pérez-Sanagustín M, Hernández-Leo D, Santos P, Delgado Kloos C, Blat J(2014) Augmenting reality and formality of informal and non-formal settings to enhance blended learning IEEE Trans Learn Technol 7:118–131. https://doi.org/10.1109/TLT.2014.2312719

Pinto M, Leite C (2020) Digital technologies in support of students learning in Higher Education: literature review. Digital Education Review 343–360. https://doi.org/10.1344/der.2020.37.343-360

Pires F, Masanet MJ, Tomasena JM, Scolari CA(2022) Learning with YouTube: beyond formal and informal through new actors, strategies and affordances Convergence 28(3):838–853. https://doi.org/10.1177/1354856521102054

Pritchard A (1969) Statistical bibliography or bibliometrics 25:348

Romero M, Romeu T, Guitert M, Baztán P (2021) Digital transformation in higher education: the UOC case. In ICERI2021 Proceedings (pp. 6695–6703). IATED https://doi.org/10.21125/iceri.2021.1512

Romero-Hall E, Jaramillo Cherrez N (2022) Teaching in times of disruption: faculty digital literacy in higher education during the COVID-19 pandemic. Innovations in Education and Teaching International 1–11. https://doi.org/10.1080/14703297.2022.2030782

Rospigliosi PA(2023) Artificial intelligence in teaching and learning: what questions should we ask of ChatGPT? Interactive Learning Environments 31:1–3. https://doi.org/10.1080/10494820.2023.2180191

Salas-Pilco SZ, Yang Y, Zhang Z(2022) Student engagement in online learning in Latin American higher education during the COVID-19 pandemic: a systematic review. Br J Educ Technol 53(3):593–619. https://doi.org/10.1111/bjet.13190

Selwyn N(2009) The digital native-myth and reality In Aslib proceedings 61(4):364–379. https://doi.org/10.1108/00012530910973776

Selwyn N(2012) Making sense of young people, education and digital technology: the role of sociological theory Oxford Review of Education 38:81–96. https://doi.org/10.1080/03054985.2011.577949

Selwyn N, Facer K(2014) The sociology of education and digital technology: past, present and future Oxford Rev Educ 40:482–496. https://doi.org/10.1080/03054985.2014.933005

Selwyn N, Banaji S, Hadjithoma-Garstka C, Clark W(2011) Providing a platform for parents? Exploring the nature of parental engagement with school Learning Platforms J Comput Assist Learn 27:314–323. https://doi.org/10.1111/j.1365-2729.2011.00428.x

Selwyn N, Aagaard J (2020) Banning mobile phones from classrooms-an opportunity to advance understandings of technology addiction, distraction and cyberbullying. Br J Educ Technol 52. https://doi.org/10.1111/bjet.12943

Selwyn N, O’Neill C, Smith G, Andrejevic M, Gu X (2021) A necessary evil? The rise of online exam proctoring in Australian universities. Media Int Austr 1329878X2110058. https://doi.org/10.1177/1329878x211005862

Selwyn N, Pangrazio L, Nemorin S, Perrotta C (2019) What might the school of 2030 be like? An exercise in social science fiction. Learn, Media Technol 1–17. https://doi.org/10.1080/17439884.2020.1694944

Selwyn, N (2016) What works and why?* Understanding successful technology enabled learning within institutional contexts 2016 Final report Appendices (Part B). Monash University Griffith University

Sjöberg D, Holmgren R (2021) Informal workplace learning in swedish police education-a teacher perspective. Vocations and Learning. https://doi.org/10.1007/s12186-021-09267-3

Strotmann A, Zhao D (2012) Author name disambiguation: what difference does it make in author-based citation analysis? J Am Soc Inf Sci Technol 63:1820–1833

Article   CAS   Google Scholar  

Sutherland R, Facer K, Furlong R, Furlong J(2000) A new environment for education? The computer in the home. Comput Educ 34:195–212. https://doi.org/10.1016/s0360-1315(99)00045-7

Szeto E, Cheng AY-N, Hong J-C(2015) Learning with social media: how do preservice teachers integrate YouTube and Social Media in teaching? Asia-Pac Educ Res 25:35–44. https://doi.org/10.1007/s40299-015-0230-9

Tang E, Lam C(2014) Building an effective online learning community (OLC) in blog-based teaching portfolios Int High Educ 20:79–85. https://doi.org/10.1016/j.iheduc.2012.12.002

Taskin Z, Al U(2019) Natural language processing applications in library and information science Online Inf Rev 43:676–690. https://doi.org/10.1108/oir-07-2018-0217

Tegtmeyer K, Ibsen L, Goldstein B(2001) Computer-assisted learning in critical care: from ENIAC to HAL Crit Care Med 29:N177–N182. https://doi.org/10.1097/00003246-200108001-00006

Article   CAS   PubMed   Google Scholar  

Timotheou S, Miliou O, Dimitriadis Y, Sobrino SV, Giannoutsou N, Cachia R, Moné AM, Ioannou A(2023) Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: a literature review. Educ Inf Technol 28(6):6695–6726. https://doi.org/10.1007/s10639-022-11431-8

Trujillo Maza EM, Gómez Lozano MT, Cardozo Alarcón AC, Moreno Zuluaga L, Gamba Fadul M (2016) Blended learning supported by digital technology and competency-based medical education: a case study of the social medicine course at the Universidad de los Andes, Colombia. Int J Educ Technol High Educ 13. https://doi.org/10.1186/s41239-016-0027-9

Turin O, Friesem Y(2020) Is that media literacy?: Israeli and US media scholars’ perceptions of the field J Media Lit Educ 12:132–144. https://doi.org/10.1007/s11192-009-0146-3

Van Eck NJ, Waltman L (2019) VOSviewer manual. Universiteit Leiden

Vratulis V, Clarke T, Hoban G, Erickson G(2011) Additive and disruptive pedagogies: the use of slowmation as an example of digital technology implementation Teach Teach Educ 27:1179–1188. https://doi.org/10.1016/j.tate.2011.06.004

Wang CL, Dai J, Xu LJ (2022) Big data and data mining in education: a bibliometrics study from 2010 to 2022. In 2022 7th International Conference on Cloud Computing and Big Data Analytics ( ICCCBDA ) (pp. 507-512). IEEE. https://doi.org/10.1109/icccbda55098.2022.9778874

Wang CL, Dai J, Zhu KK, Yu T, Gu XQ (2023) Understanding the continuance intention of college students toward new E-learning spaces based on an integrated model of the TAM and TTF. Int J Hum-Comput Int 1–14. https://doi.org/10.1080/10447318.2023.2291609

Wong L-H, Boticki I, Sun J, Looi C-K(2011) Improving the scaffolds of a mobile-assisted Chinese character forming game via a design-based research cycle Comput Hum Behav 27:1783–1793. https://doi.org/10.1016/j.chb.2011.03.005

Wu R, Yu Z (2023) Do AI chatbots improve students learning outcomes? Evidence from a meta-analysis. Br J Educ Technol. https://doi.org/10.1111/bjet.13334

Yang D, Zhou J, Shi D, Pan Q, Wang D, Chen X, Liu J (2022) Research status, hotspots, and evolutionary trends of global digital education via knowledge graph analysis. Sustainability 14:15157–15157. https://doi.org/10.3390/su142215157

Yu T, Dai J, Wang CL (2023) Adoption of blended learning: Chinese university students’ perspectives. Humanit Soc Sci Commun 10:390. https://doi.org/10.3390/su142215157

Yu Z (2022) Sustaining student roles, digital literacy, learning achievements, and motivation in online learning environments during the COVID-19 pandemic. Sustainability 14:4388. https://doi.org/10.3390/su14084388

Za S, Spagnoletti P, North-Samardzic A(2014) Organisational learning as an emerging process: the generative role of digital tools in informal learning practices Br J Educ Technol 45:1023–1035. https://doi.org/10.1111/bjet.12211

Zhang X, Chen Y, Hu L, Wang Y (2022) The metaverse in education: definition, framework, features, potential applications, challenges, and future research topics. Front Psychol 13:1016300. https://doi.org/10.3389/fpsyg.2022.1016300

Zhou M, Dzingirai C, Hove K, Chitata T, Mugandani R (2022) Adoption, use and enhancement of virtual learning during COVID-19. Education and Information Technologies. https://doi.org/10.1007/s10639-022-10985-x

Download references

Acknowledgements

This research was supported by the Zhejiang Provincial Social Science Planning Project, “Mechanisms and Pathways for Empowering Classroom Teaching through Learning Spaces under the Strategy of High-Quality Education Development”, the 2022 National Social Science Foundation Education Youth Project “Research on the Strategy of Creating Learning Space Value and Empowering Classroom Teaching under the background of ‘Double Reduction’” (Grant No. CCA220319) and the National College Student Innovation and Entrepreneurship Training Program of China (Grant No. 202310337023).

Author information

Authors and affiliations.

College of Educational Science and Technology, Zhejiang University of Technology, Zhejiang, China

Chengliang Wang, Xiaojiao Chen, Yidan Liu & Yuhui Jing

Graduate School of Business, Universiti Sains Malaysia, Minden, Malaysia

Department of Management, The Chinese University of Hong Kong, Hong Kong, China

College of Humanities and Social Sciences, Beihang University, Beijing, China

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization: Y.J., C.W.; methodology, C.W.; software, C.W., Y.L.; writing-original draft preparation, C.W., Y.L.; writing-review and editing, T.Y., Y.L., C.W.; supervision, X.C., T.Y.; project administration, Y.J.; funding acquisition, X.C., Y.L. All authors read and approved the final manuscript. All authors have read and approved the re-submission of the manuscript.

Corresponding author

Correspondence to Yuhui Jing .

Ethics declarations

Ethical approval.

Ethical approval was not required as the study did not involve human participants.

Informed consent

Informed consent was not required as the study did not involve human participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Wang, C., Chen, X., Yu, T. et al. Education reform and change driven by digital technology: a bibliometric study from a global perspective. Humanit Soc Sci Commun 11 , 256 (2024). https://doi.org/10.1057/s41599-024-02717-y

Download citation

Received : 11 July 2023

Accepted : 17 January 2024

Published : 12 February 2024

DOI : https://doi.org/10.1057/s41599-024-02717-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

A meta-analysis of learners’ continuance intention toward online education platforms.

  • Chengliang Wang

Education and Information Technologies (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research paper education system

  • Open access
  • Published: 10 March 2020

Research and trends in STEM education: a systematic review of journal publications

  • Yeping Li 1 ,
  • Ke Wang 2 ,
  • Yu Xiao 1 &
  • Jeffrey E. Froyd 3  

International Journal of STEM Education volume  7 , Article number:  11 ( 2020 ) Cite this article

170k Accesses

160 Citations

5 Altmetric

Metrics details

With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments in STEM education scholarship. We examined those selected journal publications both quantitatively and qualitatively, including the number of articles published, journals in which the articles were published, authorship nationality, and research topic and methods over the years. The results show that research in STEM education is increasing in importance internationally and that the identity of STEM education journals is becoming clearer over time.

