Hypothesis Maker Online

Looking for a hypothesis maker? This online tool for students will help you formulate a beautiful hypothesis quickly, efficiently, and for free.

Are you looking for an effective hypothesis maker online? Worry no more; try our online tool for students and formulate your hypothesis within no time.

  • 🔎 How to Use the Tool?
  • ⚗️ What Is a Hypothesis in Science?

👍 What Does a Good Hypothesis Mean?

  • 🧭 Steps to Making a Good Hypothesis

🔗 References

📄 hypothesis maker: how to use it.

Our hypothesis maker is a simple and efficient tool you can access online for free.

If you want to create a research hypothesis quickly, you should fill out the research details in the given fields on the hypothesis generator.

Below are the fields you should complete to generate your hypothesis:

  • Who or what is your research based on? For instance, the subject can be research group 1.
  • What does the subject (research group 1) do?
  • What does the subject affect? - This shows the predicted outcome, which is the object.
  • Who or what will be compared with research group 1? (research group 2).

Once you fill the in the fields, you can click the ‘Make a hypothesis’ tab and get your results.

⚗️ What Is a Hypothesis in the Scientific Method?

A hypothesis is a statement describing an expectation or prediction of your research through observation.

It is similar to academic speculation and reasoning that discloses the outcome of your scientific test . An effective hypothesis, therefore, should be crafted carefully and with precision.

A good hypothesis should have dependent and independent variables . These variables are the elements you will test in your research method – it can be a concept, an event, or an object as long as it is observable.

You can observe the dependent variables while the independent variables keep changing during the experiment.

In a nutshell, a hypothesis directs and organizes the research methods you will use, forming a large section of research paper writing.

Hypothesis vs. Theory

A hypothesis is a realistic expectation that researchers make before any investigation. It is formulated and tested to prove whether the statement is true. A theory, on the other hand, is a factual principle supported by evidence. Thus, a theory is more fact-backed compared to a hypothesis.

Another difference is that a hypothesis is presented as a single statement , while a theory can be an assortment of things . Hypotheses are based on future possibilities toward a specific projection, but the results are uncertain. Theories are verified with undisputable results because of proper substantiation.

When it comes to data, a hypothesis relies on limited information , while a theory is established on an extensive data set tested on various conditions.

You should observe the stated assumption to prove its accuracy.

Since hypotheses have observable variables, their outcome is usually based on a specific occurrence. Conversely, theories are grounded on a general principle involving multiple experiments and research tests.

This general principle can apply to many specific cases.

The primary purpose of formulating a hypothesis is to present a tentative prediction for researchers to explore further through tests and observations. Theories, in their turn, aim to explain plausible occurrences in the form of a scientific study.

It would help to rely on several criteria to establish a good hypothesis. Below are the parameters you should use to analyze the quality of your hypothesis.

Testability You should be able to test the hypothesis to present a true or false outcome after the investigation. Apart from the logical hypothesis, ensure you can test your predictions with .
Variables It should have a dependent and independent variable. Identifying the appropriate variables will help readers comprehend your prediction and what to expect at the conclusion phase.
Cause and effect A good hypothesis should have a cause-and-effect connection. One variable should influence others in some way. It should be written as an “if-then” statement to allow the researcher to make accurate predictions of the investigation results. However, this rule does not apply to a .
Clear language Writing can get complex, especially when complex research terminology is involved. So, ensure your hypothesis has expressed as a brief statement. Avoid being vague because your readers might get confused. Your hypothesis has a direct impact on your entire research paper’s quality. Thus, use simple words that are easy to understand.
Ethics Hypothesis generation should comply with . Don’t formulate hypotheses that contravene taboos or are questionable. Besides, your hypothesis should have correlations to published academic works to look data-based and authoritative.

🧭 6 Steps to Making a Good Hypothesis

Writing a hypothesis becomes way simpler if you follow a tried-and-tested algorithm. Let’s explore how you can formulate a good hypothesis in a few steps:

Step #1: Ask Questions

The first step in hypothesis creation is asking real questions about the surrounding reality.

Why do things happen as they do? What are the causes of some occurrences?

Your curiosity will trigger great questions that you can use to formulate a stellar hypothesis. So, ensure you pick a research topic of interest to scrutinize the world’s phenomena, processes, and events.

Step #2: Do Initial Research

Carry out preliminary research and gather essential background information about your topic of choice.

The extent of the information you collect will depend on what you want to prove.

Your initial research can be complete with a few academic books or a simple Internet search for quick answers with relevant statistics.

Still, keep in mind that in this phase, it is too early to prove or disapprove of your hypothesis.

Step #3: Identify Your Variables

Now that you have a basic understanding of the topic, choose the dependent and independent variables.

Take note that independent variables are the ones you can’t control, so understand the limitations of your test before settling on a final hypothesis.

Step #4: Formulate Your Hypothesis

You can write your hypothesis as an ‘if – then’ expression . Presenting any hypothesis in this format is reliable since it describes the cause-and-effect you want to test.

For instance: If I study every day, then I will get good grades.

Step #5: Gather Relevant Data

Once you have identified your variables and formulated the hypothesis, you can start the experiment. Remember, the conclusion you make will be a proof or rebuttal of your initial assumption.

So, gather relevant information, whether for a simple or statistical hypothesis, because you need to back your statement.

Step #6: Record Your Findings

Finally, write down your conclusions in a research paper .

Outline in detail whether the test has proved or disproved your hypothesis.

Edit and proofread your work, using a plagiarism checker to ensure the authenticity of your text.

We hope that the above tips will be useful for you. Note that if you need to conduct business analysis, you can use the free templates we’ve prepared: SWOT , PESTLE , VRIO , SOAR , and Porter’s 5 Forces .

❓ Hypothesis Formulator FAQ

Updated: Oct 25th, 2023

  • How to Write a Hypothesis in 6 Steps - Grammarly
  • Forming a Good Hypothesis for Scientific Research
  • The Hypothesis in Science Writing
  • Scientific Method: Step 3: HYPOTHESIS - Subject Guides
  • Hypothesis Template & Examples - Video & Lesson Transcript
  • Free Essays
  • Writing Tools
  • Lit. Guides
  • Donate a Paper
  • Q&A by Experts
  • Referencing Guides
  • Free Textbooks
  • Tongue Twisters
  • Job Openings
  • Video Contest
  • Writing Scholarship
  • Discount Codes
  • Brand Guidelines
  • IvyPanda Shop
  • Online Courses
  • Terms and Conditions
  • Privacy Policy
  • Cookies Policy
  • Copyright Principles
  • DMCA Request
  • Service Notice

Use our hypothesis maker whenever you need to formulate a hypothesis for your study. We offer a very simple tool where you just need to provide basic info about your variables, subjects, and predicted outcomes. The rest is on us. Get a perfect hypothesis in no time!

You are using an outdated browser. Please upgrade your browser to improve your experience (and have this site working as it suppose).

Create your rock solid experiment hypothesis

A. fill out the form  , b. your hypothesis will appear here, why should you use this method.

Hypotheses give good test results, simple as that. Use our tool to get structure in how to formulate your hypotheses.

You could use it as a kind of "bullshit detector" - if your hypothesis doesn’t fit into the template it's probably not a good testing hypothesis.

A good hypothesis is a multi-stage rocket - IAR

  • Insights - What have you noticed that makes you think that you have to make a change?
  • Action - What will you do?
  • Results - What do you want to accomplish and how do you measure it?

