• Privacy Policy

Research Method

Home » Research Report – Example, Writing Guide and Types

Research Report – Example, Writing Guide and Types

Table of Contents

Research Report

Research Report

Definition:

Research Report is a written document that presents the results of a research project or study, including the research question, methodology, results, and conclusions, in a clear and objective manner.

The purpose of a research report is to communicate the findings of the research to the intended audience, which could be other researchers, stakeholders, or the general public.

Components of Research Report

Components of Research Report are as follows:

Introduction

The introduction sets the stage for the research report and provides a brief overview of the research question or problem being investigated. It should include a clear statement of the purpose of the study and its significance or relevance to the field of research. It may also provide background information or a literature review to help contextualize the research.

Literature Review

The literature review provides a critical analysis and synthesis of the existing research and scholarship relevant to the research question or problem. It should identify the gaps, inconsistencies, and contradictions in the literature and show how the current study addresses these issues. The literature review also establishes the theoretical framework or conceptual model that guides the research.

Methodology

The methodology section describes the research design, methods, and procedures used to collect and analyze data. It should include information on the sample or participants, data collection instruments, data collection procedures, and data analysis techniques. The methodology should be clear and detailed enough to allow other researchers to replicate the study.

The results section presents the findings of the study in a clear and objective manner. It should provide a detailed description of the data and statistics used to answer the research question or test the hypothesis. Tables, graphs, and figures may be included to help visualize the data and illustrate the key findings.

The discussion section interprets the results of the study and explains their significance or relevance to the research question or problem. It should also compare the current findings with those of previous studies and identify the implications for future research or practice. The discussion should be based on the results presented in the previous section and should avoid speculation or unfounded conclusions.

The conclusion summarizes the key findings of the study and restates the main argument or thesis presented in the introduction. It should also provide a brief overview of the contributions of the study to the field of research and the implications for practice or policy.

The references section lists all the sources cited in the research report, following a specific citation style, such as APA or MLA.

The appendices section includes any additional material, such as data tables, figures, or instruments used in the study, that could not be included in the main text due to space limitations.

Types of Research Report

Types of Research Report are as follows:

Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master’s or Doctoral degree, although it can also be written by researchers or scholars in other fields.

Research Paper

Research paper is a type of research report. A research paper is a document that presents the results of a research study or investigation. Research papers can be written in a variety of fields, including science, social science, humanities, and business. They typically follow a standard format that includes an introduction, literature review, methodology, results, discussion, and conclusion sections.

Technical Report

A technical report is a detailed report that provides information about a specific technical or scientific problem or project. Technical reports are often used in engineering, science, and other technical fields to document research and development work.

Progress Report

A progress report provides an update on the progress of a research project or program over a specific period of time. Progress reports are typically used to communicate the status of a project to stakeholders, funders, or project managers.

Feasibility Report

A feasibility report assesses the feasibility of a proposed project or plan, providing an analysis of the potential risks, benefits, and costs associated with the project. Feasibility reports are often used in business, engineering, and other fields to determine the viability of a project before it is undertaken.

Field Report

A field report documents observations and findings from fieldwork, which is research conducted in the natural environment or setting. Field reports are often used in anthropology, ecology, and other social and natural sciences.

Experimental Report

An experimental report documents the results of a scientific experiment, including the hypothesis, methods, results, and conclusions. Experimental reports are often used in biology, chemistry, and other sciences to communicate the results of laboratory experiments.

Case Study Report

A case study report provides an in-depth analysis of a specific case or situation, often used in psychology, social work, and other fields to document and understand complex cases or phenomena.

Literature Review Report

A literature review report synthesizes and summarizes existing research on a specific topic, providing an overview of the current state of knowledge on the subject. Literature review reports are often used in social sciences, education, and other fields to identify gaps in the literature and guide future research.

Research Report Example

Following is a Research Report Example sample for Students:

Title: The Impact of Social Media on Academic Performance among High School Students

This study aims to investigate the relationship between social media use and academic performance among high school students. The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The findings indicate that there is a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students. The results of this study have important implications for educators, parents, and policymakers, as they highlight the need for strategies that can help students balance their social media use and academic responsibilities.

Introduction:

Social media has become an integral part of the lives of high school students. With the widespread use of social media platforms such as Facebook, Twitter, Instagram, and Snapchat, students can connect with friends, share photos and videos, and engage in discussions on a range of topics. While social media offers many benefits, concerns have been raised about its impact on academic performance. Many studies have found a negative correlation between social media use and academic performance among high school students (Kirschner & Karpinski, 2010; Paul, Baker, & Cochran, 2012).

Given the growing importance of social media in the lives of high school students, it is important to investigate its impact on academic performance. This study aims to address this gap by examining the relationship between social media use and academic performance among high school students.

Methodology:

The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The questionnaire was developed based on previous studies and was designed to measure the frequency and duration of social media use, as well as academic performance.

The participants were selected using a convenience sampling technique, and the survey questionnaire was distributed in the classroom during regular school hours. The data collected were analyzed using descriptive statistics and correlation analysis.

The findings indicate that the majority of high school students use social media platforms on a daily basis, with Facebook being the most popular platform. The results also show a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students.

Discussion:

The results of this study have important implications for educators, parents, and policymakers. The negative correlation between social media use and academic performance suggests that strategies should be put in place to help students balance their social media use and academic responsibilities. For example, educators could incorporate social media into their teaching strategies to engage students and enhance learning. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. Policymakers could develop guidelines and policies to regulate social media use among high school students.

Conclusion:

In conclusion, this study provides evidence of the negative impact of social media on academic performance among high school students. The findings highlight the need for strategies that can help students balance their social media use and academic responsibilities. Further research is needed to explore the specific mechanisms by which social media use affects academic performance and to develop effective strategies for addressing this issue.

Limitations:

One limitation of this study is the use of convenience sampling, which limits the generalizability of the findings to other populations. Future studies should use random sampling techniques to increase the representativeness of the sample. Another limitation is the use of self-reported measures, which may be subject to social desirability bias. Future studies could use objective measures of social media use and academic performance, such as tracking software and school records.

Implications:

The findings of this study have important implications for educators, parents, and policymakers. Educators could incorporate social media into their teaching strategies to engage students and enhance learning. For example, teachers could use social media platforms to share relevant educational resources and facilitate online discussions. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. They could also engage in open communication with their children to understand their social media use and its impact on their academic performance. Policymakers could develop guidelines and policies to regulate social media use among high school students. For example, schools could implement social media policies that restrict access during class time and encourage responsible use.

References:

  • Kirschner, P. A., & Karpinski, A. C. (2010). Facebook® and academic performance. Computers in Human Behavior, 26(6), 1237-1245.
  • Paul, J. A., Baker, H. M., & Cochran, J. D. (2012). Effect of online social networking on student academic performance. Journal of the Research Center for Educational Technology, 8(1), 1-19.
  • Pantic, I. (2014). Online social networking and mental health. Cyberpsychology, Behavior, and Social Networking, 17(10), 652-657.
  • Rosen, L. D., Carrier, L. M., & Cheever, N. A. (2013). Facebook and texting made me do it: Media-induced task-switching while studying. Computers in Human Behavior, 29(3), 948-958.

Note*: Above mention, Example is just a sample for the students’ guide. Do not directly copy and paste as your College or University assignment. Kindly do some research and Write your own.

Applications of Research Report

Research reports have many applications, including:

  • Communicating research findings: The primary application of a research report is to communicate the results of a study to other researchers, stakeholders, or the general public. The report serves as a way to share new knowledge, insights, and discoveries with others in the field.
  • Informing policy and practice : Research reports can inform policy and practice by providing evidence-based recommendations for decision-makers. For example, a research report on the effectiveness of a new drug could inform regulatory agencies in their decision-making process.
  • Supporting further research: Research reports can provide a foundation for further research in a particular area. Other researchers may use the findings and methodology of a report to develop new research questions or to build on existing research.
  • Evaluating programs and interventions : Research reports can be used to evaluate the effectiveness of programs and interventions in achieving their intended outcomes. For example, a research report on a new educational program could provide evidence of its impact on student performance.
  • Demonstrating impact : Research reports can be used to demonstrate the impact of research funding or to evaluate the success of research projects. By presenting the findings and outcomes of a study, research reports can show the value of research to funders and stakeholders.
  • Enhancing professional development : Research reports can be used to enhance professional development by providing a source of information and learning for researchers and practitioners in a particular field. For example, a research report on a new teaching methodology could provide insights and ideas for educators to incorporate into their own practice.

How to write Research Report

Here are some steps you can follow to write a research report:

  • Identify the research question: The first step in writing a research report is to identify your research question. This will help you focus your research and organize your findings.
  • Conduct research : Once you have identified your research question, you will need to conduct research to gather relevant data and information. This can involve conducting experiments, reviewing literature, or analyzing data.
  • Organize your findings: Once you have gathered all of your data, you will need to organize your findings in a way that is clear and understandable. This can involve creating tables, graphs, or charts to illustrate your results.
  • Write the report: Once you have organized your findings, you can begin writing the report. Start with an introduction that provides background information and explains the purpose of your research. Next, provide a detailed description of your research methods and findings. Finally, summarize your results and draw conclusions based on your findings.
  • Proofread and edit: After you have written your report, be sure to proofread and edit it carefully. Check for grammar and spelling errors, and make sure that your report is well-organized and easy to read.
  • Include a reference list: Be sure to include a list of references that you used in your research. This will give credit to your sources and allow readers to further explore the topic if they choose.
  • Format your report: Finally, format your report according to the guidelines provided by your instructor or organization. This may include formatting requirements for headings, margins, fonts, and spacing.

Purpose of Research Report

The purpose of a research report is to communicate the results of a research study to a specific audience, such as peers in the same field, stakeholders, or the general public. The report provides a detailed description of the research methods, findings, and conclusions.

Some common purposes of a research report include:

  • Sharing knowledge: A research report allows researchers to share their findings and knowledge with others in their field. This helps to advance the field and improve the understanding of a particular topic.
  • Identifying trends: A research report can identify trends and patterns in data, which can help guide future research and inform decision-making.
  • Addressing problems: A research report can provide insights into problems or issues and suggest solutions or recommendations for addressing them.
  • Evaluating programs or interventions : A research report can evaluate the effectiveness of programs or interventions, which can inform decision-making about whether to continue, modify, or discontinue them.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies.

When to Write Research Report

A research report should be written after completing the research study. This includes collecting data, analyzing the results, and drawing conclusions based on the findings. Once the research is complete, the report should be written in a timely manner while the information is still fresh in the researcher’s mind.

In academic settings, research reports are often required as part of coursework or as part of a thesis or dissertation. In this case, the report should be written according to the guidelines provided by the instructor or institution.

In other settings, such as in industry or government, research reports may be required to inform decision-making or to comply with regulatory requirements. In these cases, the report should be written as soon as possible after the research is completed in order to inform decision-making in a timely manner.

Overall, the timing of when to write a research report depends on the purpose of the research, the expectations of the audience, and any regulatory requirements that need to be met. However, it is important to complete the report in a timely manner while the information is still fresh in the researcher’s mind.

Characteristics of Research Report

There are several characteristics of a research report that distinguish it from other types of writing. These characteristics include:

  • Objective: A research report should be written in an objective and unbiased manner. It should present the facts and findings of the research study without any personal opinions or biases.
  • Systematic: A research report should be written in a systematic manner. It should follow a clear and logical structure, and the information should be presented in a way that is easy to understand and follow.
  • Detailed: A research report should be detailed and comprehensive. It should provide a thorough description of the research methods, results, and conclusions.
  • Accurate : A research report should be accurate and based on sound research methods. The findings and conclusions should be supported by data and evidence.
  • Organized: A research report should be well-organized. It should include headings and subheadings to help the reader navigate the report and understand the main points.
  • Clear and concise: A research report should be written in clear and concise language. The information should be presented in a way that is easy to understand, and unnecessary jargon should be avoided.
  • Citations and references: A research report should include citations and references to support the findings and conclusions. This helps to give credit to other researchers and to provide readers with the opportunity to further explore the topic.

Advantages of Research Report

Research reports have several advantages, including:

  • Communicating research findings: Research reports allow researchers to communicate their findings to a wider audience, including other researchers, stakeholders, and the general public. This helps to disseminate knowledge and advance the understanding of a particular topic.
  • Providing evidence for decision-making : Research reports can provide evidence to inform decision-making, such as in the case of policy-making, program planning, or product development. The findings and conclusions can help guide decisions and improve outcomes.
  • Supporting further research: Research reports can provide a foundation for further research on a particular topic. Other researchers can build on the findings and conclusions of the report, which can lead to further discoveries and advancements in the field.
  • Demonstrating expertise: Research reports can demonstrate the expertise of the researchers and their ability to conduct rigorous and high-quality research. This can be important for securing funding, promotions, and other professional opportunities.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies. Producing a high-quality research report can help ensure compliance with these requirements.

Limitations of Research Report

Despite their advantages, research reports also have some limitations, including:

  • Time-consuming: Conducting research and writing a report can be a time-consuming process, particularly for large-scale studies. This can limit the frequency and speed of producing research reports.
  • Expensive: Conducting research and producing a report can be expensive, particularly for studies that require specialized equipment, personnel, or data. This can limit the scope and feasibility of some research studies.
  • Limited generalizability: Research studies often focus on a specific population or context, which can limit the generalizability of the findings to other populations or contexts.
  • Potential bias : Researchers may have biases or conflicts of interest that can influence the findings and conclusions of the research study. Additionally, participants may also have biases or may not be representative of the larger population, which can limit the validity and reliability of the findings.
  • Accessibility: Research reports may be written in technical or academic language, which can limit their accessibility to a wider audience. Additionally, some research may be behind paywalls or require specialized access, which can limit the ability of others to read and use the findings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

What is a Hypothesis

What is a Hypothesis – Types, Examples and...

Research Methodology

Research Methodology – Types, Examples and...

Research Project

Research Project – Definition, Writing Guide and...

Significance of the Study

Significance of the Study – Examples and Writing...

Ethical Considerations

Ethical Considerations – Types, Examples and...

Data Verification

Data Verification – Process, Types and Examples

  • Research Report: Definition, Types + [Writing Guide]

busayo.longe

One of the reasons for carrying out research is to add to the existing body of knowledge. Therefore, when conducting research, you need to document your processes and findings in a research report. 

With a research report, it is easy to outline the findings of your systematic investigation and any gaps needing further inquiry. Knowing how to create a detailed research report will prove useful when you need to conduct research.  

What is a Research Report?

A research report is a well-crafted document that outlines the processes, data, and findings of a systematic investigation. It is an important document that serves as a first-hand account of the research process, and it is typically considered an objective and accurate source of information.

In many ways, a research report can be considered as a summary of the research process that clearly highlights findings, recommendations, and other important details. Reading a well-written research report should provide you with all the information you need about the core areas of the research process.

Features of a Research Report 

So how do you recognize a research report when you see one? Here are some of the basic features that define a research report. 

  • It is a detailed presentation of research processes and findings, and it usually includes tables and graphs. 
  • It is written in a formal language.
  • A research report is usually written in the third person.
  • It is informative and based on first-hand verifiable information.
  • It is formally structured with headings, sections, and bullet points.
  • It always includes recommendations for future actions. 

Types of Research Report 

The research report is classified based on two things; nature of research and target audience.

Nature of Research

  • Qualitative Research Report

This is the type of report written for qualitative research . It outlines the methods, processes, and findings of a qualitative method of systematic investigation. In educational research, a qualitative research report provides an opportunity for one to apply his or her knowledge and develop skills in planning and executing qualitative research projects.

A qualitative research report is usually descriptive in nature. Hence, in addition to presenting details of the research process, you must also create a descriptive narrative of the information.

  • Quantitative Research Report

A quantitative research report is a type of research report that is written for quantitative research. Quantitative research is a type of systematic investigation that pays attention to numerical or statistical values in a bid to find answers to research questions. 

In this type of research report, the researcher presents quantitative data to support the research process and findings. Unlike a qualitative research report that is mainly descriptive, a quantitative research report works with numbers; that is, it is numerical in nature. 