Introduction

A recent review of 144 publications in the International Journal of STEM Education ( IJ - STEM ) showed how scholarship in science, technology, engineering, and mathematics (STEM) education developed between August 2014 and the end of 2018 through the lens of one journal (Li, Froyd, & Wang, 2019 ). The review of articles published in only one journal over a short period of time prompted the need to review the status and trends in STEM education research internationally by analyzing articles published in a wider range of journals over a longer period of time.

With global recognition of the growing importance of STEM education, we have witnessed the urgent need to support research and scholarship in STEM education (Li, 2014 , 2018a ). Researchers and educators have responded to this on-going call and published their scholarly work through many different publication outlets including journals, books, and conference proceedings. A simple Google search with the term “STEM,” “STEM education,” or “STEM education research” all returned more than 450,000,000 items. Such voluminous information shows the rapidly evolving and vibrant field of STEM education and sheds light on the volume of STEM education research. In any field, it is important to know and understand the status and trends in scholarship for the field to develop and be appropriately supported. This applies to STEM education.

Conducting systematic reviews to explore the status and trends in specific disciplines is common in educational research. For example, researchers surveyed the historical development of research in mathematics education (Kilpatrick, 1992 ) and studied patterns in technology usage in mathematics education (Bray & Tangney, 2017 ; Sokolowski, Li, & Willson, 2015 ). In science education, Tsai and his colleagues have conducted a sequence of reviews of journal articles to synthesize research trends in every 5 years since 1998 (i.e., 1998–2002, 2003–2007, 2008–2012, and 2013–2017), based on publications in three main science education journals including, Science Education , the International Journal of Science Education , and the Journal of Research in Science Teaching (e.g., Lin, Lin, Potvin, & Tsai, 2019 ; Tsai & Wen, 2005 ). Erduran, Ozdem, and Park ( 2015 ) reviewed argumentation in science education research from 1998 to 2014 and Minner, Levy, and Century ( 2010 ) reviewed inquiry-based science instruction between 1984 and 2002. There are also many literature reviews and syntheses in engineering and technology education (e.g., Borrego, Foster, & Froyd, 2015 ; Xu, Williams, Gu, & Zhang, 2019 ). All of these reviews have been well received in different fields of traditional disciplinary education as they critically appraise and summarize the state-of-art of relevant research in a field in general or with a specific focus. Both types of reviews have been conducted with different methods for identifying, collecting, and analyzing relevant publications, and they differ in terms of review aim and topic scope, time period, and ways of literature selection. In this review, we systematically analyze journal publications in STEM education research to overview STEM education scholarship development broadly and globally.

The complexity and ambiguity of examining the status and trends in STEM education research

A review of research development in a field is relatively straight forward, when the field is mature and its scope can be well defined. Unlike discipline-based education research (DBER, National Research Council, 2012 ), STEM education is not a well-defined field. Conducting a comprehensive literature review of STEM education research require careful thought and clearly specified scope to tackle the complexity naturally associated with STEM education. In the following sub-sections, we provide some further discussion.

Diverse perspectives about STEM and STEM education

STEM education as explicated by the term does not have a long history. The interest in helping students learn across STEM fields can be traced back to the 1990s when the US National Science Foundation (NSF) formally included engineering and technology with science and mathematics in undergraduate and K-12 school education (e.g., National Science Foundation, 1998 ). It coined the acronym SMET (science, mathematics, engineering, and technology) that was subsequently used by other agencies including the US Congress (e.g., United States Congress House Committee on Science, 1998 ). NSF also coined the acronym STEM to replace SMET (e.g., Christenson, 2011 ; Chute, 2009 ) and it has become the acronym of choice. However, a consensus has not been reached on the disciplines included within STEM.

To clarify its intent, NSF published a list of approved fields it considered under the umbrella of STEM (see http://bit.ly/2Bk1Yp5 ). The list not only includes disciplines widely considered under the STEM tent (called “core” disciplines, such as physics, chemistry, and materials research), but also includes disciplines in psychology and social sciences (e.g., political science, economics). However, NSF’s list of STEM fields is inconsistent with other federal agencies. Gonzalez and Kuenzi ( 2012 ) noted that at least two US agencies, the Department of Homeland Security and Immigration and Customs Enforcement, use a narrower definition that excludes social sciences. Researchers also view integration across different disciplines of STEM differently using various terms such as, multidisciplinary, interdisciplinary, and transdisciplinary (Vasquez, Sneider, & Comer, 2013 ). These are only two examples of the ambiguity and complexity in describing and specifying what constitutes STEM.

Multiple perspectives about the meaning of STEM education adds further complexity to determining the extent to which scholarly activity can be categorized as STEM education. For example, STEM education can be viewed with a broad and inclusive perspective to include education in the individual disciplines of STEM, i.e., science education, technology education, engineering education, and mathematics education, as well as interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines (English, 2016 ; Li, 2014 ). On the other hand, STEM education can be viewed by others as referring only to interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines (Honey, Pearson, & Schweingruber, 2014 ; Johnson, Peters-Burton, & Moore, 2015 ; Kelley & Knowles, 2016 ; Li, 2018a ). These multiple perspectives allow scholars to publish articles in a vast array and diverse journals, as long as journals are willing to take the position as connected with STEM education. At the same time, however, the situation presents considerable challenges for researchers intending to locate, identify, and classify publications as STEM education research. To tackle such challenges, we tried to find out what we can learn from prior reviews related to STEM education.

Guidance from prior reviews related to STEM education

A search for reviews of STEM education research found multiple reviews that could suggest approaches for identifying publications (e.g., Brown, 2012 ; Henderson, Beach, & Finkelstein, 2011 ; Kim, Sinatra, & Seyranian, 2018 ; Margot & Kettler, 2019 ; Minichiello, Hood, & Harkness, 2018 ; Mizell & Brown, 2016 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ). The review conducted by Brown ( 2012 ) examined the research base of STEM education. He addressed the complexity and ambiguity by confining the review with publications in eight journals, two in each individual discipline, one academic research journal (e.g., the Journal of Research in Science Teaching ) and one practitioner journal (e.g., Science Teacher ). Journals were selected based on suggestions from some faculty members and K-12 teachers. Out of 1100 articles published in these eight journals from January 1, 2007, to October 1, 2010, Brown located 60 articles that authors self-identified as connected to STEM education. He found that the vast majority of these 60 articles focused on issues beyond an individual discipline and there was a research base forming for STEM education. In a follow-up study, Mizell and Brown ( 2016 ) reviewed articles published from January 2013 to October 2015 in the same eight journals plus two additional journals. Mizell and Brown used the same criteria to identify and include articles that authors self-identified as connected to STEM education, i.e., if the authors included STEM in the title or author-supplied keywords. In comparison to Brown’s findings, they found that many more STEM articles were published in a shorter time period and by scholars from many more different academic institutions. Taking together, both Brown ( 2012 ) and Mizell and Brown ( 2016 ) tended to suggest that STEM education mainly consists of interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines, but their approach consisted of selecting a limited number of individual discipline-based journals and then selecting articles that authors self-identified as connected to STEM education.

In contrast to reviews on STEM education, in general, other reviews focused on specific issues in STEM education (e.g., Henderson et al., 2011 ; Kim et al., 2018 ; Margot & Kettler, 2019 ; Minichiello et al., 2018 ; Schreffler, Vasquez III, Chini, & James, 2019 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ). For example, the review by Henderson et al. ( 2011 ) focused on instructional change in undergraduate STEM courses based on 191 conceptual and empirical journal articles published between 1995 and 2008. Margot and Kettler ( 2019 ) focused on what is known about teachers’ values, beliefs, perceived barriers, and needed support related to STEM education based on 25 empirical journal articles published between 2000 and 2016. The focus of these reviews allowed the researchers to limit the number of articles considered, and they typically used keyword searches of selected databases to identify articles on STEM education. Some researchers used this approach to identify publications from journals only (e.g., Henderson et al., 2011 ; Margot & Kettler, 2019 ; Schreffler et al., 2019 ), and others selected and reviewed publications beyond journals (e.g., Minichiello et al., 2018 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ).

The discussion in this section suggests possible reasons contributing to the absence of a general literature review of STEM education research and development: (1) diverse perspectives in existence about STEM and STEM education that contribute to the difficulty of specifying a scope of literature review, (2) its short but rapid development history in comparison to other discipline-based education (e.g., science education), and (3) difficulties in deciding how to establish the scope of the literature review. With respect to the third reason, prior reviews have used one of two approaches to identify and select articles: (a) identifying specific journals first and then searching and selecting specific articles from these journals (e.g., Brown, 2012 ; Erduran et al., 2015 ; Mizell & Brown, 2016 ) and (b) conducting selected database searches with keywords based on a specific focus (e.g., Margot & Kettler, 2019 ; Thibaut et al., 2018 ). However, neither the first approach of selecting a limited number of individual discipline-based journals nor the second approach of selecting a specific focus for the review leads to an approach that provides a general overview of STEM education scholarship development based on existing journal publications.

Current review

Two issues were identified in setting the scope for this review.

What time period should be considered?

What publications will be selected for review?

Time period

We start with the easy one first. As discussed above, the acronym STEM did exist until the early 2000s. Although the existence of the acronym does not generate scholarship on student learning in STEM disciplines, it is symbolic and helps focus attention to efforts in STEM education. Since we want to examine the status and trends in STEM education, it is reasonable to start with the year 2000. Then, we can use the acronym of STEM as an identifier in locating specific research articles in a way as done by others (e.g., Brown, 2012 ; Mizell & Brown, 2016 ). We chose the end of 2018 as the end of the time period for our review that began during 2019.

Focusing on publications beyond individual discipline-based journals

As mentioned before, scholars responded to the call for scholarship development in STEM education with publications that appeared in various outlets and diverse languages, including journals, books, and conference proceedings. However, journal publications are typically credited and valued as one of the most important outlets for research exchange (e.g., Erduran et al., 2015 ; Henderson et al., 2011 ; Lin et al., 2019 ; Xu et al., 2019 ). Thus, in this review, we will also focus on articles published in journals in English.

The discourse above on the complexity and ambiguity regarding STEM education suggests that scholars may publish their research in a wide range of journals beyond individual discipline-based journals. To search and select articles from a wide range of journals, we thought about the approach of searching selected databases with keywords as other scholars used in reviewing STEM education with a specific focus. However, existing journals in STEM education do not have a long history. In fact, IJ-STEM is the first journal in STEM education that has just been accepted into the Social Sciences Citation Index (SSCI) (Li, 2019a ). Publications in many STEM education journals are practically not available in several important and popular databases, such as the Web of Science and Scopus. Moreover, some journals in STEM education were not normalized due to a journal’s name change or irregular publication schedule. For example, the Journal of STEM Education was named as Journal of SMET Education when it started in 2000 in a print format, and the journal’s name was not changed until 2003, Vol 4 (3 and 4), and also went fully on-line starting 2004 (Raju & Sankar, 2003 ). A simple Google Scholar search with keywords will not be able to provide accurate information, unless you visit the journal’s website to check all publications over the years. Those added complexities prevented us from taking the database search as a viable approach. Thus, we decided to identify journals first and then search and select articles from these journals. Further details about the approach are provided in the “ Method ” section.