Get in touch with us

♥ from the Conversionista! team | Report a bug or an issue

Use Our Free A/B Testing Hypothesis Generator . Never Miss Key Elements From Your Hypotheses. Get Big Conversion Lifts.

Observation, inadvertent impact.

Get Toolkit

Streamline Your Hypothesis Generation Research with Custom Templates the Pros Use.

Have questions about a/b testing hypotheses, what is a hypothesis.

Many people define a hypothesis as an “educated guess”.

To be more precise, a properly constructed hypothesis predicts a possible outcome to an experiment or a test where one variable (the independent one ) is tweaked and/or modified and the impact is measured by the change in behavior of another variable (generally the dependent one).

A hypothesis should be specific (it should clearly define what is being altered and what is the expected impact), data-driven (the changes being made to the independent variable should be based on historic data or theories that have been proven in the past), and testable (it should be possible to conduct the proposed test in a controlled environment to establish the relationship between the variables involved, and disprove the hypothesis - should it be untrue.)

What is the Cost of a Hastily Assembled Hypothesis?

According to an analysis of over 28,000 tests run using the Convert Experiences platform, only 1 in 5 tests proves to be statistically significant.

While more and more debate is opening up around sticking to the concept of 95% statistical significance, it is still a valid rule of thumb for optimizers who do not want to get into the fray with peeking vs. no peeking, and custom stopping rules for experiments.

There might be a multitude of reasons why a test does not reach statistical significance. But framing a tenable hypothesis that already proves itself logistically feasible on paper is a better starting point than a hastily assembled assumption.

Moreover, the aim of an A/B test may be to extract a learning, but some learnings come with heavy costs. 26% decrease in conversion rates to be specific.

A robust hypothesis may not be the answer to all testing woes, but it does help prioritisation of possible solutions and leads testing teams to pick low hanging fruits.

How is an A/B Testing Hypothesis Different?

An A/B test should be treated with the same rigour as tests conducted in laboratories. That is an easy way to guarantee better hypotheses, more relevant experiments, and ultimately more profitable optimization programs.

The focus of an A/B test should be on first extracting a learning , and then monetizing it in the form of increased registration completions, better cart conversions and more revenue.

If that is true, then an A/B test hypothesis is not very different from a regular scientific hypothesis. With a couple of interesting points to note:

  • Most scientific hypotheses proceed with one independent variable and one dependent variable, for the sake of simplicity. But in A/B tests, there might be changes made to several independent variables at the same time. Under such circumstances it is good to explore the relationship between the independent variables to make sure that they do not inadvertently impact one another. For example changing both the value proposition and button copy of a landing page to determine improvement in click through or completion rates is tricky. Reaching a point where the browser is compelled to click the button could easily have been impacted by the value proposition (as in a strong hook and heading). So what caused the improvement in the dependent variable? Was it the change to the first element or the second one?
  • The concept of Operational Definition is non-negotiable in most laboratory experiments. And comes baked with the question of ethics or morality. Operation Definition is the specific process that will be used to quantify the change in the value/behavior of the independent variable in the test. As an example, if a test wishes to measure the level of frustration that subjects experience when they are exposed to certain stimuli, researchers must be careful to define exactly how they will measure the output or frustration. Should they allow the test subjects to act out, in which case they may hurt or harm other individuals. Or should they use a non-invasive technique like an fMRI scan to monitor brain activity and collect the needed data. In A/B tests however, since data is collected through relatively inanimate channels like analytics dashboards, generally little thought is spared to Operational Definition and the impact of A/B testing on the human subjects (site traffic in this case).

The 5 Essential Parts of an A/B Testing Hypothesis

A robust A/B testing hypothesis should be assembled in 5 key parts:

Observation stage

1. OBSERVATION

This includes a clear outline of the problem (the unexplained phenomenon) observed and what it entails. This section should be completely free of conjecture and rely solely on good quality data - either qualitative and/or quantitative - to bring a potential area of improvement to light. It also includes a mention of the way in which the data is collected.

Proper observation ensures a credible hypothesis that is easy to “defend” later down the line.

Execution Stage

2. EXECUTION

This is the where, what, and the who of the A/B test. It specifies the change(s) you will be making to site element(s) in an attempt to solve the problem that has been outlined under “OBSERVATION”. It serves to also clearly define the segment of site traffic that will be exposed to the experiment.

Proper execution guidelines set the rhythm for the A/B test. They define how easy or difficult it will be to deploy the test and thus aid hypothesis prioritization .

Logistics Stage

This is where you make your educated guess or informed prediction. Based on a diligently identified OBSERVATION and EXECUTION guidelines that are possible to deploy, your OUTCOME should clearly mention two things:

  • The change (increase or decrease) you expect to see to the problem or the symptoms of the problem identified under OBSERVATION.
  • The Key Performance Indicators (KPIs) you will be monitoring to gauge whether your prediction has panned out, or not.

In general most A/B tests have one primary KPI and a couple of secondary KPIs or ways to measure impact. This is to ensure that external influences do not skew A/B test results and even if the primary KPI is compromised in some way, the secondary KPIs do a good job of indicating that the change is indeed due to the implementation of the EXECUTION guidelines, and not the result of unmonitored external factors.

Logistics Stage

4. LOGISTICS

An important part of hypothesis formulation, LOGISTICS talk about what it will take to collect enough clean data from which a reliable conclusion can be drawn. How many unique tested visitors, what is the statistical significance desired, how many conversions is enough and what is the duration for which the A/B test should run? Each question on its own merits a blog or a lesson. But for the sake of convenience, Convert has created a Free Sample Size & A/B/N Test Duration Calculator .

Set the right logistical expectations so that you can prioritise your hypotheses for maximum impact and minimum effort .

Inadvertent Impact Stage

5. INADVERTENT IMPACT

This is a nod in the direction of ethics in A/B testing and marketing, because experiments involve humans and optimizers should be aware of the possible impact on their behavior.

Often a thorough analysis at this stage can modify the way impact is measured or an experiment is conducted. Or Convert certainly hopes that this will be the case in future. Here’s why ethics do matter in testing.

Now Organize, Prioritise & Learn from Your Hypotheses.

Try convert experiences in free trial & access compass beta - our hypothesis management platform., always working to improve outcomes..

Start Your 15 -Day Free Trial Right Now. No Credit Card Required

Important. Please Read.

  • Check your inbox for the password to Convert’s trial account.
  • Log in using the link provided in that email.

This sign up flow is built for maximum security. You’re worth it!

  • Argumentative
  • Ecocriticism
  • Informative
  • Explicatory
  • Illustrative
  • Problem Solution
  • Interpretive
  • Music Analysis
  • All Essay Examples
  • Entertainment
  • Law, Crime & Punishment
  • Artificial Intelligence
  • Environment
  • Geography & Travel
  • Government & Politics
  • Nursing & Health
  • Information Science and Technology
  • All Essay Topics

Online Hypothesis Generator

Forge precise, research-backed hypotheses in a snap using our top-notch hypothesis creator, ensuring your study starts on solid ground..

empty-icon

How to Create a Solid & Precise Hypothesis with EssayGPT?

Ever wondered how to come up with a hypothesis that's both detailed and relevant? Kick-start your research endeavors with EssayGPT's hypothesis generator by these steps:

  • 1. Start by by indicating the positive or negative trajectory of your hypothesis in the "Effect" section.
  • 2. Then, enter specifics of the experimental group in the "Who (what)" field.
  • 3. Contrast the experimental group against its counterpart by detailing the control group in the appropriate section.
  • 4. Pinpoint the element of study you're measuring by populating the "The measured thing is" field.
  • 5. Choose between GPT 3.5 or GPT 4, and hit 'Generate' for your AI-empowered hypotheses.