Target Audience

Also, a research report can be said to be technical or popular based on the target audience. If you’re dealing with a general audience, you would need to present a popular research report, and if you’re dealing with a specialized audience, you would submit a technical report. 

  • Technical Research Report

A technical research report is a detailed document that you present after carrying out industry-based research. This report is highly specialized because it provides information for a technical audience; that is, individuals with above-average knowledge in the field of study. 

In a technical research report, the researcher is expected to provide specific information about the research process, including statistical analyses and sampling methods. Also, the use of language is highly specialized and filled with jargon. 

Examples of technical research reports include legal and medical research reports. 

  • Popular Research Report

A popular research report is one for a general audience; that is, for individuals who do not necessarily have any knowledge in the field of study. A popular research report aims to make information accessible to everyone. 

It is written in very simple language, which makes it easy to understand the findings and recommendations. Examples of popular research reports are the information contained in newspapers and magazines. 

Importance of a Research Report 

  • Knowledge Transfer: As already stated above, one of the reasons for carrying out research is to contribute to the existing body of knowledge, and this is made possible with a research report. A research report serves as a means to effectively communicate the findings of a systematic investigation to all and sundry.  
  • Identification of Knowledge Gaps: With a research report, you’d be able to identify knowledge gaps for further inquiry. A research report shows what has been done while hinting at other areas needing systematic investigation. 
  • In market research, a research report would help you understand the market needs and peculiarities at a glance. 
  • A research report allows you to present information in a precise and concise manner. 
  • It is time-efficient and practical because, in a research report, you do not have to spend time detailing the findings of your research work in person. You can easily send out the report via email and have stakeholders look at it. 

Guide to Writing a Research Report

A lot of detail goes into writing a research report, and getting familiar with the different requirements would help you create the ideal research report. A research report is usually broken down into multiple sections, which allows for a concise presentation of information.

Structure and Example of a Research Report

This is the title of your systematic investigation. Your title should be concise and point to the aims, objectives, and findings of a research report. 

  • Table of Contents

This is like a compass that makes it easier for readers to navigate the research report.

An abstract is an overview that highlights all important aspects of the research including the research method, data collection process, and research findings. Think of an abstract as a summary of your research report that presents pertinent information in a concise manner. 

An abstract is always brief; typically 100-150 words and goes straight to the point. The focus of your research abstract should be the 5Ws and 1H format – What, Where, Why, When, Who and How. 

  • Introduction

Here, the researcher highlights the aims and objectives of the systematic investigation as well as the problem which the systematic investigation sets out to solve. When writing the report introduction, it is also essential to indicate whether the purposes of the research were achieved or would require more work.

In the introduction section, the researcher specifies the research problem and also outlines the significance of the systematic investigation. Also, the researcher is expected to outline any jargons and terminologies that are contained in the research.  

  • Literature Review

A literature review is a written survey of existing knowledge in the field of study. In other words, it is the section where you provide an overview and analysis of different research works that are relevant to your systematic investigation. 

It highlights existing research knowledge and areas needing further investigation, which your research has sought to fill. At this stage, you can also hint at your research hypothesis and its possible implications for the existing body of knowledge in your field of study. 

  • An Account of Investigation

This is a detailed account of the research process, including the methodology, sample, and research subjects. Here, you are expected to provide in-depth information on the research process including the data collection and analysis procedures. 

In a quantitative research report, you’d need to provide information surveys, questionnaires and other quantitative data collection methods used in your research. In a qualitative research report, you are expected to describe the qualitative data collection methods used in your research including interviews and focus groups. 

In this section, you are expected to present the results of the systematic investigation. 

This section further explains the findings of the research, earlier outlined. Here, you are expected to present a justification for each outcome and show whether the results are in line with your hypotheses or if other research studies have come up with similar results.

  • Conclusions

This is a summary of all the information in the report. It also outlines the significance of the entire study. 

  • References and Appendices

This section contains a list of all the primary and secondary research sources. 

Tips for Writing a Research Report

  • Define the Context for the Report

As is obtainable when writing an essay, defining the context for your research report would help you create a detailed yet concise document. This is why you need to create an outline before writing so that you do not miss out on anything. 

  • Define your Audience

Writing with your audience in mind is essential as it determines the tone of the report. If you’re writing for a general audience, you would want to present the information in a simple and relatable manner. For a specialized audience, you would need to make use of technical and field-specific terms. 

  • Include Significant Findings

The idea of a research report is to present some sort of abridged version of your systematic investigation. In your report, you should exclude irrelevant information while highlighting only important data and findings. 

  • Include Illustrations

Your research report should include illustrations and other visual representations of your data. Graphs, pie charts, and relevant images lend additional credibility to your systematic investigation.

  • Choose the Right Title

A good research report title is brief, precise, and contains keywords from your research. It should provide a clear idea of your systematic investigation so that readers can grasp the entire focus of your research from the title. 

  • Proofread the Report

Before publishing the document, ensure that you give it a second look to authenticate the information. If you can, get someone else to go through the report, too, and you can also run it through proofreading and editing software. 

How to Gather Research Data for Your Report  

  • Understand the Problem

Every research aims at solving a specific problem or set of problems, and this should be at the back of your mind when writing your research report. Understanding the problem would help you to filter the information you have and include only important data in your report. 

  • Know what your report seeks to achieve

This is somewhat similar to the point above because, in some way, the aim of your research report is intertwined with the objectives of your systematic investigation. Identifying the primary purpose of writing a research report would help you to identify and present the required information accordingly. 

  • Identify your audience

Knowing your target audience plays a crucial role in data collection for a research report. If your research report is specifically for an organization, you would want to present industry-specific information or show how the research findings are relevant to the work that the company does. 

  • Create Surveys/Questionnaires

A survey is a research method that is used to gather data from a specific group of people through a set of questions. It can be either quantitative or qualitative. 

A survey is usually made up of structured questions, and it can be administered online or offline. However, an online survey is a more effective method of research data collection because it helps you save time and gather data with ease. 

You can seamlessly create an online questionnaire for your research on Formplus . With the multiple sharing options available in the builder, you would be able to administer your survey to respondents in little or no time. 

Formplus also has a report summary too l that you can use to create custom visual reports for your research.

Step-by-step guide on how to create an online questionnaire using Formplus  

  • Sign into Formplus

In the Formplus builder, you can easily create different online questionnaires for your research by dragging and dropping preferred fields into your form. To access the Formplus builder, you will need to create an account on Formplus. 

Once you do this, sign in to your account and click on Create new form to begin. 

  • Edit Form Title : Click on the field provided to input your form title, for example, “Research Questionnaire.”
  • Edit Form : Click on the edit icon to edit the form.
  • Add Fields : Drag and drop preferred form fields into your form in the Formplus builder inputs column. There are several field input options for questionnaires in the Formplus builder. 
  • Edit fields
  • Click on “Save”
  • Form Customization: With the form customization options in the form builder, you can easily change the outlook of your form and make it more unique and personalized. Formplus allows you to change your form theme, add background images, and even change the font according to your needs. 
  • Multiple Sharing Options: Formplus offers various form-sharing options, which enables you to share your questionnaire with respondents easily. You can use the direct social media sharing buttons to share your form link to your organization’s social media pages.  You can also send out your survey form as email invitations to your research subjects too. If you wish, you can share your form’s QR code or embed it on your organization’s website for easy access. 

Conclusion  

Always remember that a research report is just as important as the actual systematic investigation because it plays a vital role in communicating research findings to everyone else. This is why you must take care to create a concise document summarizing the process of conducting any research. 

In this article, we’ve outlined essential tips to help you create a research report. When writing your report, you should always have the audience at the back of your mind, as this would set the tone for the document. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • ethnographic research survey
  • research report
  • research report survey
  • busayo.longe

Formplus

You may also like:

Assessment Tools: Types, Examples & Importance

In this article, you’ll learn about different assessment tools to help you evaluate performance in various contexts

3 types of research report

Ethnographic Research: Types, Methods + [Question Examples]

Simple guide on ethnographic research, it types, methods, examples and advantages. Also highlights how to conduct an ethnographic...

21 Chrome Extensions for Academic Researchers in 2022

In this article, we will discuss a number of chrome extensions you can use to make your research process even seamless

How to Write a Problem Statement for your Research

Learn how to write problem statements before commencing any research effort. Learn about its structure and explore examples

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

3 types of research report

Home Market Research

Research Reports: Definition and How to Write Them

Research Reports

Reports are usually spread across a vast horizon of topics but are focused on communicating information about a particular topic and a niche target market. The primary motive of research reports is to convey integral details about a study for marketers to consider while designing new strategies.

Certain events, facts, and other information based on incidents need to be relayed to the people in charge, and creating research reports is the most effective communication tool. Ideal research reports are extremely accurate in the offered information with a clear objective and conclusion. These reports should have a clean and structured format to relay information effectively.

What are Research Reports?

Research reports are recorded data prepared by researchers or statisticians after analyzing the information gathered by conducting organized research, typically in the form of surveys or qualitative methods .

A research report is a reliable source to recount details about a conducted research. It is most often considered to be a true testimony of all the work done to garner specificities of research.

The various sections of a research report are:

  • Background/Introduction
  • Implemented Methods
  • Results based on Analysis
  • Deliberation

Learn more: Quantitative Research

Components of Research Reports

Research is imperative for launching a new product/service or a new feature. The markets today are extremely volatile and competitive due to new entrants every day who may or may not provide effective products. An organization needs to make the right decisions at the right time to be relevant in such a market with updated products that suffice customer demands.

The details of a research report may change with the purpose of research but the main components of a report will remain constant. The research approach of the market researcher also influences the style of writing reports. Here are seven main components of a productive research report:

  • Research Report Summary: The entire objective along with the overview of research are to be included in a summary which is a couple of paragraphs in length. All the multiple components of the research are explained in brief under the report summary.  It should be interesting enough to capture all the key elements of the report.
  • Research Introduction: There always is a primary goal that the researcher is trying to achieve through a report. In the introduction section, he/she can cover answers related to this goal and establish a thesis which will be included to strive and answer it in detail.  This section should answer an integral question: “What is the current situation of the goal?”.  After the research design was conducted, did the organization conclude the goal successfully or they are still a work in progress –  provide such details in the introduction part of the research report.
  • Research Methodology: This is the most important section of the report where all the important information lies. The readers can gain data for the topic along with analyzing the quality of provided content and the research can also be approved by other market researchers . Thus, this section needs to be highly informative with each aspect of research discussed in detail.  Information needs to be expressed in chronological order according to its priority and importance. Researchers should include references in case they gained information from existing techniques.
  • Research Results: A short description of the results along with calculations conducted to achieve the goal will form this section of results. Usually, the exposition after data analysis is carried out in the discussion part of the report.

Learn more: Quantitative Data

  • Research Discussion: The results are discussed in extreme detail in this section along with a comparative analysis of reports that could probably exist in the same domain. Any abnormality uncovered during research will be deliberated in the discussion section.  While writing research reports, the researcher will have to connect the dots on how the results will be applicable in the real world.
  • Research References and Conclusion: Conclude all the research findings along with mentioning each and every author, article or any content piece from where references were taken.

Learn more: Qualitative Observation

15 Tips for Writing Research Reports

Writing research reports in the manner can lead to all the efforts going down the drain. Here are 15 tips for writing impactful research reports:

  • Prepare the context before starting to write and start from the basics:  This was always taught to us in school – be well-prepared before taking a plunge into new topics. The order of survey questions might not be the ideal or most effective order for writing research reports. The idea is to start with a broader topic and work towards a more specific one and focus on a conclusion or support, which a research should support with the facts.  The most difficult thing to do in reporting, without a doubt is to start. Start with the title, the introduction, then document the first discoveries and continue from that. Once the marketers have the information well documented, they can write a general conclusion.
  • Keep the target audience in mind while selecting a format that is clear, logical and obvious to them:  Will the research reports be presented to decision makers or other researchers? What are the general perceptions around that topic? This requires more care and diligence. A researcher will need a significant amount of information to start writing the research report. Be consistent with the wording, the numbering of the annexes and so on. Follow the approved format of the company for the delivery of research reports and demonstrate the integrity of the project with the objectives of the company.
  • Have a clear research objective: A researcher should read the entire proposal again, and make sure that the data they provide contributes to the objectives that were raised from the beginning. Remember that speculations are for conversations, not for research reports, if a researcher speculates, they directly question their own research.
  • Establish a working model:  Each study must have an internal logic, which will have to be established in the report and in the evidence. The researchers’ worst nightmare is to be required to write research reports and realize that key questions were not included.

Learn more: Quantitative Observation

  • Gather all the information about the research topic. Who are the competitors of our customers? Talk to other researchers who have studied the subject of research, know the language of the industry. Misuse of the terms can discourage the readers of research reports from reading further.
  • Read aloud while writing. While reading the report, if the researcher hears something inappropriate, for example, if they stumble over the words when reading them, surely the reader will too. If the researcher can’t put an idea in a single sentence, then it is very long and they must change it so that the idea is clear to everyone.
  • Check grammar and spelling. Without a doubt, good practices help to understand the report. Use verbs in the present tense. Consider using the present tense, which makes the results sound more immediate. Find new words and other ways of saying things. Have fun with the language whenever possible.
  • Discuss only the discoveries that are significant. If some data are not really significant, do not mention them. Remember that not everything is truly important or essential within research reports.

Learn more: Qualitative Data

  • Try and stick to the survey questions. For example, do not say that the people surveyed “were worried” about an research issue , when there are different degrees of concern.
  • The graphs must be clear enough so that they understand themselves. Do not let graphs lead the reader to make mistakes: give them a title, include the indications, the size of the sample, and the correct wording of the question.
  • Be clear with messages. A researcher should always write every section of the report with an accuracy of details and language.
  • Be creative with titles – Particularly in segmentation studies choose names “that give life to research”. Such names can survive for a long time after the initial investigation.
  • Create an effective conclusion: The conclusion in the research reports is the most difficult to write, but it is an incredible opportunity to excel. Make a precise summary. Sometimes it helps to start the conclusion with something specific, then it describes the most important part of the study, and finally, it provides the implications of the conclusions.
  • Get a couple more pair of eyes to read the report. Writers have trouble detecting their own mistakes. But they are responsible for what is presented. Ensure it has been approved by colleagues or friends before sending the find draft out.

Learn more: Market Research and Analysis

MORE LIKE THIS

Raked Weighting

Raked Weighting: A Key Tool for Accurate Survey Results

May 31, 2024

Data trends

Top 8 Data Trends to Understand the Future of Data

May 30, 2024

interactive presentation software

Top 12 Interactive Presentation Software to Engage Your User

May 29, 2024

Trend Report

Trend Report: Guide for Market Dynamics & Strategic Analysis

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Reference management. Clean and simple.

Types of research papers

3 types of research report

Analytical research paper

Argumentative or persuasive paper, definition paper, compare and contrast paper, cause and effect paper, interpretative paper, experimental research paper, survey research paper, frequently asked questions about the different types of research papers, related articles.

There are multiple different types of research papers. It is important to know which type of research paper is required for your assignment, as each type of research paper requires different preparation. Below is a list of the most common types of research papers.

➡️ Read more:  What is a research paper?

In an analytical research paper you:

  • pose a question
  • collect relevant data from other researchers
  • analyze their different viewpoints

You focus on the findings and conclusions of other researchers and then make a personal conclusion about the topic. It is important to stay neutral and not show your own negative or positive position on the matter.

The argumentative paper presents two sides of a controversial issue in one paper. It is aimed at getting the reader on the side of your point of view.

You should include and cite findings and arguments of different researchers on both sides of the issue, but then favor one side over the other and try to persuade the reader of your side. Your arguments should not be too emotional though, they still need to be supported with logical facts and statistical data.

Tip: Avoid expressing too much emotion in a persuasive paper.

The definition paper solely describes facts or objective arguments without using any personal emotion or opinion of the author. Its only purpose is to provide information. You should include facts from a variety of sources, but leave those facts unanalyzed.

Compare and contrast papers are used to analyze the difference between two:

Make sure to sufficiently describe both sides in the paper, and then move on to comparing and contrasting both thesis and supporting one.