Research questions

Given a broader range of journals and a longer period of time to be covered in this review, we can examine some of the same questions as the IJ-STEM review (Li, Froyd, & Wang, 2019 ), but we do not have access to data on readership, articles accessed, or articles cited for the other journals selected for this review. Specifically, we are interested in addressing the following six research questions:

What were the status and trends in STEM education research from 2000 to the end of 2018 based on journal publications?

What were the patterns of publications in STEM education research across different journals?

Which countries or regions, based on the countries or regions in which authors were located, contributed to journal publications in STEM education?

What were the patterns of single-author and multiple-author publications in STEM education?

What main topics had emerged in STEM education research based on the journal publications?

What research methods did authors tend to use in conducting STEM education research?

Based on the above discussion, we developed the methods for this literature review to follow careful sequential steps to identify journals first and then identify and select STEM education research articles published in these journals from January 2000 to the end of 2018. The methods should allow us to obtain a comprehensive overview about the status and trends of STEM education research based on a systematic analysis of related publications from a broad range of journals and over a longer period of time.

Identifying journals

We used the following three steps to search and identify journals for inclusion:

We assumed articles on research in STEM education have been published in journals that involve more than one traditional discipline. Thus, we used Google to search and identify all education journals with their titles containing either two, three, or all four disciplines of STEM. For example, we did Google search of all the different combinations of three areas of science, mathematics, technology Footnote 1 , and engineering as contained in a journal’s title. In addition, we also searched possible journals containing the word STEAM in the title.

Since STEM education may be viewed as encompassing discipline-based education research, articles on STEM education research may have been published in traditional discipline-based education journals, such as the Journal of Research in Science Teaching . However, there are too many such journals. Yale’s Poorvu Center for Teaching and Learning has listed 16 journals that publish articles spanning across undergraduate STEM education disciplines (see https://poorvucenter.yale.edu/FacultyResources/STEMjournals ). Thus, we selected from the list some individual discipline-based education research journals, and also added a few more common ones such as the Journal of Engineering Education .

Since articles on research in STEM education have appeared in some general education research journals, especially those well-established ones. Thus, we identified and selected a few of those journals that we noticed some publications in STEM education research.

Following the above three steps, we identified 45 journals (see Table  1 ).

Identifying articles

In this review, we will not discuss or define the meaning of STEM education. We used the acronym STEM (or STEAM, or written as the phrase of “science, technology, engineering, and mathematics”) as a term in our search of publication titles and/or abstracts. To identify and select articles for review, we searched all items published in those 45 journals and selected only those articles that author(s) self-identified with the acronym STEM (or STEAM, or written as the phrase of “science, technology, engineering, and mathematics”) in the title and/or abstract. We excluded publications in the sections of practices, letters to editors, corrections, and (guest) editorials. Our search found 798 publications that authors self-identified as in STEM education, identified from 36 journals. The remaining 9 journals either did not have publications that met our search terms or published in another language other than English (see the two separate lists in Table 1 ).

Data analysis

To address research question 3, we analyzed authorship to examine which countries/regions contributed to STEM education research over the years. Because each publication may have either one or multiple authors, we used two different methods to analyze authorship nationality that have been recognized as valuable from our review of IJ-STEM publications (Li, Froyd, & Wang, 2019 ). The first method considers only the corresponding author’s (or the first author, if no specific indication is given about the corresponding author) nationality and his/her first institution affiliation, if multiple institution affiliations are listed. Method 2 considers every author of a publication, using the following formula (Howard, Cole, & Maxwell, 1987 ) to quantitatively assign and estimate each author’s contribution to a publication (and thus associated institution’s productivity), when multiple authors are included in a publication. As an example, each publication is given one credit point. For the publication co-authored by two, the first author would be given 0.6 and the second author 0.4 credit point. For an article contributed jointly by three authors, the three authors would be credited with scores of 0.47, 0.32, and 0.21, respectively.

After calculating all the scores for each author of each paper, we added all the credit scores together in terms of each author’s country/region. For brevity, we present only the top 10 countries/regions in terms of their total credit scores calculated using these two different methods, respectively.

To address research question 5, we used the same seven topic categories identified and used in our review of IJ-STEM publications (Li, Froyd, & Wang, 2019 ). We tested coding 100 articles first to ensure the feasibility. Through test-coding and discussions, we found seven topic categories could be used to examine and classify all 798 items.

K-12 teaching, teacher, and teacher education in STEM (including both pre-service and in-service teacher education)

Post-secondary teacher and teaching in STEM (including faculty development, etc.)

K-12 STEM learner, learning, and learning environment

Post-secondary STEM learner, learning, and learning environments (excluding pre-service teacher education)

Policy, curriculum, evaluation, and assessment in STEM (including literature review about a field in general)

Culture and social and gender issues in STEM education

History, epistemology, and perspectives about STEM and STEM education

To address research question 6, we coded all 798 publications in terms of (1) qualitative methods, (2) quantitative methods, (3) mixed methods, and (4) non-empirical studies (including theoretical or conceptual papers, and literature reviews). We assigned each publication to only one research topic and one method, following the process used in the IJ-STEM review (Li, Froyd, & Wang, 2019 ). When there was more than one topic or method that could have been used for a publication, a decision was made in choosing and assigning a topic or a method. The agreement between two coders for all 798 publications was 89.5%. When topic and method coding discrepancies occurred, a final decision was reached after discussion.

Results and discussion

In the following sections, we report findings as corresponding to each of the six research questions.

The status and trends of journal publications in STEM education research from 2000 to 2018

Figure  1 shows the number of publications per year. As Fig.  1 shows, the number of publications increased each year beginning in 2010. There are noticeable jumps from 2015 to 2016 and from 2017 to 2018. The result shows that research in STEM education had grown significantly since 2010, and the most recent large number of STEM education publications also suggests that STEM education research gained its own recognition by many different journals for publication as a hot and important topic area.

figure 1

The distribution of STEM education publications over the years

Among the 798 articles, there were 549 articles with the word “STEM” (or STEAM, or written with the phrase of “science, technology, engineering, and mathematics”) included in the article’s title or both title and abstract and 249 articles without such identifiers included in the title but abstract only. The results suggest that many scholars tended to include STEM in the publications’ titles to highlight their research in or about STEM education. Figure  2 shows the number of publications per year where publications are distinguished depending on whether they used the term STEM in the title or only in the abstract. The number of publications in both categories had significant increases since 2010. Use of the acronym STEM in the title was growing at a faster rate than using the acronym only in the abstract.

figure 2

The trends of STEM education publications with vs. without STEM included in the title

Not all the publications that used the acronym STEM in the title and/or abstract reported on a study involving all four STEM areas. For each publication, we further examined the number of the four areas involved in the reported study.

Figure  3 presents the number of publications categorized by the number of the four areas involved in the study, breaking down the distribution of these 798 publications in terms of the content scope being focused on. Studies involving all four STEM areas are the most numerous with 488 (61.2%) publications, followed by involving one area (141, 17.7%), then studies involving both STEM and non-STEM (84, 10.5%), and finally studies involving two or three areas of STEM (72, 9%; 13, 1.6%; respectively). Publications that used the acronym STEAM in either the title or abstract were classified as involving both STEM and non-STEM. For example, both of the following publications were included in this category.

Dika and D’Amico ( 2016 ). “Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors.” Journal of Research in Science Teaching , 53 (3), 368–383. (Note: this article focused on early experience in both STEM and Non-STEM majors.)

Sochacka, Guyotte, and Walther ( 2016 ). “Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the Arts) education.” Journal of Engineering Education , 105 (1), 15–42. (Note: this article focused on STEAM (both STEM and Arts).)

figure 3

Publication distribution in terms of content scope being focused on. (Note: 1=single subject of STEM, 2=two subjects of STEM, 3=three subjects of STEM, 4=four subjects of STEM, 5=topics related to both STEM and non-STEM)

Figure  4 presents the number of publications per year in each of the five categories described earlier (category 1, one area of STEM; category 2, two areas of STEM; category 3, three areas of STEM; category 4, four areas of STEM; category 5, STEM and non-STEM). The category that had grown most rapidly since 2010 is the one involving all four areas. Recent growth in the number of publications in category 1 likely reflected growing interest of traditional individual disciplinary based educators in developing and sharing multidisciplinary and interdisciplinary scholarship in STEM education, as what was noted recently by Li and Schoenfeld ( 2019 ) with publications in IJ-STEM.

figure 4

Publication distribution in terms of content scope being focused on over the years

Patterns of publications across different journals

Among the 36 journals that published STEM education articles, two are general education research journals (referred to as “subject-0”), 12 with their titles containing one discipline of STEM (“subject-1”), eight with journal’s titles covering two disciplines of STEM (“subject-2”), six covering three disciplines of STEM (“subject-3”), seven containing the word STEM (“subject-4”), and one in STEAM education (“subject-5”).

Table  2 shows that both subject-0 and subject-1 journals were usually mature journals with a long history, and they were all traditional subscription-based journals, except the Journal of Pre - College Engineering Education Research , a subject-1 journal established in 2011 that provided open access (OA). In comparison to subject-0 and subject-1 journals, subject-2 and subject-3 journals were relatively newer but still had quite many years of history on average. There are also some more journals in these two categories that provided OA. Subject-4 and subject-5 journals had a short history, and most provided OA. The results show that well-established journals had tended to focus on individual disciplines or education research in general. Multidisciplinary and interdisciplinary education journals were started some years later, followed by the recent establishment of several STEM or STEAM journals.

Table 2 also shows that subject-1, subject-2, and subject-4 journals published approximately a quarter each of the publications. The number of publications in subject-1 journals is interested, because we selected a relatively limited number of journals in this category. There are many other journals in the subject-1 category (as well as subject-0 journals) that we did not select, and thus it is very likely that we did not include some STEM education articles published in subject-0 or subject-1 journals that we did not include in our study.

Figure  5 shows the number of publications per year in each of the five categories described earlier (subject-0 through subject-5). The number of publications per year in subject-5 and subject-0 journals did not change much over the time period of the study. On the other hand, the number of publications per year in subject-4 (all 4 areas), subject-1 (single area), and subject-2 journals were all over 40 by the end of the study period. The number of publications per year in subject-3 journals increased but remained less than 30. At first sight, it may be a bit surprising that the number of publications in STEM education per year in subject-1 journals increased much faster than those in subject-2 journals over the past few years. However, as Table 2 indicates these journals had long been established with great reputations, and scholars would like to publish their research in such journals. In contrast to the trend in subject-1 journals, the trend in subject-4 journals suggests that STEM education journals collectively started to gain its own identity for publishing and sharing STEM education research.

figure 5

STEM education publication distribution across different journal categories over the years. (Note: 0=subject-0; 1=subject-1; 2=subject-2; 3=subject-3; 4=subject-4; 5=subject-5)

Figure  6 shows the number of STEM education publications in each journal where the bars are color-coded (yellow, subject-0; light blue, subject-1; green, subject-2; purple, subject-3; dark blue, subject-4; and black, subject-5). There is no clear pattern shown in terms of the overall number of STEM education publications across categories or journals, but very much individual journal-based performance. The result indicates that the number of STEM education publications might heavily rely on the individual journal’s willingness and capability of attracting STEM education research work and thus suggests the potential value of examining individual journal’s performance.

figure 6

Publication distribution across all 36 individual journals across different categories with the same color-coded for journals in the same subject category

The top five journals in terms of the number of STEM education publications are Journal of Science Education and Technology (80 publications, journal number 25 in Fig.  6 ), Journal of STEM Education (65 publications, journal number 26), International Journal of STEM Education (64 publications, journal number 17), International Journal of Engineering Education (54 publications, journal number 12), and School Science and Mathematics (41 publications, journal number 31). Among these five journals, two journals are specifically on STEM education (J26, J17), two on two subjects of STEM (J25, J31), and one on one subject of STEM (J12).