Try Our Powerful, All-in-One AI Writing Copilot

Try Our Powerful, All-in-One AI Writing Copilot

Empower your writing with 120+ AI writing tools

Bypass AI detection with 100% undetectable AI content

Create undetectable, plagiarism-free essays with accurate citations

Browser Extension

The all-in-one ChatGPT copilot: rewrite, translate, summarize, Chat with PDF anywhere

Why EssayGPT's Hypothesis Creator Stands Above the Rest?

Embarking on a research venture necessitates precision, clarity, and an unwavering commitment to reliability. EssayGPT  promises all of this and more, setting itself far apart from the competition.

Let’s dive into the unparalleled features of our hypothesis generator:

AI-Powered Precision: Central to the EssayGPT's hypothesis generator is an avant-garde AI framework. This ensures every hypothesis generated is data-driven, accurate, and aligns with your specified parameters.

Swift, On-Point Outputs: Time is of the essence in research. EssayGPT's hypothesis generator pledges quick turnarounds, without compromising the quality and relevance of the generated hypotheses.

Diverse Subject Mastery: From social sciences to intricate physics postulations, EssayGPT's hypothesis generator extends its prowess across a plethora of disciplines, ensuring your topic, no matter how niche, finds its rightful hypothesis.

A Breeze of Usability: Ditch convoluted interfaces. EssayGPT's hypothesis generator boasts an intuitive design for all users, making hypothesis crafting as effortless as a couple of clicks.

Key Steps on Writing Proper Research Hypothesis with EssayGPT

Tapping into the potential of EssayGPT's hypothesis generator can revolutionize your research process. However, to optimize the AI's capabilities, a few key considerations can significantly enhance the coherence and relevance of the generated hypotheses.

Here's a deeper dive into those nuances.

Precision in Input: The tool's prowess lies in its ability to interpret and process the information it's given. Just as a finely tuned instrument delivers the best music, clear and specific inputs allow the generator to produce accurate hypotheses. Being vague or too broad might lead to generic outcomes that don’t precisely serve your research aims.

Alignment with Research Context: The essence of a valuable hypothesis is its seamless fit within the broader research landscape. It's not just about a statement, but one that directly speaks to, and illuminates, the research problem or question you're addressing. By ensuring that the generated hypothesis aligns contextually, you guarantee its relevance and applicability.

Vocabulary Matters: Each field of study has its lexicon. Incorporating field-specific terms or jargon can transform a generic statement into a specialized hypothesis. It’s not just about linguistic accuracy, but about imbuing your hypothesis with the depth and resonance pertinent to your study's discipline.

The Human Element: AI is a powerful tool, but it's the human touch that brings depth, intuition, and context. After the AI crafts the hypothesis, it's beneficial to weave in personal insights or adjust nuances. This ensures that while the hypothesis is technically sound, it also captures the unique intricacies and flavors of individual research endeavors.

Iconic Features of EssayGPT's Hypothesis Maker at a Glance

🔍 Precision-focusedAccurate, tailored hypotheses
📚 Broad subject rangeCovers diverse research areas
📘 Rich vocabularyIn-depth, field-specific lexicon
👥 Human touchBalances AI and human insights

Check Out Other Powerful AI Tools Just Like This Hypothesis Generator

Thesis statement generator, informative thesis statement generator, ai essay writer, essay hook generator, essay introduction generator, essay outline generator, essay extender, free essay conclusion generator, essay shortener, essay rewriter, dive into a world of inspiration.

  • Camus Literary Devices
  • Benefits Of Single Sex Schools
  • The Major Driving Forces For European Imperialism In Africa
  • Business Analysis : Brick And Mortar Stores
  • Metamorphosis Kafka Analysis
  • Breaking Bad Fits Under The Crime Drama Genre
  • Choices In Night By Elie Wiesel
  • Cultural Diversity In The United States
  • Richer And Poorer Accounting For Inequality, By Jill Lepore
  • Racial Bias In Education
  • The Pros And Cons Of Jigsaw
  • Why Are Heroes Bad
  • Executive Summary : The Franchise Business Expansion
  • Dual Process Model Of Coping With Bereavement
  • Apush Chapter 15 Summary
  • Why Tell A Story In A Song

1. Can EssayGPT's hypothesis creator tackle complex and multidimensional topics?

Absolutely. The hypothesis creator harnesses a state-of-the-art AI algorithm, expertly designed to navigate even the most complex and multidimensional subjects. Leveraging advanced contextual comprehension coupled with vast datasets, the tool is adept at crafting accurate hypotheses irrespective of topic intricacy.

2. Are users expected to incur any costs when using EssayGPT's Hypothesis maker?

The basic version of the hypothesis generator is free and permits users to generate content up to 3,000 words per week. For users requiring more extensive capabilities, we offer subscription plans that provide increased word limits and access to our advanced content generation features.

3. Does the EssayGPT hypothesis generator offer support for multiple languages?

Certainly! EssayGPT's esteemed hypothesis generator is linguistically versatile, offering compatibility with an impressive roster of over 30 languages. This ensures that your research endeavors remain unhindered, irrespective of the language of preference.

4. How does EssayGPT's hypothesis generator ensure the uniqueness of the generated hypothesis?

Ensuring that your hypotheses are both pristine and unparalleled is at the heart of EssayGPT's ethos. To this end, our hypothesis generator taps into cutting-edge language models to ensure that every hypothesis sculpted retains an aura of unmatched originality.

Try Our Powerful, All-in-one AI Writing Copilot Today!

Use Our Hypothesis Generator to Power Your Research Journey

Try EssayGPT's Hypothesis Generator to explore new frontiers. Formulate testable hypotheses to supercharge your research!

  • Pricing Lightweight Script Blog
  • Sign Up Log In

AI Hypothesis Generator

Hypothesis Generator to help you come up with a boilerplate hypothesis for your test ideas. Generate well-structured hypothesis in under 10 seconds!

1. Give us a brief about your hypothesis...

Hypotheses in A/B Testing

Hypotheses form an integral part of A/B Testing. They provide a clear path and expected outcome for the test, based on the initial conditions, such as the user interface and user experience, among others. A well-defined hypothesis is the foundation of any successful A/B test, guiding the direction of the test and serving as a benchmark against which the test’s results are evaluated.

What are the benefits?

The Automated Hypothesis Creator simplifies the first step in the A/B testing process and provides several benefits:

  • Quick and efficient hypothesis generation.
  • Saves time and resources which can often be invested in analysing the output of the A/B test.
  • Provides insightful and scientifically-backed predictions.
  • Outlines a clear picture for the A/B test, thus leading to more accurate outcomes.

How to Use it with A/B Testing?

To use the Automated Hypothesis Creator with A/B testing, follow these simple steps:

  • Begin by clearly formulating your query.
  • Use the text area in the tool to provide the necessary input data.
  • Click the “Create Hypothesis” button.
  • Wait for a while for the tool to process your request and generate a hypothesis.
  • Once the hypothesis is created, use it as a basis for your A/B test.

Try other free tools:

  • A/B Test Headline Generator
  • Sample Size Calculator
  • A/B Test Duration Calculator
  • Statistical Significance Calculator

A/B testing platform for people who care about   website performance

Mida is 10X faster than everything you have ever considered. Try it yourself.