Cause and effect papers are usually the first types of research papers that high school and college students write. They trace probable or expected results from a specific action and answer the main questions "Why?" and "What?", which reflect effects and causes.

In business and education fields, cause and effect papers will help trace a range of results that could arise from a particular action or situation.

An interpretative paper requires you to use knowledge that you have gained from a particular case study, for example a legal situation in law studies. You need to write the paper based on an established theoretical framework and use valid supporting data to back up your statement and conclusion.

This type of research paper basically describes a particular experiment in detail. It is common in fields like:

Experiments are aimed to explain a certain outcome or phenomenon with certain actions. You need to describe your experiment with supporting data and then analyze it sufficiently.

This research paper demands the conduction of a survey that includes asking questions to respondents. The conductor of the survey then collects all the information from the survey and analyzes it to present it in the research paper.

➡️ Ready to start your research paper? Take a look at our guide on how to start a research paper .

In an analytical research paper, you pose a question and then collect relevant data from other researchers to analyze their different viewpoints. You focus on the findings and conclusions of other researchers and then make a personal conclusion about the topic.

The definition paper solely describes facts or objective arguments without using any personal emotion or opinion of the author. Its only purpose is to provide information.

Cause and effect papers are usually the first types of research papers that high school and college students are confronted with. The answer questions like "Why?" and "What?", which reflect effects and causes. In business and education fields, cause and effect papers will help trace a range of results that could arise from a particular action or situation.

This type of research paper describes a particular experiment in detail. It is common in fields like biology, chemistry or physics. Experiments are aimed to explain a certain outcome or phenomenon with certain actions.

3 types of research report

Uncomplicated Reviews of Educational Research Methods

  • Writing a Research Report

.pdf version of this page

This review covers the basic elements of a research report. This is a general guide for what you will see in journal articles or dissertations. This format assumes a mixed methods study, but you can leave out either quantitative or qualitative sections if you only used a single methodology.

This review is divided into sections for easy reference. There are five MAJOR parts of a Research Report:

1.    Introduction 2.    Review of Literature 3.    Methods 4.    Results 5.    Discussion

As a general guide, the Introduction, Review of Literature, and Methods should be about 1/3 of your paper, Discussion 1/3, then Results 1/3.

Section 1 : Cover Sheet (APA format cover sheet) optional, if required.

Section 2: Abstract (a basic summary of the report, including sample, treatment, design, results, and implications) (≤ 150 words) optional, if required.

Section 3 : Introduction (1-3 paragraphs) •    Basic introduction •    Supportive statistics (can be from periodicals) •    Statement of Purpose •    Statement of Significance

Section 4 : Research question(s) or hypotheses •    An overall research question (optional) •    A quantitative-based (hypotheses) •    A qualitative-based (research questions) Note: You will generally have more than one, especially if using hypotheses.

Section 5: Review of Literature ▪    Should be organized by subheadings ▪    Should adequately support your study using supporting, related, and/or refuting evidence ▪    Is a synthesis, not a collection of individual summaries

Section 6: Methods ▪    Procedure: Describe data gathering or participant recruitment, including IRB approval ▪    Sample: Describe the sample or dataset, including basic demographics ▪    Setting: Describe the setting, if applicable (generally only in qualitative designs) ▪    Treatment: If applicable, describe, in detail, how you implemented the treatment ▪    Instrument: Describe, in detail, how you implemented the instrument; Describe the reliability and validity associated with the instrument ▪    Data Analysis: Describe type of procedure (t-test, interviews, etc.) and software (if used)

Section 7: Results ▪    Restate Research Question 1 (Quantitative) ▪    Describe results ▪    Restate Research Question 2 (Qualitative) ▪    Describe results

Section 8: Discussion ▪    Restate Overall Research Question ▪    Describe how the results, when taken together, answer the overall question ▪    ***Describe how the results confirm or contrast the literature you reviewed

Section 9: Recommendations (if applicable, generally related to practice)

Section 10: Limitations ▪    Discuss, in several sentences, the limitations of this study. ▪    Research Design (overall, then info about the limitations of each separately) ▪    Sample ▪    Instrument/s ▪    Other limitations

Section 11: Conclusion (A brief closing summary)

Section 12: References (APA format)

Share this:

About research rundowns.

Research Rundowns was made possible by support from the Dewar College of Education at Valdosta State University .

  • Experimental Design
  • What is Educational Research?
  • Writing Research Questions
  • Mixed Methods Research Designs
  • Qualitative Coding & Analysis
  • Qualitative Research Design
  • Correlation
  • Effect Size
  • Instrument, Validity, Reliability
  • Mean & Standard Deviation
  • Significance Testing (t-tests)
  • Steps 1-4: Finding Research
  • Steps 5-6: Analyzing & Organizing
  • Steps 7-9: Citing & Writing

Blog at WordPress.com.

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

Writing up a Research Report

  • First Online: 04 January 2024

Cite this chapter

3 types of research report

  • Stefan Hunziker 3 &
  • Michael Blankenagel 3  

447 Accesses

A research report is one big argument about how and why you came up with your conclusions. To make it a convincing argument, a typical guiding structure has developed. In the different chapters, there are distinct issues that need to be addressed to explain to the reader why your conclusions are valid. The governing principle for writing the report is full disclosure: to explain everything and ensure replicability by another researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Barros, L. O. (2016). The only academic phrasebook you’ll ever need . Createspace Independent Publishing Platform.

Google Scholar  

Field, A. (2016). An adventure in statistics. The reality enigma . SAGE.

Field, A. (2020). Discovering statistics using IBM SPSS statistics (5th ed.). SAGE.

Früh, M., Keimer, I., & Blankenagel, M. (2019). The impact of Balanced Scorecard excellence on shareholder returns. IFZ Working Paper No. 0003/2019. https://zenodo.org/record/2571603#.YMDUafkzZaQ . Accessed: 9 June 2021.

Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. Basic Books.

Yin, R. K. (2013). Case study research: Design and methods (5th ed.). SAGE.

Download references

Author information

Authors and affiliations.

Wirtschaft/IFZ, Campus Zug-Rotkreuz, Hochschule Luzern, Zug-Rotkreuz, Zug, Switzerland

Stefan Hunziker & Michael Blankenagel

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Stefan Hunziker .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Hunziker, S., Blankenagel, M. (2024). Writing up a Research Report. In: Research Design in Business and Management. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-42739-9_4

Download citation

DOI : https://doi.org/10.1007/978-3-658-42739-9_4

Published : 04 January 2024

Publisher Name : Springer Gabler, Wiesbaden

Print ISBN : 978-3-658-42738-2

Online ISBN : 978-3-658-42739-9

eBook Packages : Business and Management Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE: Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: May 30, 2024 9:38 AM
  • URL: https://libguides.usc.edu/writingguide

3 types of research report

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

Types of Research – Explained with Examples

DiscoverPhDs

  • By DiscoverPhDs
  • October 2, 2020

Types of Research Design

Types of Research

Research is about using established methods to investigate a problem or question in detail with the aim of generating new knowledge about it.

It is a vital tool for scientific advancement because it allows researchers to prove or refute hypotheses based on clearly defined parameters, environments and assumptions. Due to this, it enables us to confidently contribute to knowledge as it allows research to be verified and replicated.

Knowing the types of research and what each of them focuses on will allow you to better plan your project, utilises the most appropriate methodologies and techniques and better communicate your findings to other researchers and supervisors.

Classification of Types of Research

There are various types of research that are classified according to their objective, depth of study, analysed data, time required to study the phenomenon and other factors. It’s important to note that a research project will not be limited to one type of research, but will likely use several.

According to its Purpose

Theoretical research.

Theoretical research, also referred to as pure or basic research, focuses on generating knowledge , regardless of its practical application. Here, data collection is used to generate new general concepts for a better understanding of a particular field or to answer a theoretical research question.

Results of this kind are usually oriented towards the formulation of theories and are usually based on documentary analysis, the development of mathematical formulas and the reflection of high-level researchers.

Applied Research

Here, the goal is to find strategies that can be used to address a specific research problem. Applied research draws on theory to generate practical scientific knowledge, and its use is very common in STEM fields such as engineering, computer science and medicine.

This type of research is subdivided into two types:

  • Technological applied research : looks towards improving efficiency in a particular productive sector through the improvement of processes or machinery related to said productive processes.
  • Scientific applied research : has predictive purposes. Through this type of research design, we can measure certain variables to predict behaviours useful to the goods and services sector, such as consumption patterns and viability of commercial projects.

Methodology Research

According to your Depth of Scope

Exploratory research.

Exploratory research is used for the preliminary investigation of a subject that is not yet well understood or sufficiently researched. It serves to establish a frame of reference and a hypothesis from which an in-depth study can be developed that will enable conclusive results to be generated.

Because exploratory research is based on the study of little-studied phenomena, it relies less on theory and more on the collection of data to identify patterns that explain these phenomena.

Descriptive Research

The primary objective of descriptive research is to define the characteristics of a particular phenomenon without necessarily investigating the causes that produce it.

In this type of research, the researcher must take particular care not to intervene in the observed object or phenomenon, as its behaviour may change if an external factor is involved.

Explanatory Research

Explanatory research is the most common type of research method and is responsible for establishing cause-and-effect relationships that allow generalisations to be extended to similar realities. It is closely related to descriptive research, although it provides additional information about the observed object and its interactions with the environment.

Correlational Research

The purpose of this type of scientific research is to identify the relationship between two or more variables. A correlational study aims to determine whether a variable changes, how much the other elements of the observed system change.

According to the Type of Data Used

Qualitative research.

Qualitative methods are often used in the social sciences to collect, compare and interpret information, has a linguistic-semiotic basis and is used in techniques such as discourse analysis, interviews, surveys, records and participant observations.

In order to use statistical methods to validate their results, the observations collected must be evaluated numerically. Qualitative research, however, tends to be subjective, since not all data can be fully controlled. Therefore, this type of research design is better suited to extracting meaning from an event or phenomenon (the ‘why’) than its cause (the ‘how’).

Quantitative Research

Quantitative research study delves into a phenomena through quantitative data collection and using mathematical, statistical and computer-aided tools to measure them . This allows generalised conclusions to be projected over time.

Types of Research Methodology

According to the Degree of Manipulation of Variables

Experimental research.

It is about designing or replicating a phenomenon whose variables are manipulated under strictly controlled conditions in order to identify or discover its effect on another independent variable or object. The phenomenon to be studied is measured through study and control groups, and according to the guidelines of the scientific method.

Non-Experimental Research

Also known as an observational study, it focuses on the analysis of a phenomenon in its natural context. As such, the researcher does not intervene directly, but limits their involvement to measuring the variables required for the study. Due to its observational nature, it is often used in descriptive research.

Quasi-Experimental Research

It controls only some variables of the phenomenon under investigation and is therefore not entirely experimental. In this case, the study and the focus group cannot be randomly selected, but are chosen from existing groups or populations . This is to ensure the collected data is relevant and that the knowledge, perspectives and opinions of the population can be incorporated into the study.

According to the Type of Inference

Deductive investigation.

In this type of research, reality is explained by general laws that point to certain conclusions; conclusions are expected to be part of the premise of the research problem and considered correct if the premise is valid and the inductive method is applied correctly.

Inductive Research

In this type of research, knowledge is generated from an observation to achieve a generalisation. It is based on the collection of specific data to develop new theories.

Hypothetical-Deductive Investigation

It is based on observing reality to make a hypothesis, then use deduction to obtain a conclusion and finally verify or reject it through experience.

Descriptive Research Design

According to the Time in Which it is Carried Out

Longitudinal study (also referred to as diachronic research).

It is the monitoring of the same event, individual or group over a defined period of time. It aims to track changes in a number of variables and see how they evolve over time. It is often used in medical, psychological and social areas .

Cross-Sectional Study (also referred to as Synchronous Research)

Cross-sectional research design is used to observe phenomena, an individual or a group of research subjects at a given time.

According to The Sources of Information

Primary research.

This fundamental research type is defined by the fact that the data is collected directly from the source, that is, it consists of primary, first-hand information.

Secondary research

Unlike primary research, secondary research is developed with information from secondary sources, which are generally based on scientific literature and other documents compiled by another researcher.

Action Research Methods

According to How the Data is Obtained

Documentary (cabinet).

Documentary research, or secondary sources, is based on a systematic review of existing sources of information on a particular subject. This type of scientific research is commonly used when undertaking literature reviews or producing a case study.

Field research study involves the direct collection of information at the location where the observed phenomenon occurs.

From Laboratory

Laboratory research is carried out in a controlled environment in order to isolate a dependent variable and establish its relationship with other variables through scientific methods.

Mixed-Method: Documentary, Field and/or Laboratory

Mixed research methodologies combine results from both secondary (documentary) sources and primary sources through field or laboratory research.

DiscoverPhDs_Annotated_Bibliography_Literature_Review

Find out the differences between a Literature Review and an Annotated Bibliography, whey they should be used and how to write them.

Overcoming PhD Stress

PhD stress is real. Learn how to combat it with these 5 tips.

What is Tenure Track?

Tenure is a permanent position awarded to professors showing excellence in research and teaching. Find out more about the competitive position!

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

3 types of research report

Browse PhDs Now

3 types of research report

Considering whether to do an MBA or a PhD? If so, find out what their differences are, and more importantly, which one is better suited for you.

Covid-19 Guidance for Students

Stay up to date with current information being provided by the UK Government and Universities about the impact of the global pandemic on PhD research studies.

Chris Sampson Profile

Chris is making minor corrections to his PhD thesis post-viva at the University of Nottingham. His research was on optimising the cost-effectiveness of risk-based screening for diabetic retinopathy.

Daisy Shearer_Profile

Daisy’s a year and half into her PhD at the University of Surrey. Her research project is based around the control of electron spin state in InSb quantum wells using quantum point contacts.

Join Thousands of Students

Geektonight

  • Research Report
  • Post last modified: 11 January 2022
  • Reading time: 25 mins read
  • Post category: Research Methodology

Coursera 7-Day Trail offer

What is Research Report?

Research reporting is the oral or written presentation of the findings in such detail and form as to be readily understood and assessed by the society, economy or particularly by the researchers.

As earlier said that it is the final stage of the research process and its purpose is to convey to interested persons the whole result of the study. Report writing is common to both academic and managerial situations. In academics, a research report is prepared for comprehensive and application-oriented learning. In businesses or organisations, reports are used for the basis of decision making.

Table of Content

  • 1 What is Research Report?
  • 2 Research Report Definition
  • 3.1 Preliminary Part
  • 3.2 Introduction of the Report
  • 3.3 Review of Literature
  • 3.4 The Research Methodology
  • 3.5 Results
  • 3.6 Concluding Remarks
  • 3.7 Bibliography
  • 4 Significance of Report Writing
  • 5 Qualities of Good Report
  • 6.1 Analysis of the subject matter
  • 6.2 Research outline
  • 6.3 Preparation of rough draft
  • 6.4 Rewriting and polishing
  • 6.5 Writing the final draft
  • 7 Precautions for Writing Research Reports
  • 8.1.1 Technical Report
  • 8.1.2 Popular Report
  • 8.2.1 Written Report
  • 8.2.2 Oral Report

Research Report Definition

According to C. A. Brown , “A report is a communication from someone who has information to someone who wants to use that information.”

According to Goode and Hatt , “The preparation of report is the final stage of research, and it’s purpose is to convey to the interested persons the whole result of the study, in sufficient detail and so arranged as to enable each reader to comprehend the data and to determine for himself the validity of the conclusions.”

It is clear from the above definitions of a research report, it is a brief account of the problem of investigation, the justification of its selection and the procedure of analysis and interpretation. It is only a summary of the entire research proceedings.

In other words, it can be defined as written documents, which presents information in a specialized and concise manner.

Contents of Research Report

Although no hard and fast rules can be laid down, the report must contain the following points.