Figure  7 shows the number of STEM education publications per year in each of these top five journals. As expected, based on earlier trends, the number of publications per year increased over the study period. The largest increase was in the International Journal of STEM Education (J17) that was established in 2014. As the other four journals were all established in or before 2000, J17’s short history further suggests its outstanding performance in attracting and publishing STEM education articles since 2014 (Li, 2018b ; Li, Froyd, & Wang, 2019 ). The increase was consistent with the journal’s recognition as the first STEM education journal for inclusion in SSCI starting in 2019 (Li, 2019a ).

figure 7

Publication distribution of selected five journals over the years. (Note: J12: International Journal of Engineering Education; J17: International Journal of STEM Education; J25: Journal of Science Education and Technology; J26: Journal of STEM Education; J31: School Science and Mathematics)

Top 10 countries/regions where scholars contributed journal publications in STEM education

Table  3 shows top countries/regions in terms of the number of publications, where the country/region was established by the authorship using the two different methods presented above. About 75% (depending on the method) of contributions were made by authors from the USA, followed by Australia, Canada, Taiwan, and UK. Only Africa as a continent was not represented among the top 10 countries/regions. The results are relatively consistent with patterns reported in the IJ-STEM study (Li, Froyd, & Wang, 2019 )

Further examination of Table 3 reveals that the two methods provide not only fairly consistent results but also yield some differences. For example, Israel and Germany had more publication credit if only the corresponding author was considered, but South Korea and Turkey had more publication credit when co-authors were considered. The results in Table 3 show that each method has value when analyzing and comparing publications by country/region or institution based on authorship.

Recognizing that, as shown in Fig. 1 , the number of publications per year increased rapidly since 2010, Table  4 shows the number of publications by country/region over a 10-year period (2009–2018) and Table 5 shows the number of publications by country/region over a 5-year period (2014–2018). The ranks in Tables  3 , 4 , and 5 are fairly consistent, but that would be expected since the larger numbers of publications in STEM education had occurred in recent years. At the same time, it is interesting to note in Table 5 some changes over the recent several years with Malaysia, but not Israel, entering the top 10 list when either method was used to calculate author's credit.

Patterns of single-author and multiple-author publications in STEM education

Since STEM education differs from traditional individual disciplinary education, we are interested in determining how common joint co-authorship with collaborations was in STEM education articles. Figure  8 shows that joint co-authorship was very common among these 798 STEM education publications, with 83.7% publications with two or more co-authors. Publications with two, three, or at least five co-authors were highest, with 204, 181, and 157 publications, respectively.

figure 8

Number of publications with single or different joint authorship. (Note: 1=single author; 2=two co-authors; 3=three co-authors; 4=four co-authors; 5=five or more co-authors)

Figure  9 shows the number of publications per year using the joint authorship categories in Fig.  8 . Each category shows an increase consistent with the increase shown in Fig. 1 for all 798 publications. By the end of the time period, the number of publications with two, three, or at least five co-authors was the largest, which might suggest an increase in collaborations in STEM education research.

figure 9

Publication distribution with single or different joint authorship over the years. (Note: 1=single author; 2=two co-authors; 3=three co-authors; 4=four co-authors; 5=five or more co-authors)

Co-authors can be from the same or different countries/regions. Figure  10 shows the number of publications per year by single authors (no collaboration), co-authors from the same country (collaboration in a country/region), and co-authors from different countries (collaboration across countries/regions). Each year the largest number of publications was by co-authors from the same country, and the number increased dramatically during the period of the study. Although the number of publications in the other two categories increased, the numbers of publications were noticeably fewer than the number of publications by co-authors from the same country.

figure 10

Publication distribution in authorship across different categories in terms of collaboration over the years

Published articles by research topics

Figure  11 shows the number of publications in each of the seven topic categories. The topic category of goals, policy, curriculum, evaluation, and assessment had almost half of publications (375, 47%). Literature reviews were included in this topic category, as providing an overview assessment of education and research development in a topic area or a field. Sample publications included in this category are listed as follows:

DeCoito ( 2016 ). “STEM education in Canada: A knowledge synthesis.” Canadian Journal of Science , Mathematics and Technology Education , 16 (2), 114–128. (Note: this article provides a national overview of STEM initiatives and programs, including success, criteria for effective programs and current research in STEM education.)

Ring-Whalen, Dare, Roehrig, Titu, and Crotty ( 2018 ). “From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units.” International Journal of Education in Mathematics Science and Technology , 6 (4), 343–362. (Note: this article investigates the conceptions of integrated STEM education held by in-service science teachers through the use of photo-elicitation interviews and examines how those conceptions were reflected in teacher-created integrated STEM curricula.)

Schwab et al. ( 2018 ). “A summer STEM outreach program run by graduate students: Successes, challenges, and recommendations for implementation.” Journal of Research in STEM Education , 4 (2), 117–129. (Note: the article details the organization and scope of the Foundation in Science and Mathematics Program and evaluates this program.)

figure 11

Frequencies of publications’ research topic distributions. (Note: 1=K-12 teaching, teacher and teacher education; 2=Post-secondary teacher and teaching; 3=K-12 STEM learner, learning, and learning environment; 4=Post-secondary STEM learner, learning, and learning environments; 5=Goals and policy, curriculum, evaluation, and assessment (including literature review); 6=Culture, social, and gender issues; 7=History, philosophy, Epistemology, and nature of STEM and STEM education)

The topic with the second most publications was “K-12 teaching, teacher and teacher education” (103, 12.9%), followed closely by “K-12 learner, learning, and learning environment” (97, 12.2%). The results likely suggest the research community had a broad interest in both teaching and learning in K-12 STEM education. The top three topics were the same in the IJ-STEM review (Li, Froyd, & Wang, 2019 ).

Figure  11 also shows there was a virtual tie between two topics with the fourth most cumulative publications, “post-secondary STEM learner & learning” (76, 9.5%) and “culture, social, and gender issues in STEM” (78, 9.8%), such as STEM identity, students’ career choices in STEM, and inclusion. This result is different from the IJ-STEM review (Li, Froyd, & Wang, 2019 ), where “post-secondary STEM teacher & teaching” and “post-secondary STEM learner & learning” were tied as the fourth most common topics. This difference is likely due to the scope of journals and the length of the time period being reviewed.

Figure  12 shows the number of publications per year in each topic category. As expected from the results in Fig.  11 the number of publications in topic category 5 (goals, policy, curriculum, evaluation, and assessment) was the largest each year. The numbers of publications in topic category 3 (K-12 learner, learning, and learning environment), 1 (K-12 teaching, teacher, and teacher education), 6 (culture, social, and gender issues in STEM), and 4 (post-secondary STEM learner and learning) were also increasing. Although Fig.  11 shows the number of publications in topic category 1 was slightly more than the number of publications in topic category 3 (see Fig.  11 ), the number of publications in topic category 3 was increasing more rapidly in recent years than its counterpart in topic category 1. This may suggest a more rapidly growing interest in K-12 STEM learner, learning, and learning environment. The numbers of publications in topic categories 2 and 7 were not increasing, but the number of publications in IJ-STEM in topic category 2 was notable (Li, Froyd, & Wang, 2019 ). It will be interesting to follow trends in the seven topic categories in the future.

figure 12

Publication distributions in terms of research topics over the years

Published articles by research methods

Figure  13 shows the number of publications per year by research methods in empirical studies. Publications with non-empirical studies are shown in a separate category. Although the number of publications in each of the four categories increased during the study period, there were many more publications presenting empirical studies than those without. For those with empirical studies, the number of publications using quantitative methods increased most rapidly in recent years, followed by qualitative and then mixed methods. Although there were quite many publications with non-empirical studies (e.g., theoretical or conceptual papers, literature reviews) during the study period, the increase of the number of publications in this category was noticeably less than empirical studies.

figure 13

Publication distributions in terms of research methods over the years. (Note: 1=qualitative, 2=quantitative, 3=mixed, 4=Non-empirical)

Concluding remarks

The systematic analysis of publications that were considered to be in STEM education in 36 selected journals shows tremendous growth in scholarship in this field from 2000 to 2018, especially over the past 10 years. Our analysis indicates that STEM education research has been increasingly recognized as an important topic area and studies were being published across many different journals. Scholars still hold diverse perspectives about how research is designated as STEM education; however, authors have been increasingly distinguishing their articles with STEM, STEAM, or related words in the titles, abstracts, and lists of keywords during the past 10 years. Moreover, our systematic analysis shows a dramatic increase in the number of publications in STEM education journals in recent years, which indicates that these journals have been collectively developing their own professional identity. In addition, the International Journal of STEM Education has become the first STEM education journal to be accepted in SSCI in 2019 (Li, 2019a ). The achievement may mark an important milestone as STEM education journals develop their own identity for publishing and sharing STEM education research.

Consistent with our previous reviews (Li, Froyd, & Wang, 2019 ; Li, Wang, & Xiao, 2019 ), the vast majority of publications in STEM education research were contributed by authors from the USA, where STEM and STEAM education originated, followed by Australia, Canada, and Taiwan. At the same time, authors in some countries/regions in Asia were becoming very active in the field over the past several years. This trend is consistent with findings from the IJ-STEM review (Li, Froyd, & Wang, 2019 ). We certainly hope that STEM education scholarship continues its development across all five continents to support educational initiatives and programs in STEM worldwide.

Our analysis has shown that collaboration, as indicated by publications with multiple authors, has been very common among STEM education scholars, as that is often how STEM education distinguishes itself from the traditional individual disciplinary based education. Currently, most collaborations occurred among authors from the same country/region, although collaborations across cross-countries/regions were slowly increasing.

With the rapid changes in STEM education internationally (Li, 2019b ), it is often difficult for researchers to get an overall sense about possible hot topics in STEM education especially when STEM education publications appeared in a vast array of journals across different fields. Our systematic analysis of publications has shown that studies in the topic category of goals, policy, curriculum, evaluation, and assessment have been the most prevalent, by far. Our analysis also suggests that the research community had a broad interest in both teaching and learning in K-12 STEM education. These top three topic categories are the same as in the IJ-STEM review (Li, Froyd, & Wang, 2019 ). Work in STEM education will continue to evolve and it will be interesting to review the trends in another 5 years.

Encouraged by our recent IJ-STEM review, we began this review with an ambitious goal to provide an overview of the status and trends of STEM education research. In a way, this systematic review allowed us to achieve our initial goal with a larger scope of journal selection over a much longer period of publication time. At the same time, there are still limitations, such as the decision to limit the number of journals from which we would identify publications for analysis. We understand that there are many publications on STEM education research that were not included in our review. Also, we only identified publications in journals. Although this is one of the most important outlets for scholars to share their research work, future reviews could examine publications on STEM education research in other venues such as books, conference proceedings, and grant proposals.