Mida.so is a super lightweight A/B testing tool to help you experiment, analyze and implement conversion strategies in minutes.

create a hypothesis for me

Hypothesis Generator

Generate hypotheses for your research.

  • Academic Research: Generate hypotheses for your thesis, dissertation, or any academic paper.
  • Data Analysis: Create hypotheses to guide your data exploration and analysis.
  • Market Research: Develop hypotheses to understand market trends and consumer behavior.
  • Product Development: Formulate hypotheses to guide your product testing and development process.
  • Scientific Research: Generate hypotheses for your experiments or observational studies.

New & Trending Tools

Text corrector and formatter, strategic planning and decision-making in healthcare tutor, healthcare organizational structures and governance tutor.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 10 July 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Hypothesis Test Graph Generator

Note: After clicking "Draw here", you can click the "Copy to Clipboard" button (in Internet Explorer), or right-click on the graph and choose Copy. In your Word processor, choose Paste-Special from the Edit menu, and select "Bitmap" from the choices

Note: This creates the graph based on the shape of the normal curve, which is a reasonable approximation to the t-distribution for a large sample size. These graphs are not appropriate if you are doing a t-distribution with small sample size (less than 30).

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

create a hypothesis for me

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

create a hypothesis for me

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Research Hypothesis Generator Online

  • ️👍 Hypothesis Maker: the Benefits
  • ️🔎 How to Use the Tool?
  • ️🕵️ What Is a Research Hypothesis?
  • ️⚗️ Scientific Method
  • ️🔗 References

👍 Hypothesis Maker: the Benefits

Here are the key benefits of this null and alternative hypothesis generator.

👌 User-friendly Use the prompts and examples to write a hypothesis.
🎯 Tunable The more details you add, the more accurate result you’ll get.
🌐 Online No need to download any software with this hypothesis writer.
🆓 No payments The hypothesis creator is 100% free, no hidden payments.

🔎 Hypothesis Generator: How to Use It?

Whenever you conduct research, whether a 5-paragraph essay or a more complex assignment, you need to create a hypothesis for this study.

Clueless about how to create a good hypothesis?

No need to waste time and energy on this small portion of your writing process! You can always use our hypothesis creator to get a researchable assumption in no time.

To get a ready-made hypothesis idea, you need to:

  • State the object of your study
  • Specify what the object does
  • Lay out the outcome of that activity
  • Indicate the comparison group

Once all data is inserted into the fields, you can press the “Generate now” button and get the result from our hypothesis generator for research paper or any other academic task.

🕵️ What Is a Research Hypothesis?

A hypothesis is your assumption based on existing academic knowledge and observations of the surrounding natural world.

The picture describes what is hypothesis.

It also involves a healthy portion of intuition because you should arrive at an interesting, commonsense question about the phenomena or processes you observe.

The traditional formula for hypothesis generation is an “if…then” statement, reflecting its falsifiability and testability.

What do these terms mean?

  • Testability means you can formulate a scientific guess and test it with data and analysis.
  • Falsifiability is a related feature, allowing you to refute the hypothesis with data and show that your guess has no tangible support in real-world data.

For example, you might want to hypothesize the following:

If children are given enough free play time, their intelligence scores rise quicker.

You can test this assumption by observing and measuring two groups – children involved in much free play and those who don’t get free play time. Once the study period ends, you can measure the intelligence scores in both groups to see the difference, thus proving or disproving your hypothesis, which will be testing your hypothesis. If you find tangible differences between the two groups, your hypothesis will be proven, and if there is no difference, the hypothesis will prove false.

Null and Alternative Hypothesis

As a rule, hypotheses are presented in pairs in academic studies, as your scientific guess may be refuted or proved. Thus, you should formulate two hypotheses – a null and alternative variant of the same guess – to see which one is proved with your experiment.

The picture compares null and alternative hypotheses.

The alternative hypothesis is formulated in an affirmative form, assuming a specific relationship between variables. In other words, you hypothesize that the predetermined outcome will be observed if one condition is met.

Watching films before sleep reduces the quality of sleep.

The null hypothesis is formulated in a negative form, suggesting that there is no association between the variables of your interest. For example:

Watching films before sleep doesn’t affect the quality of sleep.

⚗️ Creating a Hypothesis: the Key Steps

The development and testing of multiple hypotheses are the basis of the scientific method .

Without such inquiries, academic knowledge would never progress, and humanity would remain with a limited understanding of the natural world.

How can you contribute to the existing academic base with well-developed and rigorously planned scientific studies ? Here is an introduction to the empirical method of scientific inquiry.

Step #1: Observe the World Around You

Look around you to see what’s taking place in your academic area. If you’re a biology researcher, look into the untapped biological processes or intriguing facts that nobody has managed to explain before you.

What’s surprising or unusual in your observations? How can you approach this area of interest?

That’s the starting point of an academic journey to new knowledge.

Step #2: Ask Questions

Now that you've found a subject of interest, it's time to generate scientific research questions .

A question can be called scientific if it is well-defined, focuses on measurable dimensions, and is largely testable.

Some hints for a scientific question are:

  • What effect does X produce on Y?
  • What happens if the intensity of X’s impact reduces or rises?
  • What is the primary cause of X?
  • How is X related to Y in this group of people?
  • How effective is X in the field of C?

As you can see, X is the independent variable , and Y is the dependent variable.

This principle of hypothesis formulation is vital for cases when you want to illustrate or measure the strength of one variable's effect on the other.

Step #3: Generate a Research Hypothesis

After asking the scientific question, you can hypothesize what your answer to it can be.

You don't have any data yet to answer the question confidently, but you can assume what effect you will observe during an empirical investigation.

For example, suppose your background research shows that protein consumption boosts muscle growth.

In that case, you can hypothesize that a sample group consuming much protein after physical training will exhibit better muscle growth dynamics compared to those who don’t eat protein. This way, you’re making a scientific guess based on your prior knowledge of the subject and your intuition.

Step #4: Hold an Experiment

With a hypothesis at hand, you can proceed to the empirical study for its testing. As a rule, you should have a clearly formulated methodology for proving or disproving your hypothesis before you create it. Otherwise, how can you know that it is testable? An effective hypothesis usually contains all data about the research context and the population of interest.

For example:

Marijuana consumption among U. S. college students reduces their motivation and academic achievement.

  • The study sample here is college students.
  • The dependent variable is motivation and academic achievement, which you can measure with any validated scale (e.g., Intrinsic Motivation Inventory).
  • The inclusion criterion for the study's experimental group is marijuana use.
  • The control group might be a group of marijuana non-users from the same population.
  • A viable research methodology is to ask both groups to fill out the survey and compare the results.

Step #5: Analyze Your Findings

Once the study is over and you have the collected dataset, it's time to analyze the findings.

The methodology should also delineate the criteria for proving or disproving the hypothesis.

Using the previous section's example, your hypothesis is proven if the experimental group reveals lower motivational scores and has a lower GPA . If both groups' motivation and GPA scores aren't statistically different, your hypothesis is false.

Step #6: Formulate Your Conclusion

Using your study's hypothesis and outcomes, you can now generate a conclusion . If the alternative hypothesis is proven, you can conclude that marijuana use hinders students' achievement and motivation. If the null hypothesis is validated, you should report no identified relationship between low academic achievement and weed use.

Thank you for reading this article! Note that if you need to conduct a business analysis, you can try our free tools: SWOT , VRIO , SOAR , PESTEL , and Porter’s Five Forces .

❓ Research Hypothesis Generator FAQ

❓ what is a research hypothesis.