  • Acknowledgement
  • Table of contents
  • List of tables
  • List of graphs
  • Introduction
  • Background of the research study
  • Statement of the problem
  • Brief outline of the chapters
  • Books review
  • Review of articles published in books, journals, periodicals, etc
  • Review of articles published in leading newspapers
  • Working papers / discusssion paper / study reports
  • Articles on authorised websites
  • A broad conclusion and indications for further research
  • The theoretical framework (variables)
  • Model / hypothesis
  • Instruments for data collection
  • Data collection
  • Pilot study
  • Processing of data
  • Hypothesis / model testing
  • Data analysis and interpretation
  • Tables and figures
  • Conclusions
  • Shortcomings
  • Suggestions to the problems
  • Direction for further research

Preliminary Part

The preliminary part may have seven major components – cover, title, preface, acknowledgement, table of contents, list of tables, list of graphs. Long reports presented in book form have a cover made up of a card sheet. The cover contains title of the research report, the authority to whom the report is submitted, name of the author, etc.

The preface introduces the report to the readers. It gives a very brief introduction of the report. In the acknowledgements author mention names of persons and organisations that have extended co-operation and helped in the various stages of research. Table of contents is essential. It gives the title and page number of each chapter.

Introduction of the Report

The introduction of the research report should clearly and logically bring out the background of the problem addressed in the research. The purpose of the introduction is to introduce the research project to the readers. A clear statement of the problem with specific questions to be answered is presented in the introduction. It contains a brief outline of the chapters.

Review of Literature

The third section reviews the important literature related to the study. A comprehensive review of the research literature referred to must be made. Previous research studies and the important writings in the area under study should be reviewed. Review of literature is helpful to provide a background for the development of the present study.

The researcher may review concerned books, articles published in edited books, journals and periodicals. Researcher may also take review of articles published in leading newspapers. A researcher should study working papers/discussion papers/study reports. It is essential for a broad conclusion and indications for further research.

The Research Methodology

Research methodology is an integral part of the research. It should clearly indicate the universe and the selection of samples, techniques of data collection, analysis and interpretation, statistical techniques, etc.

Results contain pilot study, processing of data, hypothesis/model testing, data analysis and interpretation, tables and figures, etc. This is the heart of the research report. If a pilot study is planned to be used, it’s purpose should be given in the research methodology.

The collected data and the information should be edited, coded, tabulated and analysed with a view to arriving at a valid and authentic conclusion. Tables and figures are used to clarify the significant relationship. The results obtained through tables, graphs should be critically interpreted.

Concluding Remarks

The concluding remarks should discuss the results obtained in the earlier sections, as well as their usefulness and implications. It contains findings, conclusions, shortcomings, suggestions to the problem and direction for future research. Findings are statements of factual information based upon the data analysis.

Conclusions must clearly explain whether the hypothesis have been established and rejected. This part requires great expertise and preciseness. A report should also refer to the limitations of the applicability of the research inferences. It is essential to suggest the theoretical, practical and policy implications of the research. The suggestions should be supported by scientific and logical arguments. The future direction of research based on the work completed should also be outlined.

Bibliography

The bibliography is an alphabetic list of books, journal articles, reports, etc, published or unpublished, read, referred to, examined by the researcher in preparing the report. The bibliography should follow standard formats for books, journal articles, research reports.

The end of the research report may consist of appendices, listed in respect of all technical data. Appendices are for the purpose of providing detailed data or information that would be too cumbersome within the main body of the research report.

Significance of Report Writing

Report writing is an important communication medium in organisations. The most crucial findings might have come out through a research report. Report is common to academics and managers also. Reports are used for comprehensive and application oriented learning in academics. In organisations, reports are used for the basis of decision making. The importance of report writing can be discussed as under.

Through research reports, a manager or an executive can quickly get an idea of a current scenario which improves his information base for making sound decisions affecting future operations of the company or enterprise. The research report acts as a means of communication of various research findings to the interested parties, organisations and general public.

Good report writing play, a significant role of conveying unknown facts about the phenomenon to the concerned parties. This may provide new insights and new opportunities to the people. Research report plays a key role in making effective decisions in marketing, production, banking, materials, human resource development and government also. Good report writing is used for economic planning and optimum utilisation of resources for the development of a nation.

Report writing facilitates the validation of generalisation. A research report is an end product of research. As earlier said that report writing provides useful information in arriving at rational decisions that may reform the business and society. The findings, conclusions, suggestions and recommendations are useful to academicians, scholars and policymakers. Report writing provides reference material for further research in the same or similar areas of research to the concerned parties.

While preparing a research report, a researcher should take some proper precautions. Report writing should be simple, lucid and systematic. Report writing should be written speedily without interrupting the continuity of thought. The report writing should sustain the interest of readers.

Qualities of Good Report

Report writing is a highly skilled job. It is a process of analysing, understanding and consolidating the findings and projecting a meaningful view of the phenomenon studied. A good report writing is essential for effective communication.

Following are the essential qualities of good report:

  • A research report is essentially a scientific documentation. It should have a suggestive title, headings and sub-headings, paragraphs arranged in a logical sequence.
  • Good research report should include everything that is relevant and exclude everything that is irrelevant. It means that it should contain the facts rather than opinion.
  • The language of the report should be simple and unambiguous. It means that it should be free from biases of the researchers derived from the past experience. Confusion, pretentiousness and pomposity should be carefully guarded against. It means that the language of the report should be simple, employing appropriate words, idioms and expressions.
  • The report must be free from grammatical mistakes. It must be grammatically accurate. Faulty construction of sentences makes the meaning of the narrative obscure and ambiguous.
  • The report has to take into consideration two facts. Firstly, for whom the report is meant and secondly, what is his level of knowledge. The report has to look to the subject matter of the report and the fact as to the level of knowledge of the person for whom it is meant. Because all reports are not meant for research scholars.

Steps in Writing Research Report

Report writing is a time consuming and expensive exercise. Therefore, reports have to be very sharply focused in purpose content and readership. There is no single universally acceptable method of writing a research report.

Following are the general steps in writing a research report:

Analysis of the subject matter

Research outline, preparation of rough draft, rewriting and polishing, writing the final draft.

This is the first and important step in writing a research report. It is concerned with the development of a subject. Subject matter should be written in a clear, logical and concise manner. The style adopted should be open, straightforward and dignified and folk style language should be avoided.

The data, the reliability and validity of the results of the statistical analysis should be in the form of tables, figures and equations. All redundancy in the data or results presented should be eliminated.

The research outline is an organisational framework prepared by the researcher well in advance. It is an aid to logical organisation of material and a reminder of the points to be stressed in the report. In the process of writing, if need be, outline may be revised accordingly.

Time and place of the study, scope and limitations of the study, study design, summary of pilot study, methods of data collection, analysis interpretation, etc., may be included in a research outline.

Having prepared the primary and secondary data, the researcher has to prepare a rough draft. While preparing the rough draft, the researcher should keep the objectives of the research in mind, and focus on one objective at a time. The researcher should make a checklist of the important points that are necessary to be covered in the manuscript. A researcher should use dictionary and relevant reference materials as and when required.

This is an important step in writing a research report. It takes more time than a rough draft. While rewriting and polishing, a researcher should check the report for weakness in logical development or presentation. He should take breaks in between rewriting and polishing since this gives the time to incubate the ideas.

The last and important step is writing the final draft. The language of the report should be simple, employing appropriate words and expressions and should avoid vague expressions such as ‘it seems’ and ‘there may be’ etc.

It should not used personal pronouns, such as I, We, My, Us, etc and should substitute these by such expressions as a researcher, investigator, etc. Before the final drafting of the report, it is advisable that the researcher should prepare a first draft for critical considerations and possible improvements. It will be helpful in writing the final draft. Finally, the report should be logically outlined with the future directions of the research based on the work completed.

Precautions for Writing Research Reports

A research report is a means of conveying the research study to a specific target audience. The following precautions should be taken while preparing a research report:

  • Its hould belong enough to cover the subject and short enough to preserve interest.
  • It should not be dull and complicated.
  • It should be simple, without the usage of abstract terms and technical jargons.
  • It should offer ready availability of findings with the help of charts, tables and graphs, as readers prefer quick knowledge of main findings.
  • The layout of the report should be in accordance with the objectives of the research study.
  • There should be no grammatical errors and writing should adhere to the techniques of report writing in case of quotations, footnotes and documentations.
  • It should be original, intellectual and contribute to the solution of a problem or add knowledge to the concerned field.
  • Appendices should been listed with respect to all the technical data in the report.
  • It should be attractive, neat and clean, whether handwritten or typed.
  • The report writer should refrain from confusing the possessive form of the word ‘it’ is with ‘it’s.’ The accurate possessive form of ‘it is’ is ‘its.’ The use of ‘it’s’ is the contractive form of ‘it is.
  • A report should not have contractions. Examples are ‘didn’t’ or ‘it’s.’ In report writing, it is best to use the non-contractive form. Therefore, the examples would be replaced by ‘did not’ and ‘it is.’ Using ‘Figure’ instead of ‘Fig.’ and ‘Table’ instead of ‘Tab.’ will spare the reader of having to translate the abbreviations, while reading. If abbreviations are used, use them consistently throughout the report. For example, do not switch among ‘versus,’ and ‘vs’.
  • It is advisable to avoid using the word ‘very’ and other such words that try to embellish a description. They do not add any extra meaning and, therefore, should be dropped.
  • Repetition hampers lucidity. Report writers must avoid repeating the same word more than once within a sentence.
  • When you use the word ‘this’ or ‘these’ make sure you indicate to what you are referring. This reduces the ambiguity in your writing and helps to tie sentences together.
  • Do not use the word ‘they’ to refer to a singular person. You can either rewrite the sentence to avoid needing such a reference or use the singular ‘he or she.’

Types of Research Report

Research reports are designed in order to convey and record the information that will be of practical use to the reader. It is organized into distinct units of specific and highly visible information. The kind of audience addressed in the research report decides the type of report.

Research reports can be categorized on the following basis:

Classification on the Basis of Information

Classification on the basis of representation.

Following are the ways through which the results of the research report can be presented on the basis of information contained:

Technical Report

A technical report is written for other researchers. In writing the technical reports, the importance is mainly given to the methods that have been used to collect the information and data, the presumptions that are made and finally, the various presentation techniques that are used to present the findings and data.

Following are main features of a technical report:

  • Summary: It covers a brief analysis of the findings of the research in a very few pages. 
  • Nature: It contains the reasons for which the research is undertaken, the analysis and the data that is required in order to prepare a report. 
  • Methods employed: It contains a description of the methods that were employed in order to collect the data. 
  • Data: It covers a brief analysis of the various sources from which the data has been collected with their features and drawbacks 
  • Analysis of data and presentation of the findings: It contains the various forms through which the data that has been analysed can be presented. 
  • Conclusions: It contains a brief explanation of findings of the research. 
  • Bibliography: It contains a detailed analysis of the various bibliographies that have been used in order to conduct a research. 
  • Technical appendices: It contains the appendices for the technical matters and for questionnaires and mathematical derivations. 
  • Index: The index of the technical report must be provided at the end of the report.

Popular Report

A popular report is formulated when there is a need to draw conclusions of the findings of the research report. One of the main points of consideration that should be kept in mind while formulating a research report is that it must be simple and attractive. It must be written in a very simple manner that is understandable to all. It must also be made attractive by using large prints, various sub-headings and by giving cartoons occasionally.

Following are the main points that must be kept in mind while preparing a popular report:

  • Findings and their implications : While preparing a popular report, main importance is given to the findings of the information and the conclusions that can be drawn out of these findings.
  • Recommendations for action : If there are any deviations in the report then recommendations are made for taking corrective action in order to rectify the errors.
  • Objective of the study : In a popular report, the specific objective for which the research has been undertaken is presented.
  • Methods employed : The report must contain the various methods that has been employed in order to conduct a research.
  • Results : The results of the research findings must be presented in a suitable and appropriate manner by taking the help of charts and diagrams.
  • Technical appendices : The report must contain an in-depth information used to collect the data in the form of appendices.

Following are the ways through which the results of the research report can be presented on the basis of representation:

  • Writtenreport
  • Oral report

Written Report

A written report plays a vital role in every business operation. The manner in which an organization writes business letters and business reports creates an impression of its standard. Therefore, the organization should emphasize on the improvement of the writing skills of the employees in order to maintain effective relations with their customers.

Writing effective written reports requires a lot of hard work. Therefore, before you begin writing, it is important to know the objective, i.e., the purpose of writing, collection and organization of required data.

Oral Report

At times, oral presentation of the results that are drawn out of research is considered effective, particularly in cases where policy recommendations are to be made. This approach proves beneficial because it provides a medium of interaction between a listener and a speaker. This leads to a better understanding of the findings and their implications.

However, the main drawback of oral presentation is the lack of any permanent records related to the research. Oral presentation of the report is also effective when it is supported with various visual devices, such as slides, wall charts and whiteboards that help in better understanding of the research reports.

Business Ethics

( Click on Topic to Read )

  • What is Ethics?
  • What is Business Ethics?
  • Values, Norms, Beliefs and Standards in Business Ethics
  • Indian Ethos in Management
  • Ethical Issues in Marketing
  • Ethical Issues in HRM
  • Ethical Issues in IT
  • Ethical Issues in Production and Operations Management
  • Ethical Issues in Finance and Accounting
  • What is Corporate Governance?
  • What is Ownership Concentration?
  • What is Ownership Composition?
  • Types of Companies in India
  • Internal Corporate Governance
  • External Corporate Governance
  • Corporate Governance in India
  • What is Enterprise Risk Management (ERM)?
  • What is Assessment of Risk?
  • What is Risk Register?
  • Risk Management Committee

Corporate social responsibility (CSR)

  • Theories of CSR
  • Arguments Against CSR
  • Business Case for CSR
  • Importance of CSR in India
  • Drivers of Corporate Social Responsibility
  • Developing a CSR Strategy
  • Implement CSR Commitments
  • CSR Marketplace
  • CSR at Workplace
  • Environmental CSR
  • CSR with Communities and in Supply Chain
  • Community Interventions
  • CSR Monitoring
  • CSR Reporting
  • Voluntary Codes in CSR
  • What is Corporate Ethics?

Lean Six Sigma

  • What is Six Sigma?
  • What is Lean Six Sigma?
  • Value and Waste in Lean Six Sigma
  • Six Sigma Team
  • MAIC Six Sigma
  • Six Sigma in Supply Chains
  • What is Binomial, Poisson, Normal Distribution?
  • What is Sigma Level?
  • What is DMAIC in Six Sigma?
  • What is DMADV in Six Sigma?
  • Six Sigma Project Charter
  • Project Decomposition in Six Sigma
  • Critical to Quality (CTQ) Six Sigma
  • Process Mapping Six Sigma
  • Flowchart and SIPOC
  • Gage Repeatability and Reproducibility
  • Statistical Diagram
  • Lean Techniques for Optimisation Flow
  • Failure Modes and Effects Analysis (FMEA)
  • What is Process Audits?
  • Six Sigma Implementation at Ford
  • IBM Uses Six Sigma to Drive Behaviour Change
  • Research Methodology
  • What is Research?
  • What is Hypothesis?

Sampling Method

  • Research Methods

Data Collection in Research

  • Methods of Collecting Data
  • Application of Business Research
  • Levels of Measurement
  • What is Sampling?

Hypothesis Testing

  • What is Management?
  • Planning in Management
  • Decision Making in Management
  • What is Controlling?
  • What is Coordination?
  • What is Staffing?
  • Organization Structure
  • What is Departmentation?
  • Span of Control
  • What is Authority?
  • Centralization vs Decentralization
  • Organizing in Management
  • Schools of Management Thought
  • Classical Management Approach
  • Is Management an Art or Science?
  • Who is a Manager?