Availability of data and materials

The data and materials used and analyzed for the report are publicly available at the various journal websites.

Journals containing the word "computers" or "ICT" appeared automatically when searching with the word "technology". Thus, the word of "computers" or "ICT" was taken as equivalent to "technology" if appeared in a journal's name.

Abbreviations

Information and Communications Technology

International Journal of STEM Education

Kindergarten–Grade 12

Science, Mathematics, Engineering, and Technology

Science, Technology, Engineering, Arts, and Mathematics

Science, Technology, Engineering, and Mathematics

Borrego, M., Foster, M. J., & Froyd, J. E. (2015). What is the state of the art of systematic review in engineering education? Journal of Engineering Education, 104 (2), 212–242. https://doi.org/10.1002/jee.20069 .

Article   Google Scholar  

Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research – a systematic review of recent trends. Computers & Education, 114 , 255–273.

Brown, J. (2012). The current status of STEM education research. Journal of STEM Education: Innovations & Research, 13 (5), 7–11.

Google Scholar  

Christenson, J. (2011). Ramaley coined STEM term now used nationwide . Winona Daily News Retrieved from http://www.winonadailynews.com/news/local/article_457afe3e-0db3-11e1-abe0-001cc4c03286.html Accessed on 16 Jan 2018.

Chute, E. (2009). STEM education is branching out . Pittsburgh Post-Gazette Feb 9, 2009. https://www.post-gazette.com/news/education/2009/02/10/STEM-education-is-branching-out/stories/200902100165 Accessed on 2 Jan 2020.

DeCoito, I. (2016). STEM education in Canada: A knowledge synthesis. Canadian Journal of Science, Mathematics and Technology Education, 16 (2), 114–128.

Dika, S. L., & D'Amico, M. M. (2016). Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors. Journal of Research in Science Teaching, 53 (3), 368–383.

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3 , 3. https://doi.org/10.1186/s4059%204-016-0036-1 .

Erduran, S., Ozdem, Y., & Park, J.-Y. (2015). Research trends on argumentation in science education: A journal content analysis from 1998-2014. International Journal of STEM Education, 2 , 5. https://doi.org/10.1186/s40594-015-0020-1 .

Gonzalez, H. B. & Kuenzi, J. J. (2012). Science, technology, engineering, and mathematics (STEM) education: A primer. CRS report for congress, R42642, https://fas.org/sgp/crs/misc/R42642.pdf Accessed on 2 Jan 2020.

Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 48 (8), 952–984.

Honey, M., Pearson, G., & Schweingruber, A. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research . Washington: National Academies Press.

Howard, G. S., Cole, D. A., & Maxwell, S. E. (1987). Research productivity in psychology based on publication in the journals of the American Psychological Association. American Psychologist, 42 (11), 975–986.

Johnson, C. C., Peters-Burton, E. E., & Moore, T. J. (2015). STEM roadmap: A framework for integration . London: Taylor & Francis.

Book   Google Scholar  

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3 , 11. https://doi.org/10.1186/s40594-016-0046-z .

Kilpatrick, J. (1992). A history of research in mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 3–38). New York: Macmillan.

Kim, A. Y., Sinatra, G. M., & Seyranian, V. (2018). Developing a STEM identity among young women: A social identity perspective. Review of Educational Research, 88 (4), 589–625.

Li, Y. (2014). International journal of STEM education – a platform to promote STEM education and research worldwide. International Journal of STEM Education, 1 , 1. https://doi.org/10.1186/2196-7822-1-1 .

Li, Y. (2018a). Journal for STEM education research – promoting the development of interdisciplinary research in STEM education. Journal for STEM Education Research, 1 (1–2), 1–6. https://doi.org/10.1007/s41979-018-0009-z .

Li, Y. (2018b). Four years of development as a gathering place for international researchers and readers in STEM education. International Journal of STEM Education, 5 , 54. https://doi.org/10.1186/s40594-018-0153-0 .

Li, Y. (2019a). Five years of development in pursuing excellence in quality and global impact to become the first journal in STEM education covered in SSCI. International Journal of STEM Education, 6 , 42. https://doi.org/10.1186/s40594-019-0198-8 .

Li, Y. (2019b). STEM education research and development as a rapidly evolving and international field. 数学教育学报(Journal of Mathematics Education), 28 (3), 42–44.

Li, Y., Froyd, J. E., & Wang, K. (2019). Learning about research and readership development in STEM education: A systematic analysis of the journal’s publications from 2014 to 2018. International Journal of STEM Education, 6 , 19. https://doi.org/10.1186/s40594-019-0176-1 .

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as ‘given’ in STEM education. International Journal of STEM Education, 6 , 44. https://doi.org/10.1186/s40594-019-0197-9 .

Li, Y., Wang, K., & Xiao, Y. (2019). Exploring the status and development trends of STEM education research: A review of research articles in selected journals published between 2000 and 2018. 数学教育学报(Journal of Mathematics Education), 28 (3), 45–52.

Lin, T.-J., Lin, T.-C., Potvin, P., & Tsai, C.-C. (2019). Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. International Journal of Science Education, 41 (3), 367–387.

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM Education, 6 , 2. https://doi.org/10.1186/s40594-018-0151-2 .

Minichiello, A., Hood, J. R., & Harkness, D. S. (2018). Bring user experience design to bear on STEM education: A narrative literature review. Journal for STEM Education Research, 1 (1–2), 7–33.

Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction – what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47 (4), 474–496.

Mizell, S., & Brown, S. (2016). The current status of STEM education research 2013-2015. Journal of STEM Education: Innovations & Research, 17 (4), 52–56.

National Research Council. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering . Washington DC: National Academies Press.

National Science Foundation (1998). Information technology: Its impact on undergraduate education in science, mathematics, engineering, and technology. (NSF 98–82), April 18–20, 1996. http://www.nsf.gov/cgi-bin/getpub?nsf9882 Accessed 16 Jan 2018.

Raju, P. K., & Sankar, C. S. (2003). Editorial. Journal of STEM Education: Innovations & Research, 4 (3&4), 2.

Ring-Whalen, E., Dare, E., Roehrig, G., Titu, P., & Crotty, E. (2018). From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units. International Journal of Education in Mathematics, Science and Technology, 6 (4), 343–362.

Schreffler, J., Vasquez III, E., Chini, J., & James, W. (2019). Universal design for learning in postsecondary STEM education for students with disabilities: A systematic literature review. International Journal of STEM Education, 6 , 8. https://doi.org/10.1186/s40594-019-0161-8 .

Schwab, D. B., Cole, L. W., Desai, K. M., Hemann, J., Hummels, K. R., & Maltese, A. V. (2018). A summer STEM outreach program run by graduate students: Successes, challenges, and recommendations for implementation. Journal of Research in STEM Education, 4 (2), 117–129.

Sochacka, N. W., Guyotte, K. W., & Walther, J. (2016). Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the Arts) education. Journal of Engineering Education, 105 (1), 15–42.

Sokolowski, A., Li, Y., & Willson, V. (2015). The effects of using exploratory computerized environments in grades 1 to 8 mathematics: A meta-analysis of research. International Journal of STEM Education, 2 , 8. https://doi.org/10.1186/s40594-015-0022-z .

Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., Pauw, J. B., Dehaene, W., Deprez, J., De Cock, M., Hellinckx, L., Knipprath, H., Langie, G., Struyven, K., Van de Velde, D., Van Petegem, P., & Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3 (1), 2.

Tsai, C. C., & Wen, L. M. C. (2005). Research and trends in science education from 1998 to 2002: A content analysis of publication in selected journals. International Journal of Science Education, 27 (1), 3–14.

United States Congress House Committee on Science. (1998). The state of science, math, engineering, and technology (SMET) education in America, parts I-IV, including the results of the Third International Mathematics and Science Study (TIMSS): hearings before the Committee on Science, U.S. House of Representatives, One Hundred Fifth Congress, first session, July 23, September 24, October 8 and 29, 1997. Washington: U.S. G.P.O.

Vasquez, J., Sneider, C., & Comer, M. (2013). STEM lesson essentials, grades 3–8: Integrating science, technology, engineering, and mathematics . Portsmouth, NH: Heinemann.

Wu, S. P. W., & Rau, M. A. (2019). How students learn content in science, technology, engineering, and mathematics (STEM) through drawing activities. Educational Psychology Review . https://doi.org/10.1007/s10648-019-09467-3 .

Xu, M., Williams, P. J., Gu, J., & Zhang, H. (2019). Hotspots and trends of technology education in the International Journal of Technology and Design Education: 2000-2018. International Journal of Technology and Design Education . https://doi.org/10.1007/s10798-019-09508-6 .

Download references

Not applicable

Author information

Authors and affiliations.

Texas A&M University, College Station, TX, 77843-4232, USA

Yeping Li & Yu Xiao

Nicholls State University, Thibodaux, LA, 70310, USA

Ohio State University, Columbus, OH, 43210, USA

Jeffrey E. Froyd

You can also search for this author in PubMed   Google Scholar

Contributions

YL conceptualized the study and drafted the manuscript. KW and YX contributed with data collection, coding, and analyses. JEF reviewed drafts and contributed to manuscript revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yeping Li .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Li, Y., Wang, K., Xiao, Y. et al. Research and trends in STEM education: a systematic review of journal publications. IJ STEM Ed 7 , 11 (2020). https://doi.org/10.1186/s40594-020-00207-6

Download citation

Received : 10 February 2020

Accepted : 12 February 2020

Published : 10 March 2020

DOI : https://doi.org/10.1186/s40594-020-00207-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Journal publication
  • Literature review
  • STEM education research

research paper education system

Transforming education systems: Why, what, and how

  • Download the full policy brief
  • Download the executive summary
  • Baixe o resumo executivo
  • Baixar o resumo da política

تنزيل موجز السياسة

تنزيل الملخص التنفيذي

  • Descargar el PDF en Español
  • Descargar el resumen de políticas

Subscribe to the Center for Universal Education Bulletin

Rebecca winthrop and rebecca winthrop director - center for universal education , senior fellow - global economy and development @rebeccawinthrop the hon. minister david sengeh the hon. minister david sengeh minister of education and chief innovation officer - government of sierra leone, chief innovation officer - directorate of science, technology and innovation in sierra leone @dsengeh.

June 23, 2022

Today, the topic of education system transformation is front of mind for many leaders. Ministers of education around the world are seeking to build back better as they emerge from COVID-19-school closures to a new normal of living with a pandemic. The U.N. secretary general is convening the Transforming Education Summit (TES) at this year’s general assembly meeting (United Nations, n.d.). Students around the world continue to demand transformation on climate and not finding voice to do this through their schools are regularly leaving class to test out their civic action skills.      

It is with this moment in mind that we have developed this shared vision of education system transformation. Collectively we offer insights on transformation from the perspective of a global think tank and a national government: the Center for Universal Education (CUE) at Brookings brings years of global research on education change and transformation, and the Ministry of Education of Sierra Leone brings on-the-ground lessons from designing and implementing system-wide educational rebuilding.   