A hypothesis is a guess or assumption you make by looking at the available data from the natural world. You assume a specific relationship between variables or phenomena and formulate that supposition for further testing with experimentation and analysis.

❓ How to write a hypothesis?

To compose an effective hypothesis, you need to look at your research question and formulate a couple of ways to answer it. The available scientific data can guide you to assume your study's outcome. Thus, the hypothesis is a guess of how your research question will be answered by the end of your research.

❓ What is the difference between prediction and hypothesis?

A prediction is your forecast about the outcome of some activities or experimentation. It is a guess of what will happen if you perform some actions with a specific object or person. A hypothesis is a more in-depth inquiry into the way things are related. It is more about explaining specific mechanisms and relationships.

❓ What makes a good hypothesis?

A strong hypothesis should indicate the dependent and independent variables, specifying the relationship you assume between them. You can also strengthen your hypothesis by indicating a specific population group, an intervention period, and the context in which you'll hold the study.

Updated: Jun 5th, 2024

🔗 References

  • What is and How to Write a Good Hypothesis in Research?
  • Research questions, hypotheses and objectives - PMC - NCBI
  • Developing the research hypothesis - PubMed
  • Alternative Hypothesis - SAGE Research Methods
  • Alternative Hypothesis Guide: Definition, Types and Examples

Collaborate with anyone, anywhere .

Use Hypothesis to annotate anything online with classmates, colleagues, or friends. Create a free personal account , or talk to our sales team about Education solutions.

Get Started

Bringing content and conversation together.

Hypothesis adds a collaborative layer over any online content. Through the power of social annotation, we can make online discussions more meaningful, productive, and engaging.

Hypothesis is for

Keep students engaged and connected with a seamless learning experience.

Create a new method of peer review and engagement for researchers and publications.

Share and discuss intriguing content with family, friends, and like-minded groups.

Comment on and highlight what interests you.

Annotate articles, websites, videos, documents, apps, and more – without clicking away or posting elsewhere. Hypothesis is easy to use and based on open web standards, so it works across the entire internet.

Turn annotations into conversations.

Classrooms, coworkers, and communities can share ideas, ask questions, and respond to annotations. Set groups to public or private to create your ideal discussion.

Build durable, shared knowledge.

No more losing valuable knowledge across email, forums, and apps.  Annotations are saved at the source and accessible to everyone, preserving commentary in context.

  • 01. Comment & Highlight
  • 02. Conversations
  • 03. Knowledge

Changing online discussions for good.

Hypothesis is a mission-driven organization building universal collaboration into the internet with open-source technology.

Vision and Values

Start the conversation.

Create a free account and install the Hypothesis browser extension to start annotating. For Education  solutions, contact our sales team.

Create A Free Account Contact Sales Team

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Research Hypothesis: Good & Bad Examples

create a hypothesis for me

What is a research hypothesis?

A research hypothesis is an attempt at explaining a phenomenon or the relationships between phenomena/variables in the real world. Hypotheses are sometimes called “educated guesses”, but they are in fact (or let’s say they should be) based on previous observations, existing theories, scientific evidence, and logic. A research hypothesis is also not a prediction—rather, predictions are ( should be) based on clearly formulated hypotheses. For example, “We tested the hypothesis that KLF2 knockout mice would show deficiencies in heart development” is an assumption or prediction, not a hypothesis. 

The research hypothesis at the basis of this prediction is “the product of the KLF2 gene is involved in the development of the cardiovascular system in mice”—and this hypothesis is probably (hopefully) based on a clear observation, such as that mice with low levels of Kruppel-like factor 2 (which KLF2 codes for) seem to have heart problems. From this hypothesis, you can derive the idea that a mouse in which this particular gene does not function cannot develop a normal cardiovascular system, and then make the prediction that we started with. 

What is the difference between a hypothesis and a prediction?

You might think that these are very subtle differences, and you will certainly come across many publications that do not contain an actual hypothesis or do not make these distinctions correctly. But considering that the formulation and testing of hypotheses is an integral part of the scientific method, it is good to be aware of the concepts underlying this approach. The two hallmarks of a scientific hypothesis are falsifiability (an evaluation standard that was introduced by the philosopher of science Karl Popper in 1934) and testability —if you cannot use experiments or data to decide whether an idea is true or false, then it is not a hypothesis (or at least a very bad one).

So, in a nutshell, you (1) look at existing evidence/theories, (2) come up with a hypothesis, (3) make a prediction that allows you to (4) design an experiment or data analysis to test it, and (5) come to a conclusion. Of course, not all studies have hypotheses (there is also exploratory or hypothesis-generating research), and you do not necessarily have to state your hypothesis as such in your paper. 

But for the sake of understanding the principles of the scientific method, let’s first take a closer look at the different types of hypotheses that research articles refer to and then give you a step-by-step guide for how to formulate a strong hypothesis for your own paper.

Types of Research Hypotheses

Hypotheses can be simple , which means they describe the relationship between one single independent variable (the one you observe variations in or plan to manipulate) and one single dependent variable (the one you expect to be affected by the variations/manipulation). If there are more variables on either side, you are dealing with a complex hypothesis. You can also distinguish hypotheses according to the kind of relationship between the variables you are interested in (e.g., causal or associative ). But apart from these variations, we are usually interested in what is called the “alternative hypothesis” and, in contrast to that, the “null hypothesis”. If you think these two should be listed the other way round, then you are right, logically speaking—the alternative should surely come second. However, since this is the hypothesis we (as researchers) are usually interested in, let’s start from there.

Alternative Hypothesis

If you predict a relationship between two variables in your study, then the research hypothesis that you formulate to describe that relationship is your alternative hypothesis (usually H1 in statistical terms). The goal of your hypothesis testing is thus to demonstrate that there is sufficient evidence that supports the alternative hypothesis, rather than evidence for the possibility that there is no such relationship. The alternative hypothesis is usually the research hypothesis of a study and is based on the literature, previous observations, and widely known theories. 

Null Hypothesis

The hypothesis that describes the other possible outcome, that is, that your variables are not related, is the null hypothesis ( H0 ). Based on your findings, you choose between the two hypotheses—usually that means that if your prediction was correct, you reject the null hypothesis and accept the alternative. Make sure, however, that you are not getting lost at this step of the thinking process: If your prediction is that there will be no difference or change, then you are trying to find support for the null hypothesis and reject H1. 

Directional Hypothesis

While the null hypothesis is obviously “static”, the alternative hypothesis can specify a direction for the observed relationship between variables—for example, that mice with higher expression levels of a certain protein are more active than those with lower levels. This is then called a one-tailed hypothesis. 

Another example for a directional one-tailed alternative hypothesis would be that 

H1: Attending private classes before important exams has a positive effect on performance. 

Your null hypothesis would then be that

H0: Attending private classes before important exams has no/a negative effect on performance.

Nondirectional Hypothesis

A nondirectional hypothesis does not specify the direction of the potentially observed effect, only that there is a relationship between the studied variables—this is called a two-tailed hypothesis. For instance, if you are studying a new drug that has shown some effects on pathways involved in a certain condition (e.g., anxiety) in vitro in the lab, but you can’t say for sure whether it will have the same effects in an animal model or maybe induce other/side effects that you can’t predict and potentially increase anxiety levels instead, you could state the two hypotheses like this:

H1: The only lab-tested drug (somehow) affects anxiety levels in an anxiety mouse model.