Operations Research

  • What is Operations Research?
  • Operation Research Models
  • Linear Programming
  • Linear Programming Graphic Solution
  • Linear Programming Simplex Method
  • Linear Programming Artificial Variable Technique
  • Duality in Linear Programming
  • Transportation Problem Initial Basic Feasible Solution
  • Transportation Problem Finding Optimal Solution
  • Project Network Analysis with Critical Path Method
  • Project Network Analysis Methods
  • Project Evaluation and Review Technique (PERT)
  • Simulation in Operation Research
  • Replacement Models in Operation Research

Operation Management

  • What is Strategy?
  • What is Operations Strategy?
  • Operations Competitive Dimensions
  • Operations Strategy Formulation Process
  • What is Strategic Fit?
  • Strategic Design Process
  • Focused Operations Strategy
  • Corporate Level Strategy
  • Expansion Strategies
  • Stability Strategies
  • Retrenchment Strategies
  • Competitive Advantage
  • Strategic Choice and Strategic Alternatives
  • What is Production Process?
  • What is Process Technology?
  • What is Process Improvement?
  • Strategic Capacity Management
  • Production and Logistics Strategy
  • Taxonomy of Supply Chain Strategies
  • Factors Considered in Supply Chain Planning
  • Operational and Strategic Issues in Global Logistics
  • Logistics Outsourcing Strategy
  • What is Supply Chain Mapping?
  • Supply Chain Process Restructuring
  • Points of Differentiation
  • Re-engineering Improvement in SCM
  • What is Supply Chain Drivers?
  • Supply Chain Operations Reference (SCOR) Model
  • Customer Service and Cost Trade Off
  • Internal and External Performance Measures
  • Linking Supply Chain and Business Performance
  • Netflix’s Niche Focused Strategy
  • Disney and Pixar Merger
  • Process Planning at Mcdonald’s

Service Operations Management

  • What is Service?
  • What is Service Operations Management?
  • What is Service Design?
  • Service Design Process
  • Service Delivery
  • What is Service Quality?
  • Gap Model of Service Quality
  • Juran Trilogy
  • Service Performance Measurement
  • Service Decoupling
  • IT Service Operation
  • Service Operations Management in Different Sector

Procurement Management

  • What is Procurement Management?
  • Procurement Negotiation
  • Types of Requisition
  • RFX in Procurement
  • What is Purchasing Cycle?
  • Vendor Managed Inventory
  • Internal Conflict During Purchasing Operation
  • Spend Analysis in Procurement
  • Sourcing in Procurement
  • Supplier Evaluation and Selection in Procurement
  • Blacklisting of Suppliers in Procurement
  • Total Cost of Ownership in Procurement
  • Incoterms in Procurement
  • Documents Used in International Procurement
  • Transportation and Logistics Strategy
  • What is Capital Equipment?
  • Procurement Process of Capital Equipment
  • Acquisition of Technology in Procurement
  • What is E-Procurement?
  • E-marketplace and Online Catalogues
  • Fixed Price and Cost Reimbursement Contracts
  • Contract Cancellation in Procurement
  • Ethics in Procurement
  • Legal Aspects of Procurement
  • Global Sourcing in Procurement
  • Intermediaries and Countertrade in Procurement

Strategic Management

  • What is Strategic Management?
  • What is Value Chain Analysis?
  • Mission Statement
  • Business Level Strategy
  • What is SWOT Analysis?
  • What is Competitive Advantage?
  • What is Vision?
  • What is Ansoff Matrix?
  • Prahalad and Gary Hammel
  • Strategic Management In Global Environment
  • Competitor Analysis Framework
  • Competitive Rivalry Analysis
  • Competitive Dynamics
  • What is Competitive Rivalry?
  • Five Competitive Forces That Shape Strategy
  • What is PESTLE Analysis?
  • Fragmentation and Consolidation Of Industries
  • What is Technology Life Cycle?
  • What is Diversification Strategy?
  • What is Corporate Restructuring Strategy?
  • Resources and Capabilities of Organization
  • Role of Leaders In Functional-Level Strategic Management
  • Functional Structure In Functional Level Strategy Formulation
  • Information And Control System
  • What is Strategy Gap Analysis?
  • Issues In Strategy Implementation
  • Matrix Organizational Structure
  • What is Strategic Management Process?

Supply Chain

  • What is Supply Chain Management?
  • Supply Chain Planning and Measuring Strategy Performance
  • What is Warehousing?
  • What is Packaging?
  • What is Inventory Management?
  • What is Material Handling?
  • What is Order Picking?
  • Receiving and Dispatch, Processes
  • What is Warehouse Design?
  • What is Warehousing Costs?

You Might Also Like

What is hypothesis definition, meaning, characteristics, sources, what is experiments variables, types, lab, field, what is measure of central tendency, data analysis in research, what is causal research advantages, disadvantages, how to perform, what is measure of dispersion, measures of relationship, what is research design features, components, types of charts used in data analysis, leave a reply cancel reply.

You must be logged in to post a comment.

World's Best Online Courses at One Place

We’ve spent the time in finding, so you can spend your time in learning

Digital Marketing

Personal growth.

3 types of research report

Development

3 types of research report

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

4.1: Common Types of Research Reports and Documents

  • Last updated
  • Save as PDF
  • Page ID 175389

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Common Types of Research Reports & Documents

Research is central to most work in STEM fields and you may often be required to conduct various types of research as part of your professional life. Lab reports, recommendation reports, proposals, and white papers are just some of the professional documents that rely on research. These are the kinds of documents that can help organizations make decisions, solicit new clients and contracts, and communicate with the public.

For more information on these common types of professional correspondence, see the Workplace Communications chapter.

3 types of research report

Get science-backed answers as you write with Paperpal's Research feature

What is Research Methodology? Definition, Types, and Examples

3 types of research report

Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of the research. Several aspects must be considered before selecting an appropriate research methodology, such as research limitations and ethical concerns that may affect your research.

The research methodology section in a scientific paper describes the different methodological choices made, such as the data collection and analysis methods, and why these choices were selected. The reasons should explain why the methods chosen are the most appropriate to answer the research question. A good research methodology also helps ensure the reliability and validity of the research findings. There are three types of research methodology—quantitative, qualitative, and mixed-method, which can be chosen based on the research objectives.

What is research methodology ?

A research methodology describes the techniques and procedures used to identify and analyze information regarding a specific research topic. It is a process by which researchers design their study so that they can achieve their objectives using the selected research instruments. It includes all the important aspects of research, including research design, data collection methods, data analysis methods, and the overall framework within which the research is conducted. While these points can help you understand what is research methodology, you also need to know why it is important to pick the right methodology.

Why is research methodology important?

Having a good research methodology in place has the following advantages: 3

  • Helps other researchers who may want to replicate your research; the explanations will be of benefit to them.
  • You can easily answer any questions about your research if they arise at a later stage.
  • A research methodology provides a framework and guidelines for researchers to clearly define research questions, hypotheses, and objectives.
  • It helps researchers identify the most appropriate research design, sampling technique, and data collection and analysis methods.
  • A sound research methodology helps researchers ensure that their findings are valid and reliable and free from biases and errors.
  • It also helps ensure that ethical guidelines are followed while conducting research.
  • A good research methodology helps researchers in planning their research efficiently, by ensuring optimum usage of their time and resources.

Writing the methods section of a research paper? Let Paperpal help you achieve perfection

Types of research methodology.

There are three types of research methodology based on the type of research and the data required. 1

  • Quantitative research methodology focuses on measuring and testing numerical data. This approach is good for reaching a large number of people in a short amount of time. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations.
  • Qualitative research methodology examines the opinions, behaviors, and experiences of people. It collects and analyzes words and textual data. This research methodology requires fewer participants but is still more time consuming because the time spent per participant is quite large. This method is used in exploratory research where the research problem being investigated is not clearly defined.
  • Mixed-method research methodology uses the characteristics of both quantitative and qualitative research methodologies in the same study. This method allows researchers to validate their findings, verify if the results observed using both methods are complementary, and explain any unexpected results obtained from one method by using the other method.

What are the types of sampling designs in research methodology?

Sampling 4 is an important part of a research methodology and involves selecting a representative sample of the population to conduct the study, making statistical inferences about them, and estimating the characteristics of the whole population based on these inferences. There are two types of sampling designs in research methodology—probability and nonprobability.

  • Probability sampling

In this type of sampling design, a sample is chosen from a larger population using some form of random selection, that is, every member of the population has an equal chance of being selected. The different types of probability sampling are:

  • Systematic —sample members are chosen at regular intervals. It requires selecting a starting point for the sample and sample size determination that can be repeated at regular intervals. This type of sampling method has a predefined range; hence, it is the least time consuming.
  • Stratified —researchers divide the population into smaller groups that don’t overlap but represent the entire population. While sampling, these groups can be organized, and then a sample can be drawn from each group separately.
  • Cluster —the population is divided into clusters based on demographic parameters like age, sex, location, etc.
  • Convenience —selects participants who are most easily accessible to researchers due to geographical proximity, availability at a particular time, etc.
  • Purposive —participants are selected at the researcher’s discretion. Researchers consider the purpose of the study and the understanding of the target audience.
  • Snowball —already selected participants use their social networks to refer the researcher to other potential participants.
  • Quota —while designing the study, the researchers decide how many people with which characteristics to include as participants. The characteristics help in choosing people most likely to provide insights into the subject.

What are data collection methods?

During research, data are collected using various methods depending on the research methodology being followed and the research methods being undertaken. Both qualitative and quantitative research have different data collection methods, as listed below.

Qualitative research 5

  • One-on-one interviews: Helps the interviewers understand a respondent’s subjective opinion and experience pertaining to a specific topic or event
  • Document study/literature review/record keeping: Researchers’ review of already existing written materials such as archives, annual reports, research articles, guidelines, policy documents, etc.
  • Focus groups: Constructive discussions that usually include a small sample of about 6-10 people and a moderator, to understand the participants’ opinion on a given topic.
  • Qualitative observation : Researchers collect data using their five senses (sight, smell, touch, taste, and hearing).

Quantitative research 6

  • Sampling: The most common type is probability sampling.
  • Interviews: Commonly telephonic or done in-person.
  • Observations: Structured observations are most commonly used in quantitative research. In this method, researchers make observations about specific behaviors of individuals in a structured setting.
  • Document review: Reviewing existing research or documents to collect evidence for supporting the research.
  • Surveys and questionnaires. Surveys can be administered both online and offline depending on the requirement and sample size.

Let Paperpal help you write the perfect research methods section. Start now!

What are data analysis methods.

The data collected using the various methods for qualitative and quantitative research need to be analyzed to generate meaningful conclusions. These data analysis methods 7 also differ between quantitative and qualitative research.

Quantitative research involves a deductive method for data analysis where hypotheses are developed at the beginning of the research and precise measurement is required. The methods include statistical analysis applications to analyze numerical data and are grouped into two categories—descriptive and inferential.

Descriptive analysis is used to describe the basic features of different types of data to present it in a way that ensures the patterns become meaningful. The different types of descriptive analysis methods are:

  • Measures of frequency (count, percent, frequency)
  • Measures of central tendency (mean, median, mode)
  • Measures of dispersion or variation (range, variance, standard deviation)
  • Measure of position (percentile ranks, quartile ranks)

Inferential analysis is used to make predictions about a larger population based on the analysis of the data collected from a smaller population. This analysis is used to study the relationships between different variables. Some commonly used inferential data analysis methods are:

  • Correlation: To understand the relationship between two or more variables.
  • Cross-tabulation: Analyze the relationship between multiple variables.
  • Regression analysis: Study the impact of independent variables on the dependent variable.
  • Frequency tables: To understand the frequency of data.
  • Analysis of variance: To test the degree to which two or more variables differ in an experiment.

Qualitative research involves an inductive method for data analysis where hypotheses are developed after data collection. The methods include:

  • Content analysis: For analyzing documented information from text and images by determining the presence of certain words or concepts in texts.
  • Narrative analysis: For analyzing content obtained from sources such as interviews, field observations, and surveys. The stories and opinions shared by people are used to answer research questions.
  • Discourse analysis: For analyzing interactions with people considering the social context, that is, the lifestyle and environment, under which the interaction occurs.
  • Grounded theory: Involves hypothesis creation by data collection and analysis to explain why a phenomenon occurred.
  • Thematic analysis: To identify important themes or patterns in data and use these to address an issue.

How to choose a research methodology?

Here are some important factors to consider when choosing a research methodology: 8

  • Research objectives, aims, and questions —these would help structure the research design.
  • Review existing literature to identify any gaps in knowledge.
  • Check the statistical requirements —if data-driven or statistical results are needed then quantitative research is the best. If the research questions can be answered based on people’s opinions and perceptions, then qualitative research is most suitable.
  • Sample size —sample size can often determine the feasibility of a research methodology. For a large sample, less effort- and time-intensive methods are appropriate.
  • Constraints —constraints of time, geography, and resources can help define the appropriate methodology.

Got writer’s block? Kickstart your research paper writing with Paperpal now!

How to write a research methodology .

A research methodology should include the following components: 3,9

  • Research design —should be selected based on the research question and the data required. Common research designs include experimental, quasi-experimental, correlational, descriptive, and exploratory.
  • Research method —this can be quantitative, qualitative, or mixed-method.
  • Reason for selecting a specific methodology —explain why this methodology is the most suitable to answer your research problem.
  • Research instruments —explain the research instruments you plan to use, mainly referring to the data collection methods such as interviews, surveys, etc. Here as well, a reason should be mentioned for selecting the particular instrument.
  • Sampling —this involves selecting a representative subset of the population being studied.
  • Data collection —involves gathering data using several data collection methods, such as surveys, interviews, etc.
  • Data analysis —describe the data analysis methods you will use once you’ve collected the data.
  • Research limitations —mention any limitations you foresee while conducting your research.
  • Validity and reliability —validity helps identify the accuracy and truthfulness of the findings; reliability refers to the consistency and stability of the results over time and across different conditions.
  • Ethical considerations —research should be conducted ethically. The considerations include obtaining consent from participants, maintaining confidentiality, and addressing conflicts of interest.

Streamline Your Research Paper Writing Process with Paperpal

The methods section is a critical part of the research papers, allowing researchers to use this to understand your findings and replicate your work when pursuing their own research. However, it is usually also the most difficult section to write. This is where Paperpal can help you overcome the writer’s block and create the first draft in minutes with Paperpal Copilot, its secure generative AI feature suite.  

With Paperpal you can get research advice, write and refine your work, rephrase and verify the writing, and ensure submission readiness, all in one place. Here’s how you can use Paperpal to develop the first draft of your methods section.  

  • Generate an outline: Input some details about your research to instantly generate an outline for your methods section 
  • Develop the section: Use the outline and suggested sentence templates to expand your ideas and develop the first draft.  
  • P araph ras e and trim : Get clear, concise academic text with paraphrasing that conveys your work effectively and word reduction to fix redundancies. 
  • Choose the right words: Enhance text by choosing contextual synonyms based on how the words have been used in previously published work.  
  • Check and verify text : Make sure the generated text showcases your methods correctly, has all the right citations, and is original and authentic. .   

You can repeat this process to develop each section of your research manuscript, including the title, abstract and keywords. Ready to write your research papers faster, better, and without the stress? Sign up for Paperpal and start writing today!

Frequently Asked Questions

Q1. What are the key components of research methodology?

A1. A good research methodology has the following key components:

  • Research design
  • Data collection procedures
  • Data analysis methods
  • Ethical considerations

Q2. Why is ethical consideration important in research methodology?

A2. Ethical consideration is important in research methodology to ensure the readers of the reliability and validity of the study. Researchers must clearly mention the ethical norms and standards followed during the conduct of the research and also mention if the research has been cleared by any institutional board. The following 10 points are the important principles related to ethical considerations: 10

  • Participants should not be subjected to harm.
  • Respect for the dignity of participants should be prioritized.
  • Full consent should be obtained from participants before the study.
  • Participants’ privacy should be ensured.
  • Confidentiality of the research data should be ensured.
  • Anonymity of individuals and organizations participating in the research should be maintained.
  • The aims and objectives of the research should not be exaggerated.
  • Affiliations, sources of funding, and any possible conflicts of interest should be declared.
  • Communication in relation to the research should be honest and transparent.
  • Misleading information and biased representation of primary data findings should be avoided.

Q3. What is the difference between methodology and method?

A3. Research methodology is different from a research method, although both terms are often confused. Research methods are the tools used to gather data, while the research methodology provides a framework for how research is planned, conducted, and analyzed. The latter guides researchers in making decisions about the most appropriate methods for their research. Research methods refer to the specific techniques, procedures, and tools used by researchers to collect, analyze, and interpret data, for instance surveys, questionnaires, interviews, etc.