This brief is for any education leader or stakeholder who is interested in charting a transformation journey in their country or education jurisdiction such as a state or district. It is also for civil society organizations, funders, researchers, and anyone interested in the topic of national development through education. In it, we answer the following three questions and argue for a participatory approach to transformation:  

  • Why is education system transformation urgent now? We argue that the world is at an inflection point. Climate change, the changing nature of work, increasing conflict and authoritarianism together with the urgency of COVID recovery has made the transformation agenda more critical than ever. 
  • What is education system transformation? We argue that education system transformation must entail a fresh review of the goals of your system – are they meeting the moment that we are in, are they tackling inequality and building resilience for a changing world, are they fully context aware, are they owned broadly across society – and then fundamentally positioning all components of your education system to coherently contribute to this shared purpose.  
  • How can education system transformation advance in your country or jurisdiction? We argue that three steps are crucial: Purpose (developing a broadly shared vision and purpose), Pedagogy (redesigning the pedagogical core), and Position (positioning and aligning all components of the system to support the pedagogical core and purpose). Deep engagement of educators, families, communities, students, ministry staff, and partners is essential across each of these “3 P” steps.    

Related Content

Rebecca Winthrop, Adam Barton, Mahsa Ershadi, Lauren Ziegler

September 30, 2021

Jenny Perlman Robinson, Molly Curtiss Wyss, Patrick Hannahan

July 7, 2021

Emiliana Vegas, Rebecca Winthrop

September 8, 2020

Our aim is not to provide “the answer” — we are also on a journey and continually learning about what it takes to transform systems — but to help others interested in pursuing system transformation benefit from our collective reflections to date. The goal is to complement and put in perspective — not replace — detailed guidance from other actors on education sector on system strengthening, reform, and redesign. In essence, we want to broaden the conversation and debate.

Download the full policy brief»

Download the executive summary»

Baixe o resumo executivo»

Baixar o resumo da política»

Descargar el PDF en Español»

Descargar el resumen de políticas»

Global Education

Global Economy and Development

Center for Universal Education

Emily Markovich Morris, Laura Nóra, Richaa Hoysala, Max Lieblich, Sophie Partington, Rebecca Winthrop

May 31, 2024

Online only

9:30 am - 11:00 am EDT

The Brookings Institution, Washington DC

8:30 am - 4:30 pm EDT

  • Our Mission

Illustration concept of people solving research problems and puzzles

The 10 Most Significant Education Studies of 2021

From reframing our notion of “good” schools to mining the magic of expert teachers, here’s a curated list of must-read research from 2021.

It was a year of unprecedented hardship for teachers and school leaders. We pored through hundreds of studies to see if we could follow the trail of exactly what happened: The research revealed a complex portrait of a grueling year during which persistent issues of burnout and mental and physical health impacted millions of educators. Meanwhile, many of the old debates continued: Does paper beat digital? Is project-based learning as effective as direct instruction? How do you define what a “good” school is?

Other studies grabbed our attention, and in a few cases, made headlines. Researchers from the University of Chicago and Columbia University turned artificial intelligence loose on some 1,130 award-winning children’s books in search of invisible patterns of bias. (Spoiler alert: They found some.) Another study revealed why many parents are reluctant to support social and emotional learning in schools—and provided hints about how educators can flip the script.

1. What Parents Fear About SEL (and How to Change Their Minds)

When researchers at the Fordham Institute asked parents to rank phrases associated with social and emotional learning , nothing seemed to add up. The term “social-emotional learning” was very unpopular; parents wanted to steer their kids clear of it. But when the researchers added a simple clause, forming a new phrase—”social-emotional & academic learning”—the program shot all the way up to No. 2 in the rankings.

What gives?

Parents were picking up subtle cues in the list of SEL-related terms that irked or worried them, the researchers suggest. Phrases like “soft skills” and “growth mindset” felt “nebulous” and devoid of academic content. For some, the language felt suspiciously like “code for liberal indoctrination.”

But the study suggests that parents might need the simplest of reassurances to break through the political noise. Removing the jargon, focusing on productive phrases like “life skills,” and relentlessly connecting SEL to academic progress puts parents at ease—and seems to save social and emotional learning in the process.

2. The Secret Management Techniques of Expert Teachers

In the hands of experienced teachers, classroom management can seem almost invisible: Subtle techniques are quietly at work behind the scenes, with students falling into orderly routines and engaging in rigorous academic tasks almost as if by magic. 

That’s no accident, according to new research . While outbursts are inevitable in school settings, expert teachers seed their classrooms with proactive, relationship-building strategies that often prevent misbehavior before it erupts. They also approach discipline more holistically than their less-experienced counterparts, consistently reframing misbehavior in the broader context of how lessons can be more engaging, or how clearly they communicate expectations.

Focusing on the underlying dynamics of classroom behavior—and not on surface-level disruptions—means that expert teachers often look the other way at all the right times, too. Rather than rise to the bait of a minor breach in etiquette, a common mistake of new teachers, they tend to play the long game, asking questions about the origins of misbehavior, deftly navigating the terrain between discipline and student autonomy, and opting to confront misconduct privately when possible.

3. The Surprising Power of Pretesting

Asking students to take a practice test before they’ve even encountered the material may seem like a waste of time—after all, they’d just be guessing.

But new research concludes that the approach, called pretesting, is actually more effective than other typical study strategies. Surprisingly, pretesting even beat out taking practice tests after learning the material, a proven strategy endorsed by cognitive scientists and educators alike. In the study, students who took a practice test before learning the material outperformed their peers who studied more traditionally by 49 percent on a follow-up test, while outperforming students who took practice tests after studying the material by 27 percent.

The researchers hypothesize that the “generation of errors” was a key to the strategy’s success, spurring student curiosity and priming them to “search for the correct answers” when they finally explored the new material—and adding grist to a 2018 study that found that making educated guesses helped students connect background knowledge to new material.

Learning is more durable when students do the hard work of correcting misconceptions, the research suggests, reminding us yet again that being wrong is an important milestone on the road to being right.

4. Confronting an Old Myth About Immigrant Students

Immigrant students are sometimes portrayed as a costly expense to the education system, but new research is systematically dismantling that myth.

In a 2021 study , researchers analyzed over 1.3 million academic and birth records for students in Florida communities, and concluded that the presence of immigrant students actually has “a positive effect on the academic achievement of U.S.-born students,” raising test scores as the size of the immigrant school population increases. The benefits were especially powerful for low-income students.

While immigrants initially “face challenges in assimilation that may require additional school resources,” the researchers concluded, hard work and resilience may allow them to excel and thus “positively affect exposed U.S.-born students’ attitudes and behavior.” But according to teacher Larry Ferlazzo, the improvements might stem from the fact that having English language learners in classes improves pedagogy , pushing teachers to consider “issues like prior knowledge, scaffolding, and maximizing accessibility.”

5. A Fuller Picture of What a ‘Good’ School Is

It’s time to rethink our definition of what a “good school” is, researchers assert in a study published in late 2020.⁣ That’s because typical measures of school quality like test scores often provide an incomplete and misleading picture, the researchers found.

The study looked at over 150,000 ninth-grade students who attended Chicago public schools and concluded that emphasizing the social and emotional dimensions of learning—relationship-building, a sense of belonging, and resilience, for example—improves high school graduation and college matriculation rates for both high- and low-income students, beating out schools that focus primarily on improving test scores.⁣

“Schools that promote socio-emotional development actually have a really big positive impact on kids,” said lead researcher C. Kirabo Jackson in an interview with Edutopia . “And these impacts are particularly large for vulnerable student populations who don’t tend to do very well in the education system.”

The findings reinforce the importance of a holistic approach to measuring student progress, and are a reminder that schools—and teachers—can influence students in ways that are difficult to measure, and may only materialize well into the future.⁣

6. Teaching Is Learning

One of the best ways to learn a concept is to teach it to someone else. But do you actually have to step into the shoes of a teacher, or does the mere expectation of teaching do the trick?

In a 2021 study , researchers split students into two groups and gave them each a science passage about the Doppler effect—a phenomenon associated with sound and light waves that explains the gradual change in tone and pitch as a car races off into the distance, for example. One group studied the text as preparation for a test; the other was told that they’d be teaching the material to another student.

The researchers never carried out the second half of the activity—students read the passages but never taught the lesson. All of the participants were then tested on their factual recall of the Doppler effect, and their ability to draw deeper conclusions from the reading.

The upshot? Students who prepared to teach outperformed their counterparts in both duration and depth of learning, scoring 9 percent higher on factual recall a week after the lessons concluded, and 24 percent higher on their ability to make inferences. The research suggests that asking students to prepare to teach something—or encouraging them to think “could I teach this to someone else?”—can significantly alter their learning trajectories.

7. A Disturbing Strain of Bias in Kids’ Books

Some of the most popular and well-regarded children’s books—Caldecott and Newbery honorees among them—persistently depict Black, Asian, and Hispanic characters with lighter skin, according to new research .

Using artificial intelligence, researchers combed through 1,130 children’s books written in the last century, comparing two sets of diverse children’s books—one a collection of popular books that garnered major literary awards, the other favored by identity-based awards. The software analyzed data on skin tone, race, age, and gender.

Among the findings: While more characters with darker skin color begin to appear over time, the most popular books—those most frequently checked out of libraries and lining classroom bookshelves—continue to depict people of color in lighter skin tones. More insidiously, when adult characters are “moral or upstanding,” their skin color tends to appear lighter, the study’s lead author, Anjali Aduki,  told The 74 , with some books converting “Martin Luther King Jr.’s chocolate complexion to a light brown or beige.” Female characters, meanwhile, are often seen but not heard.

Cultural representations are a reflection of our values, the researchers conclude: “Inequality in representation, therefore, constitutes an explicit statement of inequality of value.”

8. The Never-Ending ‘Paper Versus Digital’ War

The argument goes like this: Digital screens turn reading into a cold and impersonal task; they’re good for information foraging, and not much more. “Real” books, meanwhile, have a heft and “tactility”  that make them intimate, enchanting—and irreplaceable.

But researchers have often found weak or equivocal evidence for the superiority of reading on paper. While a recent study concluded that paper books yielded better comprehension than e-books when many of the digital tools had been removed, the effect sizes were small. A 2021 meta-analysis further muddies the water: When digital and paper books are “mostly similar,” kids comprehend the print version more readily—but when enhancements like motion and sound “target the story content,” e-books generally have the edge.

Nostalgia is a force that every new technology must eventually confront. There’s plenty of evidence that writing with pen and paper encodes learning more deeply than typing. But new digital book formats come preloaded with powerful tools that allow readers to annotate, look up words, answer embedded questions, and share their thinking with other readers.

We may not be ready to admit it, but these are precisely the kinds of activities that drive deeper engagement, enhance comprehension, and leave us with a lasting memory of what we’ve read. The future of e-reading, despite the naysayers, remains promising.

9. New Research Makes a Powerful Case for PBL

Many classrooms today still look like they did 100 years ago, when students were preparing for factory jobs. But the world’s moved on: Modern careers demand a more sophisticated set of skills—collaboration, advanced problem-solving, and creativity, for example—and those can be difficult to teach in classrooms that rarely give students the time and space to develop those competencies.