You then test this nondirectional alternative hypothesis against the null hypothesis:

H0: The only lab-tested drug has no effect on anxiety levels in an anxiety mouse model.

hypothesis in a research paper

How to Write a Hypothesis for a Research Paper

Now that we understand the important distinctions between different kinds of research hypotheses, let’s look at a simple process of how to write a hypothesis.

Writing a Hypothesis Step:1

Ask a question, based on earlier research. Research always starts with a question, but one that takes into account what is already known about a topic or phenomenon. For example, if you are interested in whether people who have pets are happier than those who don’t, do a literature search and find out what has already been demonstrated. You will probably realize that yes, there is quite a bit of research that shows a relationship between happiness and owning a pet—and even studies that show that owning a dog is more beneficial than owning a cat ! Let’s say you are so intrigued by this finding that you wonder: 

What is it that makes dog owners even happier than cat owners? 

Let’s move on to Step 2 and find an answer to that question.

Writing a Hypothesis Step 2:

Formulate a strong hypothesis by answering your own question. Again, you don’t want to make things up, take unicorns into account, or repeat/ignore what has already been done. Looking at the dog-vs-cat papers your literature search returned, you see that most studies are based on self-report questionnaires on personality traits, mental health, and life satisfaction. What you don’t find is any data on actual (mental or physical) health measures, and no experiments. You therefore decide to make a bold claim come up with the carefully thought-through hypothesis that it’s maybe the lifestyle of the dog owners, which includes walking their dog several times per day, engaging in fun and healthy activities such as agility competitions, and taking them on trips, that gives them that extra boost in happiness. You could therefore answer your question in the following way:

Dog owners are happier than cat owners because of the dog-related activities they engage in.

Now you have to verify that your hypothesis fulfills the two requirements we introduced at the beginning of this resource article: falsifiability and testability . If it can’t be wrong and can’t be tested, it’s not a hypothesis. We are lucky, however, because yes, we can test whether owning a dog but not engaging in any of those activities leads to lower levels of happiness or well-being than owning a dog and playing and running around with them or taking them on trips.  

Writing a Hypothesis Step 3:

Make your predictions and define your variables. We have verified that we can test our hypothesis, but now we have to define all the relevant variables, design our experiment or data analysis, and make precise predictions. You could, for example, decide to study dog owners (not surprising at this point), let them fill in questionnaires about their lifestyle as well as their life satisfaction (as other studies did), and then compare two groups of active and inactive dog owners. Alternatively, if you want to go beyond the data that earlier studies produced and analyzed and directly manipulate the activity level of your dog owners to study the effect of that manipulation, you could invite them to your lab, select groups of participants with similar lifestyles, make them change their lifestyle (e.g., couch potato dog owners start agility classes, very active ones have to refrain from any fun activities for a certain period of time) and assess their happiness levels before and after the intervention. In both cases, your independent variable would be “ level of engagement in fun activities with dog” and your dependent variable would be happiness or well-being . 

Examples of a Good and Bad Hypothesis

Let’s look at a few examples of good and bad hypotheses to get you started.

Good Hypothesis Examples

Working from home improves job satisfaction.Employees who are allowed to work from home are less likely to quit within 2 years than those who need to come to the office.
Sleep deprivation affects cognition.Students who sleep <5 hours/night don’t perform as well on exams as those who sleep >7 hours/night. 
Animals adapt to their environment.Birds of the same species living on different islands have differently shaped beaks depending on the available food source.
Social media use causes anxiety.Do teenagers who refrain from using social media for 4 weeks show improvements in anxiety symptoms?

Bad Hypothesis Examples

Garlic repels vampires.Participants who eat garlic daily will not be harmed by vampires.Nobody gets harmed by vampires— .
Chocolate is better than vanilla.           No clearly defined variables— .

Tips for Writing a Research Hypothesis

If you understood the distinction between a hypothesis and a prediction we made at the beginning of this article, then you will have no problem formulating your hypotheses and predictions correctly. To refresh your memory: We have to (1) look at existing evidence, (2) come up with a hypothesis, (3) make a prediction, and (4) design an experiment. For example, you could summarize your dog/happiness study like this:

(1) While research suggests that dog owners are happier than cat owners, there are no reports on what factors drive this difference. (2) We hypothesized that it is the fun activities that many dog owners (but very few cat owners) engage in with their pets that increases their happiness levels. (3) We thus predicted that preventing very active dog owners from engaging in such activities for some time and making very inactive dog owners take up such activities would lead to an increase and decrease in their overall self-ratings of happiness, respectively. (4) To test this, we invited dog owners into our lab, assessed their mental and emotional well-being through questionnaires, and then assigned them to an “active” and an “inactive” group, depending on… 

Note that you use “we hypothesize” only for your hypothesis, not for your experimental prediction, and “would” or “if – then” only for your prediction, not your hypothesis. A hypothesis that states that something “would” affect something else sounds as if you don’t have enough confidence to make a clear statement—in which case you can’t expect your readers to believe in your research either. Write in the present tense, don’t use modal verbs that express varying degrees of certainty (such as may, might, or could ), and remember that you are not drawing a conclusion while trying not to exaggerate but making a clear statement that you then, in a way, try to disprove . And if that happens, that is not something to fear but an important part of the scientific process.

Similarly, don’t use “we hypothesize” when you explain the implications of your research or make predictions in the conclusion section of your manuscript, since these are clearly not hypotheses in the true sense of the word. As we said earlier, you will find that many authors of academic articles do not seem to care too much about these rather subtle distinctions, but thinking very clearly about your own research will not only help you write better but also ensure that even that infamous Reviewer 2 will find fewer reasons to nitpick about your manuscript. 

Perfect Your Manuscript With Professional Editing

Now that you know how to write a strong research hypothesis for your research paper, you might be interested in our free AI Proofreader , Wordvice AI, which finds and fixes errors in grammar, punctuation, and word choice in academic texts. Or if you are interested in human proofreading , check out our English editing services , including research paper editing and manuscript editing .

On the Wordvice academic resources website , you can also find many more articles and other resources that can help you with writing the other parts of your research paper , with making a research paper outline before you put everything together, or with writing an effective cover letter once you are ready to submit.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

create a hypothesis for me

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

create a hypothesis for me

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

Prevent plagiarism. Run a free check.

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved July 11, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

create a hypothesis for me

How to Write a Hypothesis: A Step-by-Step Guide

create a hypothesis for me

Introduction

An overview of the research hypothesis, different types of hypotheses, variables in a hypothesis, how to formulate an effective research hypothesis, designing a study around your hypothesis.

The scientific method can derive and test predictions as hypotheses. Empirical research can then provide support (or lack thereof) for the hypotheses. Even failure to find support for a hypothesis still represents a valuable contribution to scientific knowledge. Let's look more closely at the idea of the hypothesis and the role it plays in research.

create a hypothesis for me

As much as the term exists in everyday language, there is a detailed development that informs the word "hypothesis" when applied to research. A good research hypothesis is informed by prior research and guides research design and data analysis , so it is important to understand how a hypothesis is defined and understood by researchers.

What is the simple definition of a hypothesis?

A hypothesis is a testable prediction about an outcome between two or more variables . It functions as a navigational tool in the research process, directing what you aim to predict and how.

What is the hypothesis for in research?

In research, a hypothesis serves as the cornerstone for your empirical study. It not only lays out what you aim to investigate but also provides a structured approach for your data collection and analysis.

Essentially, it bridges the gap between the theoretical and the empirical, guiding your investigation throughout its course.

create a hypothesis for me

What is an example of a hypothesis?