Research methodology is, thus, an integral part of a research study. It helps ensure that you stay on track to meet your research objectives and answer your research questions using the most appropriate data collection and analysis tools based on your research design.

Accelerate your research paper writing with Paperpal. Try for free now!

  • Research methodologies. Pfeiffer Library website. Accessed August 15, 2023. https://library.tiffin.edu/researchmethodologies/whatareresearchmethodologies
  • Types of research methodology. Eduvoice website. Accessed August 16, 2023. https://eduvoice.in/types-research-methodology/
  • The basics of research methodology: A key to quality research. Voxco. Accessed August 16, 2023. https://www.voxco.com/blog/what-is-research-methodology/
  • Sampling methods: Types with examples. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/types-of-sampling-for-social-research/
  • What is qualitative research? Methods, types, approaches, examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-qualitative-research-methods-types-examples/
  • What is quantitative research? Definition, methods, types, and examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-quantitative-research-types-and-examples/
  • Data analysis in research: Types & methods. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/data-analysis-in-research/#Data_analysis_in_qualitative_research
  • Factors to consider while choosing the right research methodology. PhD Monster website. Accessed August 17, 2023. https://www.phdmonster.com/factors-to-consider-while-choosing-the-right-research-methodology/
  • What is research methodology? Research and writing guides. Accessed August 14, 2023. https://paperpile.com/g/what-is-research-methodology/
  • Ethical considerations. Business research methodology website. Accessed August 17, 2023. https://research-methodology.net/research-methodology/ethical-considerations/

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Dangling Modifiers and How to Avoid Them in Your Writing 
  • Webinar: How to Use Generative AI Tools Ethically in Your Academic Writing
  • Research Outlines: How to Write An Introduction Section in Minutes with Paperpal Copilot
  • How to Paraphrase Research Papers Effectively

Language and Grammar Rules for Academic Writing

Climatic vs. climactic: difference and examples, you may also like, mla works cited page: format, template & examples, how to ace grant writing for research funding..., powerful academic phrases to improve your essay writing , how to write a high-quality conference paper, how paperpal is enhancing academic productivity and accelerating..., academic editing: how to self-edit academic text with..., 4 ways paperpal encourages responsible writing with ai, what are scholarly sources and where can you..., how to write a hypothesis types and examples , what is academic writing: tips for students.

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Section 1- Evidence-based practice (EBP)

Chapter 6: Components of a Research Report

Components of a research report.

Partido, B.B.

Elements of  research report

The research report contains four main areas:

  • Introduction – What is the issue? What is known? What is not known? What are you trying to find out? This sections ends with the purpose and specific aims of the study.
  • Methods – The recipe for the study. If someone wanted to perform the same study, what information would they need? How will you answer your research question? This part usually contains subheadings: Participants, Instruments, Procedures, Data Analysis,
  • Results – What was found? This is organized by specific aims and provides the results of the statistical analysis.
  • Discussion – How do the results fit in with the existing  literature? What were the limitations and areas of future research?

Formalized Curiosity for Knowledge and Innovation Copyright © by partido1. All Rights Reserved.

A Guide To The Top 14 Types Of Reports With Examples Of When To Use Them

Types of reports blog post by datapine

Table of Contents

1) What Is The Report Definition?

2) Top 14 Types Of Reports

3) What Does A Report Look Like?

4) What To Look For In A Reporting Tool

Businesses have been producing reports forever. No matter what role or industry you work in, chances are that you have been faced with the task of generating a tedious report to show your progress or performance.

While reporting has been a common practice for many decades, the business world keeps evolving, and with more competitive industries, the need to generate fast and accurate reports becomes critical. This presents a problem for many modern organizations today, as building reports can take from hours to days. In fact, a survey about management reports performed by Deloitte says that 50% of managers are unsatisfied with the speed of delivery and the quality of the reports they receive. 

With this issue in mind, several BI tools have been developed to assist businesses in generating interactive reports with just a few clicks, enhancing the way companies make critical decisions and service insights from their most valuable data.

But, with so many types of reports used daily, how can you know when to use them effectively? How can you push yourself ahead of the pack with the power of information? Here, we will explore the 14 most common types of reports in business and provide some examples of when to use them to your brand-boosting advantage. In addition, we will see how online dashboards have overthrown the static nature of classic reports and given way to a much faster, more interactive way of working with data.

Let’s get started with a brief report definition.

What Is The Report Definition?

A modern reporting example created with a dashboard tool

A report is a document that presents relevant business information in an organized and understandable format. Each report is aimed at a specific audience and business purpose, and it summarizes the development of different activities based on goals and objectives.  

That said, there are various types of reports that can be used for different purposes. Whether you want to track the progress of your strategies or stay compliant with financial laws, there is a different report for each task. To help you identify when to use them, we will cover the top 14 most common report formats used for businesses today. 

What Are The Different Types Of Reports?

Top 14 types of reports overview graphic

1. Informational Reports 

The first in our list of reporting types is informational reports. As their name suggests, this report type aims to give factual insights about a specific topic. This can include performance reports, expense reports, and justification reports, among others. A differentiating characteristic of these reports is their objectivity; they are only meant to inform but not propose solutions or hypotheses. Common informational reports examples are for performance tracking, such as annual, monthly, or weekly reports . 

2. Analytical Reports 

This report type contains a mix of useful information to facilitate the decision-making process through a mix of qualitative and quantitative insights as well as real-time and historical insights. Unlike informational reports that purely inform users about a topic, this report type also aims to provide recommendations about the next steps and help with problem-solving. With this information in hand, businesses can build strategies based on analytical evidence and not simple intuition. With the use of the right BI reporting tool , businesses can generate various types of analytical reports that include accurate forecasts via predictive analytics technologies. Let's look at it with an analytical report example.

Analytical report example of a sales pipeline dashboard

**click to enlarge**

The example above is the perfect representation of how analytical reports can boost a business’s performance. By getting detailed information such as sales opportunities, a probability rate, as well as an accurate pipeline value forecast based on historical data, sales teams can prepare their strategies in advance, tackle any inefficiencies, and make informed decisions for increased efficiency. 

3. Operational Reports 

These reports track every pertinent detail of the company's operational tasks, such as its production processes. They are typically short-term reports as they aim to paint a picture of the present. Businesses use this type of report to spot any issues and define their solutions or to identify improvement opportunities to optimize their operational efficiency. Operational reports are commonly used in manufacturing, logistics, and retail as they help keep track of inventory, production, and costs, among others. 

4. Product Reports

As its name suggests, this report type is used to monitor several aspects related to product development. Businesses often use them to track which of their products or subscriptions are selling the most within a given time period, calculate inventories, or see what kind of product the client values the most. Another common use case of these reports is to research the implementation of new products or develop existing ones. Let’s see it in more detail with a visual example. 

Type of report examples: a report on product innovation, useful for product development and pricing decisions

The image above is a product report that shows valuable insights regarding usage intention, purchase intention, willingness to pay, and more. In this case, the report is based on the answers from a survey that aimed to understand how the target customer would receive a new product. Getting this level of insights through this report type is very useful for businesses as it allows them to make smart investments when it comes to new products as well as set realistic pricing based on their client’s willingness to pay. 

5. Industry Reports 

Next in our list of the most common kinds of reports, we have industry-specific reports. Typically, these reports provide an overview of a particular industry, market, or sector with definitions, key trends, leading companies, and industry size, among others. They are particularly useful for businesses that want to enter a specific industry and want to learn how competitive it is or for companies who are looking to set performance benchmarks based on average industry values. 

6. Department Reports

These reports are specific to each department or business function. They serve as a communication tool between managers and team members who must stay connected and work together for common goals. Whether it is the sales department, customer service, logistics, or finances, this specific report type helps track and optimize strategies on a deeper level. Let’s look at it with an example of a team performance report . 

A department report type example for customer support team performance

The image above is a department report created with an online data analysis tool , and it tracks the performance of a support team. This insightful report displays relevant metrics such as the top-performing agents, net promoter score, and first contact resolution rate, among others. Having this information in hand not only helps each team member to keep track of their individual progress but also allows managers to understand who needs more training and who is performing at their best. 

7. Progress Reports

From the brunch of informational reports, progress reports provide critical information about the status of a project. These reports can be produced on a daily, weekly, or monthly basis by employees or managers to track performance and fine-tune tasks for the better development of the project. Progress reports are often used as visual materials to support meetings and discussions. A good example is a KPI scorecard . 

8. Internal Reports

A type of report that encompasses many others on this list, internal reports refer to any type of report that is used internally in a business. They convey information between team members and departments to keep communication flowing regarding goals and business objectives. 

An internal report example: hospital management dashboard

As mentioned above, internal reports are useful communication tools to keep every relevant person in the organization informed and engaged. This healthcare report aims to do just that. By providing insights into the performance of different departments and areas of a hospital, such as in and outpatients, average waiting times, treatment costs, and more, healthcare managers can allocate resources and plan the schedule accurately, as well as monitor any changes or issues in real-time. 

9. External Reports

Although most of the reports types listed here are used for internal purposes, not all reporting is meant to be used behind closed doors. External reports are created to share information with external stakeholders such as clients or investors for budget or progress accountability, as well as to governmental bodies to stay compliant with the law requirements.

External report type example of a client report for an IT project

The image above is the perfect example of an external client report from an IT project. This insightful report provides a visual overview of every relevant aspect of the project's development. From deadlines, budget usage, completion stage, and task breakdown, clients can be fully informed and involved in the project. 

10. Vertical & Lateral Reports 

Next, in our rundown of types of reports, we have vertical and lateral reports. This reporting type refers to the direction in which a report travels. A vertical report is meant to go upward or downward the hierarchy, for example, a management report. A lateral report assists in organization and communication between groups that are at the same level of the hierarchy, such as the financial and marketing departments.

11. Research Reports

Without a doubt, one of the most vital reporting types for any modern business is centered on research. Being able to collect, collate, and drill down into insights based on key pockets of your customer base or industry will give you the tools to drive innovation while meeting your audience’s needs head-on.

Types of reports: research report for customer demographics

The image above is a market research analytics report example for customer demographics. It serves up a balanced blend of metrics that will empower you to boost engagement as well as retention rates. Here, you can drill down into your audience’s behaviors, interests, gender, educational levels, and tech adoption life cycles with a simple glance.

What’s particularly striking about this dashboard is the fact that you can explore key trends in brand innovation with ease, gaining a working insight into how your audience perceives your business. This invaluable type of report will help you get under the skin of your consumers, driving growth and loyalty in the process.

12. Strategic Reports

Strategy is a vital component of every business, big or small. Strategic analytics tools are perhaps the broadest and most universal of all the different types of business reports imaginable.

These particular tools exist to help you understand, meet, and exceed your most pressing organizational goals consistently by serving up top-level metrics on a variety of initiatives or functions.

By working with strategic-style tools, you will:

  • Improve internal motivation and engagement
  • Refine your plans and strategies for the best possible return on investment (ROI)
  • Enhance internal communication and optimize the way your various departments run
  • Create more room for innovation and creative thinking

13. Project Reports

Projects are key to keeping a business moving in the right direction while keeping innovation and evolution at the forefront of every plan, communication, or campaign. But without the right management tools, a potentially groundbreaking project can become a resource-sapping disaster.

A project management report serves as a summary of a particular project's status and its various components. It's a visual tool that you can share with partners, colleagues, clients, and stakeholders to showcase your project's progress at multiple stages. Let’s look at our example and dig a little deeper.

Project controlling dashboard as an example of a project report type

To ensure consistent success across the board, the kinds of reports you must work with are based on project management. 

Our example is a project management dashboard equipped with a melting pot of metrics designed to improve the decision-making process while keeping every facet of your company’s most important initiatives under control. Here, you can spot pivotal trends based on costs, task statuses, margins, costs, and overall project revenue. With this cohesive visual information at your fingertips, not only can you ensure the smooth end-to-end running of any key project, but you can also drive increased operational efficiency as you move through every significant milestone.

14. Statutory Reports

It may not seem exciting or glamorous, but keeping your business's statutory affairs in order is vital to your ongoing commercial health and success.

When it comes to submitting such vital financial and non-financial information to official bodies, one small error can result in serious repercussions. As such, working with statutory types of report formats is a water-tight way of keeping track of your affairs and records while significantly reducing the risk of human error.

Armed with interactive insights and dynamic visuals, you will keep your records clean and compliant while gaining the ability to nip any potential errors or issues in the bud.

What Does A Report Look Like?

Now that we’ve covered the most relevant types of reports, we will answer the question: what does a report look like? 

As mentioned at the beginning of this insightful guide, static reporting is a thing of the past. With the rise of modern technologies like self-service BI tools , the use of interactive reports in the shape of business dashboards has become more and more popular among companies.

Unlike static reports that take time to be generated and are difficult to understand, modern reporting tools are intuitive. Their visual nature makes them easy to understand for any type of user, and they provide businesses with a central view of their most important performance indicators for an improved decision-making process. Here, we will cover 20 useful dashboard examples from different industries, functions, and platforms to put the value of dashboard reporting into perspective. 

1. Financial Report

Visual reporting example for finances tracking metrics such as current working capital, cash conversion cycle, and vendor payment error rate

Keeping finances in check is critical for success. This financial report offers an overview of the most important financial metrics that a business needs to monitor its economic activities and answer vital questions to ensure healthy finances. 

With insights about liquidity, invoicing, budgeting, and general financial stability, managers can extract long and short-term conclusions to reduce inefficiencies, make accurate forecasts about future performance, and keep the overall financial efficiency of the business flowing. For instance, getting a detailed calculation of the business's working capital can allow you to understand how liquid your company is. If it's higher than expected, it means you have the potential to invest and grow—definitely, one of the most valuable types of finance reports.

2. Marketing Report 

A marketing report example for campaign tracking generated with a modern dashboard tool

Our following example is a marketing report that ensures a healthy return on investment from your marketing efforts. This type of report offers a detailed overview of campaign performance over the last 12 weeks. Having access to this information enables you to maximize the value of your promotional actions, keeping your audience engaged by providing a targeted experience. 

For instance, you can implement different campaign formats as a test and then compare which one is most successful for your business. This is possible thanks to the monitoring of important marketing metrics such as the click-through rate (CTR), cost per click (CPC), cost per acquisition (CPA), and more. 

The visual nature of this report makes it easy to understand important insights at a glance. For example, the four gauge charts at the top show the total spending from all campaigns and how much of the total budget of each campaign has been used. In just seconds, you can see if you are on target to meet your marketing budgets for every single campaign. 

3. Sales Report

A sales report template focused on high-level metrics such as revenue, profits, costs, incremental sales, accumulated revenue, up/cross-sell rates, etc.

An intuitive sales dashboard like the one above is the perfect analytical tool to monitor and optimize sales performance. Armed with powerful high-level metrics, this report type is especially interesting for managers, executives, and sales VPs as it provides relevant information to ensure strategic and operational success. 

The value of this sales report lies in the fact that it offers a complete and comprehensive overview of relevant insights needed to make smart sales decisions. For instance, at the top of an analysis tool, you get important metrics such as the number of sales, revenue, profit, and costs, all compared to a set target and to the previous time period. The use of historical data is fundamental when building successful sales strategies as they provide a picture of what could happen in the future. Being able to filter the key metrics all in one screen is a key benefit of modern reporting. 

4. HR Report 

Employee performance depicted with business intelligence reporting processes.

Our next example of a report is about human resources analytics . The HR department needs to track various KPIs for employee performance and effectiveness. But overall, they have to ensure that employees are happy and working in a healthy environment since an unhappy workforce can significantly damage an organization. This is all possible with the help of this intuitive dashboard. 

Providing a comprehensive mix of metrics, this employee-centric report drills down into every major element needed to ensure successful workforce management. For example, the top portion of the dashboard covers absenteeism in 3 different ways: yearly average, absenteeism rate with a target of 3.8%, and absenteeism over the last five years. Tracking absenteeism rates in detail is helpful as it can tell you if your employees are skipping work days. If the rate is over the expected target, then you have to dig deeper into the reasons and find sustainable solutions. 

On the other hand, the second part of the dashboard covers the overall labor effectiveness (OLE). This can be tracked based on specific criteria that HR predefined, and it helps them understand if workers are achieving their targets or if they need extra training or help. 