Project-based learning (PBL) would seem like an ideal solution. But critics say PBL places too much responsibility on novice learners, ignoring the evidence about the effectiveness of direct instruction and ultimately undermining subject fluency. Advocates counter that student-centered learning and direct instruction can and should coexist in classrooms.

Now two new large-scale studies —encompassing over 6,000 students in 114 diverse schools across the nation—provide evidence that a well-structured, project-based approach boosts learning for a wide range of students.

In the studies, which were funded by Lucas Education Research, a sister division of Edutopia , elementary and high school students engaged in challenging projects that had them designing water systems for local farms, or creating toys using simple household objects to learn about gravity, friction, and force. Subsequent testing revealed notable learning gains—well above those experienced by students in traditional classrooms—and those gains seemed to raise all boats, persisting across socioeconomic class, race, and reading levels.

10. Tracking a Tumultuous Year for Teachers

The Covid-19 pandemic cast a long shadow over the lives of educators in 2021, according to a year’s worth of research.

The average teacher’s workload suddenly “spiked last spring,” wrote the Center for Reinventing Public Education in its January 2021 report, and then—in defiance of the laws of motion—simply never let up. By the fall, a RAND study recorded an astonishing shift in work habits: 24 percent of teachers reported that they were working 56 hours or more per week, compared to 5 percent pre-pandemic.

The vaccine was the promised land, but when it arrived nothing seemed to change. In an April 2021 survey  conducted four months after the first vaccine was administered in New York City, 92 percent of teachers said their jobs were more stressful than prior to the pandemic, up from 81 percent in an earlier survey.

It wasn’t just the length of the work days; a close look at the research reveals that the school system’s failure to adjust expectations was ruinous. It seemed to start with the obligations of hybrid teaching, which surfaced in Edutopia ’s coverage of overseas school reopenings. In June 2020, well before many U.S. schools reopened, we reported that hybrid teaching was an emerging problem internationally, and warned that if the “model is to work well for any period of time,” schools must “recognize and seek to reduce the workload for teachers.” Almost eight months later, a 2021 RAND study identified hybrid teaching as a primary source of teacher stress in the U.S., easily outpacing factors like the health of a high-risk loved one.

New and ever-increasing demands for tech solutions put teachers on a knife’s edge. In several important 2021 studies, researchers concluded that teachers were being pushed to adopt new technology without the “resources and equipment necessary for its correct didactic use.” Consequently, they were spending more than 20 hours a week adapting lessons for online use, and experiencing an unprecedented erosion of the boundaries between their work and home lives, leading to an unsustainable “always on” mentality. When it seemed like nothing more could be piled on—when all of the lights were blinking red—the federal government restarted standardized testing .

Change will be hard; many of the pathologies that exist in the system now predate the pandemic. But creating strict school policies that separate work from rest, eliminating the adoption of new tech tools without proper supports, distributing surveys regularly to gauge teacher well-being, and above all listening to educators to identify and confront emerging problems might be a good place to start, if the research can be believed.

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Modular, scalable hardware architecture for a quantum computer

Press contact :, media download.

Rendering shows the 4 layers of a semiconductor chip, with the top layer being a vibrant burst of light.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Rendering shows the 4 layers of a semiconductor chip, with the top layer being a vibrant burst of light.

Previous image Next image

Quantum computers hold the promise of being able to quickly solve extremely complex problems that might take the world’s most powerful supercomputer decades to crack.

But achieving that performance involves building a system with millions of interconnected building blocks called qubits. Making and controlling so many qubits in a hardware architecture is an enormous challenge that scientists around the world are striving to meet.

Toward this goal, researchers at MIT and MITRE have demonstrated a scalable, modular hardware platform that integrates thousands of interconnected qubits onto a customized integrated circuit. This “quantum-system-on-chip” (QSoC) architecture enables the researchers to precisely tune and control a dense array of qubits. Multiple chips could be connected using optical networking to create a large-scale quantum communication network.

By tuning qubits across 11 frequency channels, this QSoC architecture allows for a new proposed protocol of “entanglement multiplexing” for large-scale quantum computing.

The team spent years perfecting an intricate process for manufacturing two-dimensional arrays of atom-sized qubit microchiplets and transferring thousands of them onto a carefully prepared complementary metal-oxide semiconductor (CMOS) chip. This transfer can be performed in a single step.

“We will need a large number of qubits, and great control over them, to really leverage the power of a quantum system and make it useful. We are proposing a brand new architecture and a fabrication technology that can support the scalability requirements of a hardware system for a quantum computer,” says Linsen Li, an electrical engineering and computer science (EECS) graduate student and lead author of a paper on this architecture.

Li’s co-authors include Ruonan Han, an associate professor in EECS, leader of the Terahertz Integrated Electronics Group, and member of the Research Laboratory of Electronics (RLE); senior author Dirk Englund, professor of EECS, principal investigator of the Quantum Photonics and Artificial Intelligence Group and of RLE; as well as others at MIT, Cornell University, the Delft Institute of Technology, the U.S. Army Research Laboratory, and the MITRE Corporation. The paper appears today in Nature .

Diamond microchiplets

While there are many types of qubits, the researchers chose to use diamond color centers because of their scalability advantages. They previously used such qubits to produce integrated quantum chips with photonic circuitry.

Qubits made from diamond color centers are “artificial atoms” that carry quantum information. Because diamond color centers are solid-state systems, the qubit manufacturing is compatible with modern semiconductor fabrication processes. They are also compact and have relatively long coherence times, which refers to the amount of time a qubit’s state remains stable, due to the clean environment provided by the diamond material.

In addition, diamond color centers have photonic interfaces which allows them to be remotely entangled, or connected, with other qubits that aren’t adjacent to them.

“The conventional assumption in the field is that the inhomogeneity of the diamond color center is a drawback compared to identical quantum memory like ions and neutral atoms. However, we turn this challenge into an advantage by embracing the diversity of the artificial atoms: Each atom has its own spectral frequency. This allows us to communicate with individual atoms by voltage tuning them into resonance with a laser, much like tuning the dial on a tiny radio,” says Englund.

This is especially difficult because the researchers must achieve this at a large scale to compensate for the qubit inhomogeneity in a large system.

To communicate across qubits, they need to have multiple such “quantum radios” dialed into the same channel. Achieving this condition becomes near-certain when scaling to thousands of qubits. To this end, the researchers surmounted that challenge by integrating a large array of diamond color center qubits onto a CMOS chip which provides the control dials. The chip can be incorporated with built-in digital logic that rapidly and automatically reconfigures the voltages, enabling the qubits to reach full connectivity.

“This compensates for the in-homogenous nature of the system. With the CMOS platform, we can quickly and dynamically tune all the qubit frequencies,” Li explains.

Lock-and-release fabrication

To build this QSoC, the researchers developed a fabrication process to transfer diamond color center “microchiplets” onto a CMOS backplane at a large scale.

They started by fabricating an array of diamond color center microchiplets from a solid block of diamond. They also designed and fabricated nanoscale optical antennas that enable more efficient collection of the photons emitted by these color center qubits in free space.

Then, they designed and mapped out the chip from the semiconductor foundry. Working in the MIT.nano cleanroom, they post-processed a CMOS chip to add microscale sockets that match up with the diamond microchiplet array.

They built an in-house transfer setup in the lab and applied a lock-and-release process to integrate the two layers by locking the diamond microchiplets into the sockets on the CMOS chip. Since the diamond microchiplets are weakly bonded to the diamond surface, when they release the bulk diamond horizontally, the microchiplets stay in the sockets.

“Because we can control the fabrication of both the diamond and the CMOS chip, we can make a complementary pattern. In this way, we can transfer thousands of diamond chiplets into their corresponding sockets all at the same time,” Li says.

The researchers demonstrated a 500-micron by 500-micron area transfer for an array with 1,024 diamond nanoantennas, but they could use larger diamond arrays and a larger CMOS chip to further scale up the system. In fact, they found that with more qubits, tuning the frequencies actually requires less voltage for this architecture.

“In this case, if you have more qubits, our architecture will work even better,” Li says.

The team tested many nanostructures before they determined the ideal microchiplet array for the lock-and-release process. However, making quantum microchiplets is no easy task, and the process took years to perfect.

“We have iterated and developed the recipe to fabricate these diamond nanostructures in MIT cleanroom, but it is a very complicated process. It took 19 steps of nanofabrication to get the diamond quantum microchiplets, and the steps were not straightforward,” he adds.

Alongside their QSoC, the researchers developed an approach to characterize the system and measure its performance on a large scale. To do this, they built a custom cryo-optical metrology setup.

Using this technique, they demonstrated an entire chip with over 4,000 qubits that could be tuned to the same frequency while maintaining their spin and optical properties. They also built a digital twin simulation that connects the experiment with digitized modeling, which helps them understand the root causes of the observed phenomenon and determine how to efficiently implement the architecture.

In the future, the researchers could boost the performance of their system by refining the materials they used to make qubits or developing more precise control processes. They could also apply this architecture to other solid-state quantum systems.

This work was supported by the MITRE Corporation Quantum Moonshot Program, the U.S. National Science Foundation, the U.S. Army Research Office, the Center for Quantum Networks, and the European Union’s Horizon 2020 Research and Innovation Program.

Share this news article on:

Related links.

  • Quantum Photonics and AI Laboratory
  • Terahertz Integrated Electronics Group
  • Research Laboratory of Electronics
  • Microsystems Technology Laboratories
  • Department of Electrical Engineering and Computer Science

Related Topics

  • Computer science and technology
  • Quantum computing
  • Electronics
  • Semiconductors
  • Electrical Engineering & Computer Science (eecs)
  • National Science Foundation (NSF)

Related Articles

This graphic depicts a stylized rendering of the quantum photonic chip and its assembly process. The bottom half of the image shows a functioning quantum micro-chiplet (QMC), which emits single-photon pulses that are routed and manipulated on a photonic integrated circuit (PIC). The top half of the image shows how this chip is made: Diamond QMCs are fabricated separately and then transferred into ...

Scaling up the quantum chip

MIT researchers have fabricated a diamond-based quantum sensor on a silicon chip using traditional fabrication techniques (pictured), which could enable low-cost quantum hardware.

Quantum sensing on a chip

research paper education system

Toward mass-producible quantum computers

Previous item Next item

More MIT News

Four photos show, on top level, a simulation of a robot hand using a spatula, knife, hammer and wrench. The second row shows a real robot hand performing the tasks, and the bottom row shows a human hand performing the tasks.

A technique for more effective multipurpose robots

Read full story →

A grid of 12 portrait photos of the new members.

MIT Corporation elects 10 term members, two life members

Diane Hoskins speaks on an indoor stage, at a lectern bearing MIT’s logo

Diane Hoskins ’79: How going off-track can lead new SA+P graduates to become integrators of ideas

Melissa Nobles stands at podium while speaking at MIT Commencement.

Chancellor Melissa Nobles’ address to MIT’s undergraduate Class of 2024

Noubar Afeyan speaks at a podium with the MIT seal on the front. Faculty and administrators in academic regalia are seated next to him.