If you are studying the relationship between physical exercise and mental health, a suitable hypothesis could be: "Regular physical exercise leads to improved mental well-being among adults."

This statement constitutes a specific and testable hypothesis that directly relates to the variables you are investigating.

What makes a good hypothesis?

A good hypothesis possesses several key characteristics. Firstly, it must be testable, allowing you to analyze data through empirical means, such as observation or experimentation, to assess if there is significant support for the hypothesis. Secondly, a hypothesis should be specific and unambiguous, giving a clear understanding of the expected relationship between variables. Lastly, it should be grounded in existing research or theoretical frameworks , ensuring its relevance and applicability.

Understanding the types of hypotheses can greatly enhance how you construct and work with hypotheses. While all hypotheses serve the essential function of guiding your study, there are varying purposes among the types of hypotheses. In addition, all hypotheses stand in contrast to the null hypothesis, or the assumption that there is no significant relationship between the variables .

Here, we explore various kinds of hypotheses to provide you with the tools needed to craft effective hypotheses for your specific research needs. Bear in mind that many of these hypothesis types may overlap with one another, and the specific type that is typically used will likely depend on the area of research and methodology you are following.

Null hypothesis

The null hypothesis is a statement that there is no effect or relationship between the variables being studied. In statistical terms, it serves as the default assumption that any observed differences are due to random chance.

For example, if you're studying the effect of a drug on blood pressure, the null hypothesis might state that the drug has no effect.

Alternative hypothesis

Contrary to the null hypothesis, the alternative hypothesis suggests that there is a significant relationship or effect between variables.

Using the drug example, the alternative hypothesis would posit that the drug does indeed affect blood pressure. This is what researchers aim to prove.

create a hypothesis for me

Simple hypothesis

A simple hypothesis makes a prediction about the relationship between two variables, and only two variables.

For example, "Increased study time results in better exam scores." Here, "study time" and "exam scores" are the only variables involved.

Complex hypothesis

A complex hypothesis, as the name suggests, involves more than two variables. For instance, "Increased study time and access to resources result in better exam scores." Here, "study time," "access to resources," and "exam scores" are all variables.

This hypothesis refers to multiple potential mediating variables. Other hypotheses could also include predictions about variables that moderate the relationship between the independent variable and dependent variable .

Directional hypothesis

A directional hypothesis specifies the direction of the expected relationship between variables. For example, "Eating more fruits and vegetables leads to a decrease in heart disease."

Here, the direction of heart disease is explicitly predicted to decrease, due to effects from eating more fruits and vegetables. All hypotheses typically specify the expected direction of the relationship between the independent and dependent variable, such that researchers can test if this prediction holds in their data analysis .

create a hypothesis for me

Statistical hypothesis

A statistical hypothesis is one that is testable through statistical methods, providing a numerical value that can be analyzed. This is commonly seen in quantitative research .

For example, "There is a statistically significant difference in test scores between students who study for one hour and those who study for two."

Empirical hypothesis

An empirical hypothesis is derived from observations and is tested through empirical methods, often through experimentation or survey data . Empirical hypotheses may also be assessed with statistical analyses.

For example, "Regular exercise is correlated with a lower incidence of depression," could be tested through surveys that measure exercise frequency and depression levels.

Causal hypothesis

A causal hypothesis proposes that one variable causes a change in another. This type of hypothesis is often tested through controlled experiments.

For example, "Smoking causes lung cancer," assumes a direct causal relationship.

Associative hypothesis

Unlike causal hypotheses, associative hypotheses suggest a relationship between variables but do not imply causation.

For instance, "People who smoke are more likely to get lung cancer," notes an association but doesn't claim that smoking causes lung cancer directly.

Relational hypothesis

A relational hypothesis explores the relationship between two or more variables but doesn't specify the nature of the relationship.

For example, "There is a relationship between diet and heart health," leaves the nature of the relationship (causal, associative, etc.) open to interpretation.

Logical hypothesis

A logical hypothesis is based on sound reasoning and logical principles. It's often used in theoretical research to explore abstract concepts, rather than being based on empirical data.

For example, "If all men are mortal and Socrates is a man, then Socrates is mortal," employs logical reasoning to make its point.

create a hypothesis for me

Let ATLAS.ti take you from research question to key insights

Get started with a free trial and see how ATLAS.ti can make the most of your data.

In any research hypothesis, variables play a critical role. These are the elements or factors that the researcher manipulates, controls, or measures. Understanding variables is essential for crafting a clear, testable hypothesis and for the stages of research that follow, such as data collection and analysis.

In the realm of hypotheses, there are generally two types of variables to consider: independent and dependent. Independent variables are what you, as the researcher, manipulate or change in your study. It's considered the cause in the relationship you're investigating. For instance, in a study examining the impact of sleep duration on academic performance, the independent variable would be the amount of sleep participants get.

Conversely, the dependent variable is the outcome you measure to gauge the effect of your manipulation. It's the effect in the cause-and-effect relationship. The dependent variable thus refers to the main outcome of interest in your study. In the same sleep study example, the academic performance, perhaps measured by exam scores or GPA, would be the dependent variable.

Beyond these two primary types, you might also encounter control variables. These are variables that could potentially influence the outcome and are therefore kept constant to isolate the relationship between the independent and dependent variables . For example, in the sleep and academic performance study, control variables could include age, diet, or even the subject of study.

By clearly identifying and understanding the roles of these variables in your hypothesis, you set the stage for a methodologically sound research project. It helps you develop focused research questions, design appropriate experiments or observations, and carry out meaningful data analysis . It's a step that lays the groundwork for the success of your entire study.

create a hypothesis for me

Crafting a strong, testable hypothesis is crucial for the success of any research project. It sets the stage for everything from your study design to data collection and analysis . Below are some key considerations to keep in mind when formulating your hypothesis:

  • Be specific : A vague hypothesis can lead to ambiguous results and interpretations . Clearly define your variables and the expected relationship between them.
  • Ensure testability : A good hypothesis should be testable through empirical means, whether by observation , experimentation, or other forms of data analysis.
  • Ground in literature : Before creating your hypothesis, consult existing research and theories. This not only helps you identify gaps in current knowledge but also gives you valuable context and credibility for crafting your hypothesis.
  • Use simple language : While your hypothesis should be conceptually sound, it doesn't have to be complicated. Aim for clarity and simplicity in your wording.
  • State direction, if applicable : If your hypothesis involves a directional outcome (e.g., "increase" or "decrease"), make sure to specify this. You also need to think about how you will measure whether or not the outcome moved in the direction you predicted.
  • Keep it focused : One of the common pitfalls in hypothesis formulation is trying to answer too many questions at once. Keep your hypothesis focused on a specific issue or relationship.
  • Account for control variables : Identify any variables that could potentially impact the outcome and consider how you will control for them in your study.
  • Be ethical : Make sure your hypothesis and the methods for testing it comply with ethical standards , particularly if your research involves human or animal subjects.

create a hypothesis for me

Designing your study involves multiple key phases that help ensure the rigor and validity of your research. Here we discuss these crucial components in more detail.

Literature review

Starting with a comprehensive literature review is essential. This step allows you to understand the existing body of knowledge related to your hypothesis and helps you identify gaps that your research could fill. Your research should aim to contribute some novel understanding to existing literature, and your hypotheses can reflect this. A literature review also provides valuable insights into how similar research projects were executed, thereby helping you fine-tune your own approach.

create a hypothesis for me

Research methods

Choosing the right research methods is critical. Whether it's a survey, an experiment, or observational study, the methodology should be the most appropriate for testing your hypothesis. Your choice of methods will also depend on whether your research is quantitative, qualitative, or mixed-methods. Make sure the chosen methods align well with the variables you are studying and the type of data you need.