5. Management Report

alt="Visual of a finance KPIs business executive dashboard example for investors"

Managers must monitor big amounts of information to ensure that the business is running smoothly. One of them being investor relationships. This management dashboard focuses on high-level metrics that shareholders need to look at before investing, such as the return on assets, return on equity, debt-equity ratio, and share price, among others. 

By getting an overview of these important metrics, investors can easily extract the needed information to make an informed decision regarding an investment in your business. For instance, the return on assets measures how efficiently are the company's assets being used to generate profit. With this information, investors can understand how effectively your company deploys available resources compared to others in the market. Another great indicator is the share price; the higher the increase in your share price, the more money your shareholders are making from their investment. 

6. IT Report 

IT report tracking the occurrence of technical issues to improve system operational performance

Just like all the other departments and sections covered in this list, the IT department is one that can especially benefit from these types of reports. With so many technical issues to solve, the need for a visual tool to help IT specialists stay on track with their workload becomes critical. 

As seen in the image above, this IT dashboard offers detailed information about different system indicators. For starters, we get a visual overview of the status of each server, followed by a detailed graph displaying the uptime & downtime of each week. This is complemented by the most common downtown issues and some ticket management information. Getting this level of insight helps your IT staff to know what is happening and when it is happening and find proper solutions to prevent these issues from repeating themselves. Keeping constant track of these metrics will ensure robust system performance. 

7. Procurement Report

This procurement report example provides an overview of the most essential metrics of the procurement department

The following example of a report was built with intuitive procurement analytics software , and it gives a general view of various metrics that the procurement department needs to work with regularly. 

With the possibility to filter, drill down, and interact with KPIs, this intuitive procurement dashboard offers key information to ensure a healthy supplier relationship. With metrics such as compliance rate, the number of suppliers, or the purchase order cycle time, the procurement team can classify the different suppliers, define the relationship each of them has with the company, and optimize processes to ensure it stays profitable.

8. Customer Service Report

Call center reporting type presented with the revenue value, costs per support, average time to solve an issue,  and overall satisfaction

Following our list of examples of reports is one from the support area. Armed with powerful customer service KPIs , this dashboard is a useful tool to monitor performance, spot trends, identify strengths and weaknesses, and improve the overall effectiveness of the customer support department. 

Covering aspects such as revenue and costs from customer support as well as customer satisfaction, this complete analysis tool is the perfect tool for managers who have to keep an eye on every little detail from a performance and operational perspective. For example, by monitoring your customer service costs and comparing them to the revenue, you can understand if you are investing the right amount into your support processes. This can be directly related to your agent’s average time to solve issues; the longer it takes to solve a support ticket, the more money it will cost and the less revenue it will bring. If you see that your agents are taking too long to solve an issue, you can think of some training instances to help them reduce this number. 

9. Market Research Report 

A type of report for market research displaying the results of a survey about brand perception

This list of report types examples would not be complete without a market research report . Market research agencies deal with a large amount of information coming from surveys and other research sources. Taking all this into account, the need for reports that can be filtered for deeper interaction becomes more necessary for this industry than any other. 

The image above is a brand analytics dashboard that displays the survey results about how the public perceives a brand. This savvy tool contains different charts that make it easy to understand the information visually. For instance, the map chart with the different colors lets you quickly understand in which regions each age range is located. The charts can be filtered further to see the detailed answers from each group for a deeper analysis. 

10. Social Media Report 

Social media report example displaying performance metrics for Facebook, Twitter, Instagram, and YouTube

Last but not least, we have a social media report .  This scorecard format dashboard monitors the performance of 4 main social media channels: Facebook, Twitter, Instagram, and YouTube, and it serves as a perfect visual overview to track the performance of different social media efforts and achievements. 

Tracking relevant metrics such as followers, impressions, clicks, engagement rates, and conversions, this report type serves as a perfect progress report to show to managers or clients who need to see the status of their social channels. Each metric is shown in its actual value and compared to a set target. The colors green and red from the fourth column let you quickly understand if a metric is over or under its expected target. 

11. Logistics Report

Logistics are the cornerstone of an operationally fluent and progressive business. If you deal with large quantities of goods and tangible items, in particular, maintaining a solid logistical strategy is vital to ensuring you maintain your brand reputation while keeping things flowing in the right direction.

An logistics report focused on the warehouse performance in the logistics industry

A prime example of the types of data reporting tool designed to improve logistical management, our warehouse KPI dashboard is equipped with metrics required to maintain strategic movement while eliminating any unnecessary costs or redundant processes. Here, you can dig into your shipping success rates across regions while accessing warehouse costs and perfect order rates in real-time. If you spot any potential inefficiencies, you can track them here and take the correct course of action to refine your strategy. This is an essential tool for any business with a busy or scaling warehouse.

12. Manufacturing Report

Next, in our essential types of business reports examples, we’re looking at tools made to improve your business’s various manufacturing processes.

Manufacturing Production report displaying main manufacturing KPIs to keep the pulse of your factory

Our clean and concise production tool is a sight to behold and serves up key manufacturing KPIs that improve the decision-making process regarding costs, volume, and machinery.

Here, you can hone in on historical patterns and trends while connecting with priceless real-time insights that will not only help you make the right calls concerning your manufacturing process at the moment but will also help you formulate predictive strategies that will ultimately save money, boost productivity, and result in top-quality products across the board.

13. Retail Report

As a retailer with so many channels to consider and so many important choices to make, working with the right metrics and visuals is absolutely essential. Fortunately, we live in an age where there are different types of reporting designed for this very reason.

Types of reports examples: retail sales and order report

Our sales and order example, generated with retail analytics software , is a dream come true for retailers as it offers the visual insights needed to understand your product range in greater detail while keeping a firm grip on your order volumes, perfect order rates, and reasons for returns.

Gaining access to these invaluable insights in one visually presentable space will allow you to track increases or decreases in orders over a set timeframe (and understand whether you’re doing the right things to drive engagement) while plowing your promotional resources into the products that are likely to offer the best returns.

Plus, by gaining an accurate overview of why people are returning your products, you can omit problem items or processes from your retail strategy, improving your brand reputation as well as revenue in the process.

14. Digital Media Report

The content and communications you publish are critical to your ongoing success, regardless of your sector, niche, or specialty. Without putting out communications that speak directly to the right segments of your audience at the right times in their journey, your brand will swiftly fade into the background.

Content quality control dashboard as a digital media report example

To ensure your brand remains inspiring, engaging, and thought-leading across channels, working with media types of a business report is essential. You must ensure your communications cut through the noise and scream ‘quality’ from start to finish—no ifs, no buts, no exceptions.

Our content quality control tool is designed with a logical hierarchy that will tell you if your content sparks readership, if the language you’re using is inclusive and conversational, and how much engagement-specific communications earn. You can also check your most engaged articles with a quick glance to understand what your users value most. Armed with this information, you can keep creating content that your audience loves and ultimately drives true value to the business.

15. Energy Report

In the age of sustainability and in the face of international fuel hikes, managing the energy your business uses effectively is paramount. Here, there is little room for excess or error, and as such, working with the right metrics is the only way to ensure successful energy regulation.

Energy management dashboard as an example of a type of report for the energy industry

If your company has a big HQ or multiple sites that require power, our energy management analytics tool will help you take the stress out of managing your resources. One of the most striking features of this dashboard is the fact that it empowers you to compare your company’s energy usage against those from other sectors and set an accurate benchmark.

Here, you can also get a digestible breakdown of your various production costs regarding energy consumption and the main sources you use to keep your organization running. Regularly consulting these metrics will not only help you save colossal chunks of your budget, but it will also give you the intelligence to become more sustainable as an organization. This, in turn, is good for the planet and your brand reputation—a real win-win-win.

16. FMCG Report

Kinds of reports examples tracking a report template for the FMCG industry

The fast-moving consuming goods (FMCG) industry can highly benefit from a powerful report containing real-time insights. This is because the products handled in this sector which are often food and beverages, don’t last very long. Therefore, having a live overview of all the latest developments can help decision-makers optimize the supply chain to ensure everything runs smoothly and no major issues happen. 

Our report format example above aims to do just that by providing an overview of critical performance indicators, such as the percentage of products sold within freshness date, the out-of-stock rate, on-time in full deliveries, inventory turnover, and more.  What makes this template so valuable is the fact that it provides a range of periods to get a more recent view of events but also a longer yearly view to extract deeper insights. 

The FMCG dashboard also offers an overview of the main KPIs to help users understand if they are on the right track to meet their goals. There, we can observe that the OTIF is far from its target of 90%. Therefore, it should be looked at in more detail to optimize it and prevent it from affecting the entire supply chain. 

17. Google Analytics Report

This Google analytics report provides the perfect overview of your KPIs, and enables you to discover early-on if you are on track to meet your targets

Regardless of the industry you are in, if you have a website then you probably require a  Google Analytics report. This powerful tool helps you understand how your audience interacts with your website while helping you reach more people through the Google search engine. The issue is that the reports the tool provides are more or less basic and don’t give you the dynamic and agile view you need to stay on top of your data and competitors. 

For that reason, at datapine, we generated a range of Google Analytics dashboards that take your experience one step further by allowing you to explore your most important KPIs in real-time. That way, you’ll be able to spot any potential issues or opportunities to improve as soon as they occur, allowing you to act on them on the spot. 

Among some of the most valuable metrics you can find in this sample are the sessions and their daily, weekly, and monthly development, the average session duration, the bounce rate by channel and by top 5 countries, among others.

18. YouTube Report

Types of reports example: YouTube template to track your video performance with specific video-related metrics and indicators

So far, we’ve covered examples for various industries and sectors. Now, we will dive a bit deeper into some templates related to popular platforms businesses use in their daily operations. With the rise in video-related content, we could not leave YouTube outside of the list. This popular platform hides some valuable insights that can help you improve your content for your current audience but also reach new audiences that can be interested in your products or services. 

This highly visual and dynamic sample offers an interactive view of relevant KPIs to help you understand every aspect of your video performance. The template can be filtered for different videos to help you understand how each type of content performs. For instance, you get an overview of engagement metrics, such as likes, dislikes, comments, and shares, that way, you can understand how your audience interacts with your content.

Additionally, you also get more detailed charts about the number of views, the average watch time per day, and audience retention. These indicators can help you understand if something needs to be changed. For instance, audience retention goes down a lot after one minute and a half. Therefore you either need to make sure you are making the rest of the video a bit more interesting or offering your product or service or any other relevant information in the first minute.

19. LinkedIn Report

Type of report example with a clear overview of key LinkedIn metrics and results over time

Another very important platform that companies use, no matter their size or industry, is LinkedIn. This platform is the place where companies develop and showcase their corporate image, network with other companies, and tell their clients and audience about the different initiatives they are developing to grow and be better. Some organizations also use LinkedIn to showcase their charity or sustainability initiatives. 

The truth is LinkedIn has become an increasingly relevant platform, and just like we discussed with YouTube, organizations need to analyze data to ensure their strategies are on the right path to success. 

The template above offers a 360-degree view of a company page's performance. With metrics such as the followers gained, engagement rate, impressions vs unique impressions, CTR, and more. Decision-makers can dive deeper into the performance of their content and understand what their audience enjoys the most. For instance, by looking at the CTR of the last 5 company updates, you can start to get a sense of what topics and content format your audience on the platforms interact with the most. That way, you’ll avoid wasting time and resources producing content without interaction.

20. Healthcare Report

Patient satisfaction dashboard as an example of a healthcare report

Moving on from platform-related examples, we have one last monthly report template from a very relevant sector, the healthcare industry. For decades now, hospitals and healthcare professionals have benefited from data to develop new treatments and analyze unknown diseases. But, data can also help to ensure daily patient care is of top quality. 

Our sample above is a healthcare dashboard report that tracks patient satisfaction stats for a clinic named Saint Martins Clinic. The template provides insights into various aspects of patient care that can affect their satisfaction levels to help spot any weak areas. 

Just by looking at the report in a bit more detail, we can already see that the average waiting time for arrival to a bed and time to see a doctor are on the higher side. This is something that needs to be looked into immediately, as waiting times are the most important success factors for patients. Additionally, we can see those lab test turnarounds are also above target. This is another aspect that should be optimized to prevent satisfaction levels from going down.

If you feel inspired by this list and want to see some of the best uses for business reports, then we recommend you take a look at our dashboard examples library, where you will find over 80+ templates from different industries, functions, and platforms for extra inspiration! 

What You Should Look For In A Reporting Tool

As you learned from our extensive list of examples, different types of reports are widely used across industries and sectors. Now, you might wonder, how do I get my hands on one of these reports? The answer is a professional online reporting tool. With the right software in hand, you can generate stunning reports to extract the maximum potential out of your data and boost business growth in the process. 

But, with so many options in the market, how do make sure you choose the best tool for your needs? Below we cover some of the most relevant features and capabilities you should look for to make the most out of the process. 

  • Pre-made reporting templates

To ensure successful operations, a business will most likely need to use many types of reports for its internal and external strategies. Manually generating these reports can become a time-consuming task that burdens the business. That is why professional reporting software should offer pre-made reporting templates. At datapine, we offer an extensive template library that allows users to generate reports in a matter of seconds—allowing them to use their time on actually analyzing the information and extracting powerful insights from it. 

  • Multiple visualization options

If you look for report templates on Google you might run into multiple posts about written ones. This is not a surprise, as written reports have been the norm for decades. That being said, a modern approach to reporting has developed in the past years where visuals have taken over text. The value of visuals lies in the fact that they make the information easier to understand, especially for users who have no technical knowledge. But most importantly, they make the information easier to explore by telling a compelling story. For that reason, the tool you choose to invest in should provide you with multiple visualization options to have the flexibility to tell your data story in the most successful way possible. 

  • Customization 

While pre-made templates are fundamental to generating agile reports, being able to customize them to meet your needs is also of utmost importance. At datapine, we offer our users the possibility to customize their reports to fit their most important KPIs, as well as their logo, business colors, and font. This is an especially valuable feature for external reports that must be shown to clients or other relevant stakeholders, giving your reports a more professional look. Customization can also help from an internal perspective to provide employees who are uncomfortable with data with a familiar environment to work in. 

  • Real-time insights 

In the fast-paced world we live in today, having static reports is not enough. Businesses need to have real-time access to the latest developments in their data to spot any issues or opportunities as soon as they occur and act on them to ensure their resources are spent smartly and their strategies are running as expected. Doing so will allow for agile and efficient decision-making, giving the company a huge competitive advantage. 

  • Sharing capabilities 

Communication and collaboration are the basis of a successful reporting process. Today, team members and departments need to be connected to ensure everyone is on the right path to achieve general company goals. That is why the tool you invest in should offer flexible sharing capabilities to ensure every user can access the reports. For instance, at datapine, we offer our users the possibility to share reports through automated emails or password-protected URLs with viewing or editing rights depending on what data the specific user can see and manipulate. A great way to keep everyone connected and boost collaboration. 

Types Of Reporting For Every Business & Purpose 

As we’ve seen throughout our journey, different report formats are used by businesses for diverse purposes in their everyday activities. Whether you’re talking about types of reports in research, types of reports in management, or anything in between, these dynamic tools will get you where you need to be (and beyond).

In this post, we covered the top 14 most common ones and explored key examples of how different report types are changing the way businesses are leveraging their most critical insights for internal efficiency and, ultimately, external success.

With modern tools and solutions, reporting doesn’t have to be a tedious task. Anyone in your organization can rely on data for their decision-making process without needing technical skills. Rather, you want to keep your team connected or show progress to investors or clients. There is a report type for the job. To keep your mind fresh, here are the top 14 types of data reports covered in this post: 

  • Informational reports 
  • Analytical reports 
  • Operational reports  
  • Product reports 
  • Industry reports 
  • Department reports 
  • Progress reports 
  • Internal reports 
  • External reports 
  • Vertical and lateral reports 
  • Strategic reports
  • Research reports
  • Project reports
  • Statutory reports

Now, over to you. Are you ready? If you want to start building your own types of reports and get ahead of the pack today, then you should try our BI reporting software for 14 days for free ! 