Noubar Afeyan PhD ’87 gives new MIT graduates a special assignment

Noubar Afeyan stands at the podium.

Commencement address by Noubar Afeyan PhD ’87

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

SYSTEMATIC REVIEW article

This article is part of the research topic.

Reviews in Gastroenterology 2023

Electrogastrography Measurement Systems and Analysis Methods Used in Clinical Practice and Research: Comprehensive Review Provisionally Accepted

  • 1 VSB-Technical University of Ostrava, Czechia

The final, formatted version of the article will be published soon.

Electrogastrography (EGG) is a non-invasive method with high diagnostic potential for the prevention of gastroenterological pathologies in clinical practice. In this paper, a review of the measurement systems, procedures, and methods of analysis used in electrogastrography is presented. A critical review of historical and current literature is conducted, focusing on electrode placement, measurement apparatus, measurement procedures, and time-frequency domain methods of filtration and analysis of the non-invasively measured electrical activity of the stomach.As a result a total of 129 relevant articles with primary aim on experimental diet were reviewed in this study. Scopus, PubMed and Web of Science databases were used to search for articles in English language, according to the specific query and using PRISMA method. The research topic of electrogastrography has been continuously growing in popularity since the first measurement by professor Alvarez 100 years ago and there are many researchers and companies interested in EGG nowadays. Measurement apparatus and procedures are still being developed in both commercial and research settings. There are plenty variable electrode layouts, ranging from minimal numbers of electrodes for ambulatory measurements to very high numbers of electrodes for spatial measurements. Most authors used in their research anatomically approximated layout with 2 active electrodes in bipolar connection and commercial electrogastrograph with sampling rate of 2 or 4 Hz. Test subjects were usually healthy adults and diet was controlled. However, evaluation methods are being developed at a slower pace and usually the signals are classified only based on dominant frequency. The main review contributions include the overview of spectrum of measurement systems and procedures for electrogastrography developed by many authors, but a firm medical standard has not yet been defined. Therefore, it is not possible to use this method in clinical practice for objective diagnosis.

Keywords: electrogastrography, non-invasive method, Measurement systems, Electrode placement, Measurement apparatus, Signal processing

Received: 19 Jan 2024; Accepted: 03 Jun 2024.

Copyright: © 2024 Oczka, Augustynek, Penhaker and Kubicek. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. Jan Kubicek, VSB-Technical University of Ostrava, Ostrava, 708 33, Moravian-Silesian Region, Czechia

People also looked at

COMMENTS

  1. Systems Research in Education: Designs and methods

    This exploratory paper seeks to shed light on the methodological challenges of education systems research. There is growing consensus that interventions to improve learning outcomes must be designed and studied as part of a broader system of education, and that learning outcomes are affected by a complex web of dynamics involving different inputs, actors, processes and socio-political contexts.

  2. Research Papers in Education: Vol 39, No 3 (Current issue)

    Research Papers in Education, Volume 39, Issue 3 (2024) ... The effects of system type and characteristics on skills inequalities during upper secondary education: a quasi-cohort analysis of OECD data. Andy Green & Neil Kaye. Pages: 466-491. Published online: 01 Dec 2022.

  3. How can education systems improve? A systematic literature review

    Understanding what contributes to improving a system will help us tackle the problems in education systems that usually fail disproportionately in providing quality education for all, especially for the most disadvantage sectors of the population. This paper presents the results of a qualitative systematic literature review aimed at providing a comprehensive overview of what education research ...

  4. Resilience in educational system: A systematic review and directions

    (2) Education should be viewed as a complex system. According to Jacobson et al. (2019), the application of complex systems as a theoretical perspective to research in education is at a nascent stage, as doing research on the education system is complex and challenging (Lemke and Sabelli, 2008).

  5. American Educational Research Journal: Sage Journals

    The American Educational Research Journal (AERJ) is the flagship journal of AERA, with articles that advance the empirical, theoretical, and methodological understanding of education and learning. It publishes original peer-reviewed analyses spanning the field of education research across all subfields and disciplines and all levels of analysis, all levels of education throughout the life span ...

  6. Education System Design: Foundations, Policy Options and Consequences

    Education systems provide the foundations for the futur e wellbeing of every. society, yet existing systems are a point of global concern. Education System Design is a. response to debates in dev ...

  7. Understanding the role of digital technologies in education: A review

    These technologies have shown a powerful impact on the education system. The recent COVID-19 Pandemic has further institutionalised the applications of digital technologies in education. These digital technologies have made a paradigm shift in the entire education system. ... The primary research objectives of this paper are as under: RO1: ...

  8. ERIC

    ERIC is an online library of education research and information, sponsored by the Institute of Education Sciences (IES) of the U.S. Department of Education.

  9. Research in Education: Sage Journals

    Research in Education provides a space for fully peer-reviewed, critical, trans-disciplinary, debates on theory, policy and practice in relation to Education. International in scope, we publish challenging, well-written and theoretically innovative contributions that question and explore the concept, practice and institution of Education as an object of study.

  10. Building Resilient Education Systems: Evidence from Large-Scale

    Results show similar effects, indicating scalability within government systems. These results reveal it is possible to strengthen the resilience of education systems, enabling education provision amidst disruptions, and to deliver cost-effective learning gains across contexts and with governments.

  11. Education reform and change driven by digital technology: a

    Based on Table 6, it is apparent that the highest number of articles in the domain of digital technology in education research were published in Education and Information Technologies (47 articles ...

  12. Research Papers in Education

    Journal overview. Research Papers in Education has developed an international reputation for publishing significant research findings across the discipline of education. The distinguishing feature of the journal is that we publish longer articles than most other journals, to a limit of 12,000 words. We particularly focus on full accounts of ...

  13. Research and trends in STEM education: a systematic review of journal

    With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments ...

  14. Chatbots applications in education: A systematic review

    1. Introduction. The use of Artificial Intelligence (AI) in education is rapidly expanding (Roos, 2018).One of the most popular AI technologies used to support teaching and learning activities is the Chatbot system (Okonkwo & Ade-Ibijola, 2020).Chatbots are being considered as a useful technology to facilitate learning within the educational context (Clarizia et al., 2018, pp. 291-302).

  15. Transforming education systems: Why, what, and how

    How can education system transformation advance in your country or jurisdiction? We argue that three steps are crucial: Purpose (developing a broadly shared vision and purpose), Pedagogy ...

  16. The 10 Most Significant Education Studies of 2021

    The 10 Most Significant Education Studies of 2021. From reframing our notion of "good" schools to mining the magic of expert teachers, here's a curated list of must-read research from 2021. By Youki Terada, Stephen Merrill, Sarah Gonser. December 9, 2021. It was a year of unprecedented hardship for teachers and school leaders.

  17. The education system in India: promises to keep

    The education system in India: promises to keep. Kiran Bhatty Centre for Policy Research, New Delhi, India Correspondence [email protected]. Pages 365 ... (Citation 1987), The Rules versus Discretion Debate in the Light of Recent Experience', Paper presented at the Kiel Conference of June 1987, 'Macro and Micro Policies for More ...

  18. (Pdf) a Comprehensive Analysis of The New Education Policy 2020 in

    This research work provides a comprehensive analysis of the New Education Policy 2020 in India, focusing on its implications, challenges, and opportunities for transforming the education system.

  19. (PDF) The Philippine Education Today and Its Way Forward ...

    Abstract. The Philippines is concerned about the number of students attending schools, the quality of education. they receive, and the state of the learning environment. Solvi ng the education ...

  20. Review of Research in Education: Sage Journals

    Review of Research in Education (RRE), published annually, provides a forum for analytic research reviews on selected education topics of significance to the field.Each volume addresses a topic of broad relevance to education and learning, and publishes articles that critically examine diverse literatures and bodies of knowledge across relevant disciplines and fields.

  21. AI technologies for education: Recent research & future directions

    Research must be data-supported empirical studies. Articles that were solely based on personal opinions or anecdotal experiences were excluded; 3. Research must have investigated educational effects of AI by reporting relevant qualitative or quantitative data. Papers that did not provide any evidence on learning were excluded; 4.

  22. Modular, scalable hardware architecture for a quantum computer

    They could also apply this architecture to other solid-state quantum systems. This work was supported by the MITRE Corporation Quantum Moonshot Program, the U.S. National Science Foundation, the U.S. Army Research Office, the Center for Quantum Networks, and the European Union's Horizon 2020 Research and Innovation Program.

  23. A Review on Indian Education System with Issues and Challenges

    Content may be subject to copyright. A Review on Indian Education System with Issues and Challenges. Ms. Falguni A. Suthar1. Ph.D. Research Scholar. Acharya Motibhai Patel Institute of Computer ...

  24. Best Paper Candidates

    Best Paper Candidates. The Green Mirage: Impact of Location- and Market-based Carbon Intensity Estimation on Carbon Optimization Efficacy . Diptyaroop Maji (University of Massachusetts Amherst), Noman Bashir (Massachusetts Institute of Technology), David Irwin (University of Massachusetts Amherst), Prashant Shenoy (University of Massachusetts Amherst), Ramesh Sitaraman (University of ...

  25. It's the "Generic School System That Is Expected on All the kids

    Acknowledgments. The authors would also like to acknowledge that the research undertaken herein was conducted on the lands of Kulin Nations. A warm appreciation is extended to the research participants under the guise of pseudonyms: Jenny, Aleisha, Sarah, Simone, and Emma who generously offered their time, insights, and experiences of dysgraphia as original data sources for this paper.

  26. Cleveland Clinic, IBM apply quantum computing to protein research

    About Cleveland Clinic. Cleveland Clinic is a nonprofit multispecialty academic medical center that integrates clinical and hospital care with research and education. Located in Cleveland, Ohio, it was founded in 1921 by four renowned physicians with a vision of providing outstanding patient care based upon the principles of cooperation, compassion and innovation.

  27. (PDF) An Empirical Study on NEP 2020 [National Education ...

    An Empirical Study on NEP 2020 [National Education Policy] with Special Reference to the Future of Indian Education System and Its effects on the Stakeholders :: JMEIT October 2020 DOI: 10.5281 ...

  28. Frontiers

    Electrogastrography (EGG) is a non-invasive method with high diagnostic potential for the prevention of gastroenterological pathologies in clinical practice. In this paper, a review of the measurement systems, procedures, and methods of analysis used in electrogastrography is presented. A critical review of historical and current literature is conducted, focusing on electrode placement ...

  29. The Impediments to the Process of Implementing Robotics in the School

    Robotics Education was aimed at equipping students with knowledge through robotics constructions. It dates back to the 1960s, when Logo programming language commenced being implemented widely through recruiting programmable devices based on project-based learning (Papert, 1980).Based on this research, it is obvious that children who were actively involved in robotics classes gained more ...

  30. 2024 Digital Humanities Research Showcase

    12-12:30 pm -- Lunch, Welcome Remarks, and Presentation on "A Decade of CESTA Data" 12:30-3:30 pm -- DH Research Fellows' Showcase 12:30 - 1:50 PM : The Meaning and Measurement of Place with presentations from: Matt Randolph (PhD Candidate in History): "Bringing AI to Archibald Grimké's Archive: A Case Study of Artificial Intelligence for Histories of Race and Slavery" This digital project ...