Preliminary research

Before diving into a full-scale study, it’s often beneficial to conduct preliminary research or a pilot study . This allows you to test your research methods on a smaller scale, refine your tools, and identify any potential issues. For instance, a pilot survey can help you determine if your questions are clear and if the survey effectively captures the data you need. This step can save you both time and resources in the long run.

Data analysis

Finally, planning your data analysis in advance is crucial for a successful study. Decide which statistical or analytical tools are most suited for your data type and research questions . For quantitative research, you might opt for t-tests, ANOVA, or regression analyses. For qualitative research , thematic analysis or grounded theory may be more appropriate. This phase is integral for interpreting your results and drawing meaningful conclusions in relation to your research question.

create a hypothesis for me

Turn data into evidence for insights with ATLAS.ti

Powerful analysis for your research paper or presentation is at your fingertips starting with a free trial.

create a hypothesis for me

IMAGES

  1. How to Write a Hypothesis

    create a hypothesis for me

  2. How to Write a Strong Hypothesis in 6 Simple Steps

    create a hypothesis for me

  3. How to Write a Hypothesis: The Ultimate Guide with Examples

    create a hypothesis for me

  4. 13 Different Types of Hypothesis (2024)

    create a hypothesis for me

  5. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    create a hypothesis for me

  6. How to write a hypothesis in 3 steps!

    create a hypothesis for me

VIDEO

  1. How To: Create Hypothesis-enabled Readings in Blackboard Ultra

  2. How To: Create Hypothesis-enabled Readings in Moodle (Deep linking enabled)

  3. How To: Create Hypothesis-enabled Readings for Small Groups in Moodle

  4. How to create hypotheses? A biomechanical engineer explains

  5. HOW TO: Create Hypothesis-enabled readings in D2L Brightspace using the new assignment workflow

  6. HOW TO: Create Hypothesis-enabled Readings for Small Groups in Canvas

COMMENTS

  1. Hypothesis Maker

    Use our hypothesis formulator to generate an effective hypothesis for your research. All you have to do is fill out the details in the required fields and click the 'create hypothesis' button. The AI-based algorithm will generate a list of great hypotheses you can use in your investigation.

  2. Free AI Hypothesis Maker

    Create any AI Tool from a single prompt. Create Faster With AI. Try it Risk-Free. Stop wasting time and start creating high-quality content immediately with power of generative AI. Get started for free. Generate a hypothesis for your research or project in seconds! Use it for Free.

  3. Hypothesis Maker

    Create a hypothesis for your research based on your research question. HyperWrite's Hypothesis Maker is an AI-driven tool that generates a hypothesis based on your research question. Powered by advanced AI models like GPT-4 and ChatGPT, this tool can help streamline your research process and enhance your scientific studies.

  4. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  5. Experiment Hypothesis Generator

    Hypotheses give good test results, simple as that. Use our tool to get structure in how to formulate your hypotheses. You could use it as a kind of "bullshit detector" - if your hypothesis doesn't fit into the template it's probably not a good testing hypothesis. A good hypothesis is a multi-stage rocket - IAR.

  6. Convert Hypothesis Generator: Free Tool for A/B Testers

    Each question on its own merits a blog or a lesson. But for the sake of convenience, Convert has created a Free Sample Size & A/B/N Test Duration Calculator . Set the right logistical expectations so that you can prioritise your hypotheses for maximum impact and minimum effort . 5. INADVERTENT IMPACT.

  7. Hypothesis Generator

    Kick-start your research endeavors with EssayGPT's hypothesis generator by these steps: 1. Start by by indicating the positive or negative trajectory of your hypothesis in the "Effect" section. 2. Then, enter specifics of the experimental group in the "Who (what)" field. 3.

  8. Research Hypothesis Generator

    Create a research hypothesis based on a provided research topic and objectives. Introducing HyperWrite's Research Hypothesis Generator, an AI-powered tool designed to formulate clear, concise, and testable hypotheses based on your research topic and objectives. Leveraging advanced AI models, this tool is perfect for students, researchers, and professionals looking to streamline their research ...

  9. Hypothesis Generator For A/B Testing

    To use the Automated Hypothesis Creator with A/B testing, follow these simple steps: Begin by clearly formulating your query. Use the text area in the tool to provide the necessary input data. Click the "Create Hypothesis" button. Wait for a while for the tool to process your request and generate a hypothesis.

  10. Hypothesis Generator

    Stipulate what it does. Add the effect that the subject's activities produce. Specify the comparison group. Once you put all this data into our online hypothesis generator, click on the "Generate hypothesis" tab and enjoy instant results. The tool will come up with a well-formulated hypothesis in seconds.

  11. Hypothesis Generator

    Create null (H0) and alternative (H1) hypotheses based on a given research question and dataset. HyperWrite's Hypothesis Generator is a powerful AI tool that helps you create null and alternative hypotheses for your research. This tool takes a given research question and dataset and generates hypotheses that are clear, concise, and testable. By utilizing the latest AI models, it simplifies the ...

  12. How to Write a Strong Hypothesis in 6 Simple Steps

    Learning how to write a hypothesis comes down to knowledge and strategy. So where do you start? Learn how to make your hypothesis strong step-by-step here.

  13. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  14. Hypothesis Test Graph Generator

    Hypothesis Test Graph Generator. Note: After clicking "Draw here", you can click the "Copy to Clipboard" button (in Internet Explorer), or right-click on the graph and choose Copy. In your Word processor, choose Paste-Special from the Edit menu, and select "Bitmap" from the choices. Note: This creates the graph based on the shape of the normal ...

  15. How to Write a Hypothesis w/ Strong Examples

    Simple Hypothesis Examples. Increasing the amount of natural light in a classroom will improve students' test scores. Drinking at least eight glasses of water a day reduces the frequency of headaches in adults. Plant growth is faster when the plant is exposed to music for at least one hour per day.

  16. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  17. Research Hypothesis Generator

    Here are the key benefits of this null and alternative hypothesis generator. Use the prompts and examples to write a hypothesis. The more details you add, the more accurate result you'll get. No need to download any software with this hypothesis writer. The hypothesis creator is 100% free, no hidden payments.

  18. Home : Hypothesis

    Hypothesis is easy to use and based on open web standards, so it works across the entire internet. Turn annotations into conversations. Classrooms, coworkers, and communities can share ideas, ask questions, and respond to annotations. Set groups to public or private to create your ideal discussion.

  19. How to Write a Research Hypothesis: Good & Bad Examples

    Another example for a directional one-tailed alternative hypothesis would be that. H1: Attending private classes before important exams has a positive effect on performance. Your null hypothesis would then be that. H0: Attending private classes before important exams has no/a negative effect on performance.

  20. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Create a 3-dimensional hypothesis. Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the 'if-then' form. If you use this form, make sure that you state the predefined ...

  21. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  22. How to Write a Hypothesis

    Use simple language: While your hypothesis should be conceptually sound, it doesn't have to be complicated. Aim for clarity and simplicity in your wording. State direction, if applicable: If your hypothesis involves a directional outcome (e.g., "increase" or "decrease"), make sure to specify this.

  23. A Research Roadmap Toward Improved Measures Of Disability

    Long-Range Goal: Create New Disability Measures That Better Reflect The Disability Community. Using an expanded or supplemented set of ACS-6 questions would provide essential continuity.