Language selection

  • Français fr

Climate Science 2050: National Priorities for Climate Change Science and Knowledge Report

Chapter 1 informing climate action.

Science provides the evidence and data on the impacts of climate change, but it also gives us the tools and knowledge as to how we need to address it. (...) We are now clearly in the era of implementation, and that means action. But none of this can happen without data, without evidence to inform decisions, or the science that supports programs and policies. — Simon Stiell, Executive Secretary, UN Framework Convention on Climate Change (2022)

The changing climate is impacting Canada’s economy, infrastructure, environment, health, and social and cultural well-being. Climate change science adds to our understanding of how to reduce future warming by mitigating greenhouse gas (GHG) emissions, how to reduce the risks from warming, and how to reduce vulnerability to climate change. Thus, it supports climate action based on evidence.

Implementation and coordination of science activities must reflect the diversity of Canadians’ regional and equity-based experiences of climate change. Climate change multiplies risks for all communities and regions, but may do so in different ways, and the impacts may be felt differently. Science planning must also address the broader context of Canada’s progress toward a circular economy and sustainable development.

As our needs for knowledge and information evolve, the strategic planning and implementation of science must also evolve to reflect the multiple and distinct perspectives of all people and communities impacted by climate change and climate action.

1.1 Canada’s first Climate Science 2050: National Priorities for Climate Change Science and Knowledge report

The scientific consensus on anthropogenic climate change is clear, as is the need for urgent action to reach net-zero to avoid the most severe impacts. Footnote 1 However, scientific capacity must be focused to bring evidence to where it is most needed to guide action, to identify new opportunities to reduce GHG emissions, to develop adaptation responses, and to measure progress. Science and knowledge Footnote 2   play an essential role in helping us navigate the complex intersections, synergies, and trade-offs inherent in building a thriving, climate-resilient, net-zero Footnote 3   Canada that is just and equitable.

The Climate Science 2050: National Priorities for Climate Change Science and Knowledge Report (CS2050) was developed under the leadership of Environment and Climate Change Canada. It is a “what we heard” report, summarizing the results of two years of extensive engagement with more than 500 climate program leaders across federal departments and agencies and provincial and territorial governments, as well as academics and experts from the Canadian community of climate change science, and Indigenous organizations and scholars. As such, it takes its place alongside other national climate policy and planning initiatives. It identifies the science priorities—across various disciplines, from carbon cycle and Earth system science to impacts on health, infrastructure, and biodiversity—to inform science investments needed now for science results over the next six years (to 2030), and to guide ongoing science coordination.

The priorities outlined in this report reflect the information needs of those developing climate policy and programs across all levels of government. The priorities also reflect expert opinion on new lines of scientific inquiry that will enable decision makers to use emerging knowledge, data, tools, and information. In all instances, the science priorities will help advance ongoing efforts to mitigate GHG emissions and adapt to climate change, including setting emissions-reduction targets, refining existing policy approaches, and evaluating progress to date. The audience for this report is all those who have an opportunity to shape climate change science activities across Canada, including strategic planning, funding, coordination, and implementation.

Both Western and Indigenous science contributed to the report through science expert roundtables, stakeholder surveys, webinars, and numerous discussions with partners, experts, and stakeholders. This science is needed to ensure that investments in mitigation measures, adaptation, infrastructure resilience, and disaster recovery are as targeted and effective as possible. Evidence-based action limits future risk and associated costs. Canada is already experiencing costs as climate extremes and extreme weather events have become more frequent, intense, and long-lasting. These costs amount to about 5% to 6% of annual economic growth. Footnote 4   The floods, storm surge, wildfires, and extreme heat, winds, and droughts of the last two decades have translated to economic loss and financial liabilities. Going forward, these effects are projected to become more severe. Some portion of these future losses can be avoided through science-informed adaptation and mitigation.

CS2050, published in December 2020, was an important step for Canada, taking stock for the first time of the breadth of collaborative and transdisciplinary knowledge required to inform climate action. This report is the next step, identifying the most pressing science activities to enable evolution of climate action consistent with our best understanding of the challenge. Mitigation and adaptation solutions must continue to evolve as the evidence underpinning these solutions is strengthened.

Beyond guiding science investments, the process to develop this report involved ongoing dialogue on climate change science policy to improve delivery of science results that inform both mitigation and adaptation. Last, creating this national multi-, inter-, and transdisciplinary science and knowledge report brings strategic science planning into broader planning for climate action, aligning Canada with other international approaches.

1.2 The science policy context

This science and knowledge report complements other federal mitigation and adaptation plans for Canada. Canada’s strengthened climate plan, A Healthy Environment and a Healthy Economy , describes federal policies, programs, and investments to achieve mitigation and adaptation goals. Canada’s commitment to achieving emission-reduction targets is set out in the Canadian Net-Zero Emissions Accountability Act , which received Royal Assent in June 2021. The Act sets out Canada’s 2030 Nationally Determined Contribution under the Paris Agreement of 40% to 45% below 2005 levels, as well as Canada’s target of net-zero emissions by 2050, and it requires the Government of Canada to set additional targets every five years to 2050. The Act specifies that future milestone targets must be informed by the best available science. As an important first step under the Act, the Government of Canada published the 2030 Emissions Reduction Plan (ERP) in March 2022. The ERP is a sector-by-sector roadmap with measures and strategies to achieve Canada’s 2030 target and to lay the foundation to reach net-zero emissions by 2050. The 2030 ERP builds on the progress of past climate plans, including A Healthy Environment and a Healthy Economy (2020) and the Pan-Canadian Framework on Clean Growth and Climate Change (2016) .

Even with rapid and deep global emissions reductions, some further warming in Canada is inevitable ( Canada’s Changing Climate Report , 2019). Canada’s National Adaptation Strategy recognizes the current impacts and risks of climate change through both slow-onset changes and extreme events and lays out the objectives for building resilience across Canada. A foundational principle of the strategy is that science will inform forward-looking, effective, and targeted actions to build resilience.

The Canadian Net-Zero Emissions Accountability Act and Canada’s National Adaptation Strategy set the overarching framework guiding the climate change science priorities identified in this report. The priorities have multiple benefits, tackling many concurrent climate-related challenges facing society. In particular, this report recognizes the contributions and benefits of science to the numerous climate-related challenges facing society, including in the areas of biodiversity conservation, water security, emergency preparedness, and sustainable development. Thus, climate change science supports the goals and objectives of multiple national and international policy commitments and strategies (Figure 1.1).

Figure 1.1. Schematic “crosswalk” between this report and its national policy context, illustrating the policies and programs that benefit from climate change science and knowledge .

Climate change science and knowledge. Text description below

A graphic that outlines the policies and programs that benefit from climate change science and knowledge:

  • Wildland Fire Strategy
  • Arctic Northern Policy Framework
  • Truth and Reconciliation Commission of Canada
  • Indigenous Climate Leadership
  • Blue Economy Strategy
  • Sustainable Agriculture Strategy
  • GHG National Inventory Reporting
  • Canada Water Agency
  • Methane Strategy
  • Canada Green Building Strategy
  • Sustainable Canadian Agricultural Partnership
  • Climate Services and Climate Data Strategy
  • Other jurisdictional actions
  • Adaptation Action Plan
  • Canada’s 2030 Agenda National Strategy
  • Convention on Biological Diversity
  • Nature Smart Climate Solutions Fund
  • Emergency Management Strategy for Canada: Towards a Resilient 2030
  • Disaster Financial Assistance Arrangements program
  • Canadian Dialogue on Wildland Fire and Forest Resilience
  • Food Policy for Canada
  • Flood Hazard Identification and Mapping Program

This report addresses the need for investments in science at all scales, from discipline-focused discovery science to transdisciplinary research frameworks. It identifies science priorities that deliver ongoing results, including knowledge synthesis and mobilization, to provide information and data to respond to the urgent need for climate action. Hence, this report creates space for transdisciplinary science and participatory research, both critical to addressing knowledge gaps. The report identifies what science activities are needed, rather than how those activities should be implemented. While decision making and climate action (i.e., climate services, policies, and regulations) are crucial and must be informed by climate change science and knowledge, they fall outside the scope of this report.

Furthermore, this report does not address clean technology research and development (R&D), as there is already considerable planning and investment in these areas, such as the Federal Energy R&D Science Planning Process that brought together federal scientist and external stakeholders across 12 focus areas in energy R&D. This process is informing the next five years of federal energy R&D activities, some of which are complementary. The concurrent planning for clean technology, energy, and economics are outside the scope of this report. However, understanding the potential of renewable energy, carbon sequestration technologies, and other mitigation strategies is necessary to determine their potential in Canada to meet our net-zero objectives. This understanding informs net-zero pathway science, which is in the scope of this report. Targeted and sector-specific science is not included here, but that does not mean it is unimportant. The work and guidance of the Net-Zero Advisory Body, the Canada Energy Regulator , and the Canadian Climate Institute are particularly important in guiding research and knowledge synthesis and mobilization activities in this area.

This report reflects the guiding principles for climate change science developed in 2020, which have further evolved in response to ongoing science policy dialogue and engagement (Box 1.1). These principles are intended to shape all aspects of science planning, coordination, funding, data collection, research, and knowledge synthesis and mobilization.

To achieve the guiding principles, the Government of Canada supports Indigenous approaches and ways of doing by acknowledging Indigenous science as part of First Nations, Inuit, and Métis knowledge systems and ways of knowing. All those in Indigenous and Western climate change science and knowledge should listen and work collaboratively and respectfully to achieve equity among knowledge systems, while increasing opportunities for Indigenous self-determination, in fulfillment of Canada’s commitment to the UN Declaration on the Rights of Indigenous Peoples and to Indigenous climate change science leadership (Chapter 3).

The following chapters outline the science needed to allow us to understand and assess potential impacts of climate change for Canada and the world, take informed and ambitious action, and reduce climate risk for a more resilient, net-zero Canada by 2050.

Box 1.1. Climate Science 2050 guiding principles

The guiding principles in CS2050 (published in December 2020) have directed development of this science and knowledge report. They offer guidance on how science planning, knowledge synthesis and mobilization, and research efforts can build on existing knowledge and understanding in a respectful, inclusive, and interdisciplinary way that benefits all Canadians. These principles continue to evolve, reflecting the discussions held and advice received in developing this report. These principles are to:

  • Ensure equity of diverse knowledge systems , making space for Indigenous leadership and innovation, and recognizing that Indigenous knowledge is a distinct network of knowledge systems that cannot be integrated into Western science but can be bridged, braided, and woven to respectfully co-exist and co-create new knowledge.
  • Embrace multi- and transdisciplinarity to produce science and knowledge that reflect the complexity and interconnections inherent in responding to climate change and that encompass different kinship systems and spiritual relationships with the land, oceans, and waterways.
  • Emphasize collaboration across generations, disciplines, sectors, levels of government, organizations, and regions to bring together a range of experiences, perspectives, and areas of expertise.
  • Adopt a flexible, adaptive approach in science and knowledge priorities to be responsive to emerging priorities, challenges, and opportunities.
  • Apply an intersectional lens that considers how climate change intersects with various identity factors (e.g., race, class, gender) to develop solutions that tackle both climate change and inequity, while removing systemic barriers and promoting well-being.
  • Respond to local and regional contexts, needs, priorities, protocols, cultures, and ways of knowing by involving communities affected by the research to produce tailored and effective adaptation and mitigation efforts.
  • Further Indigenous self-determination in research to support an approach to climate change science that is holistic, place-based, and responsive, and that respects Indigenous sovereignty and ownership of data.
  • Consider climate change mitigation, adaptation, and sustainable development in an integrated way to maximize multiple benefits and complementary, mutually reinforcing responses.

Chapter 2 Approach and methods

The approach and methods used to develop this report were holistic and grounded in societal outcomes, which the science informs. The report’s primary goal is to support net-zero and adaptation objectives. The identified science priorities also aim to achieve interconnected national goals for climate action, biodiversity conservation, and sustainable development. The primary drivers of science priority selection are relevance and responsiveness to information needs for climate change policies and programs. However, identification of priorities was also influenced by understanding of current knowledge gaps, anticipated scientific developments, and opportunities to advance science through increased national coordination and/or collaboration.

This report was developed through engagement with a broad range of climate program leaders across governments and sectors, as well as experts from the Canadian climate change science community, in 2021–2022. This built on the broader Government of Canada engagement on the 2030 Emissions Reduction Plan and Canada’s National Adaptation Strategy.

This engagement process found that Canada should prioritize both foundational research, to address challenges in scientific disciplines, and transformative research, to address complex challenges that require the collective and integrated contributions from social, economic, natural, and health sciences. The key messages and findings from the engagement are synthesized in the science priorities presented in Chapters 3 to 6.

The full suite of science priorities addresses the information needs of users—those who design, implement, and evaluate climate policy and programs.

This chapter outlines how the report was developed, including engagement and prioritization of the science activities. Aligned with the guiding principles (Box 1.1), development of the report took a holistic approach, grounded in societal outcomes, which need to be informed by the science. Throughout the report’s development, the process emphasized advancing science to achieve domestic climate objectives and Canada’s sustainable development in a net-zero world. However, the report also anticipates opportunities for Canadian science to contribute to a broader international response to climate change and to climate-resilient development.

While Canada’s domestic net-zero and adaptation objectives drive this report, multiple benefits can also arise from these scientific efforts. The science activities outlined in the report are relevant to diverse climate-related challenges (Figure 1.1). Understanding of these challenges and connections with multiple benefits (e.g., for biodiversity, health, and sustainable development) also influenced the identification of science priorities.

The first CS2050 report (published in December 2020) took stock of the broad range of science aligned with climate action. This follow-up report prioritizes science activities and is intended to inform investments in research and knowledge synthesis and mobilization to align with ambitious climate action. This is similar to approaches taken in other countries with relevant jurisdictional, cultural, and/or geographical contexts. Many of the science priorities in this report represent a common science foundation for mitigation and adaptation planning, which are increasingly integrated. The common science foundation is designed to help guide these efforts so that they also become mutually reinforcing. As a result, this report identifies science priorities that span multiple disciplines, regions, and sectors, building on the initial CS2050 framework.

2.1 International examples

Understanding how other nations or international bodies have approached planning for climate change science can inform Canada’s approach. The core precept is that climate action should be based on the best possible scientific knowledge, in order to manage risk and inform effective mitigation strategies. To find international comparators, a number of science plans or strategic program plans were reviewed (below). No science plans from other jurisdictions were grounded in societal outcomes and informed both mitigation and adaptation from a holistic perspective, like the approach taken for this report.

  • The European Union Joint Research Program consists of distinct research areas, which predominantly include mitigation-focused science, and an integrated sustainability research program. The Horizon Europe 2021–2024 strategic plan also includes climate science.
  • The Danish Meteorological Research Institute hosts a National Centre for Climate Research , an interdisciplinary collaborative that emphasizes Danish priority topics, including the cryosphere, extreme weather, and green transition through renewable energy sources.
  • There are many organizations involved in climate science in Australia , notably the Commonwealth Scientific and Industrial Research Organisation and the Bureau of Meteorology. The Australian Academy of Science is responsible for reviewing climate science capability and identifying the current position of the climate science sector and future climate research needs.
  • In the United Kingdom , the Met Office Hadley Centre Climate Programme provides climate change science leadership and strategic planning, supported by the Department of Business, Energy and Industrial Strategy as well as the Department for Environment, Food and Rural Affairs. The UK Royal Society produces briefings on a range of topics to inform climate action and research priorities. Advice is coordinated through the UK Climate Change Committee .
  • In the United States , the US Global Change Research Program , a collaboration of 13 US federal departments and agencies, is responsible for strategic science planning and science assessments. This is laid out in the Global Change Research Needs and Opportunities for 2022–2031 .
  • In Austria , the Austrian Climate Research Programme guides climate research related to climate change impacts, adaptation, and mitigation.
  • Aotearoa New Zealand reflects the Crown–Māori relationship under the Te Tiriti o Waitangi (The Treaty of Waitangi), recognizing the application of te reo Māori (the Māori language) and mātauranga Māori (the unique Māori way of viewing the world, encompassing both traditional knowledge and culture), within an environmental context and specifically in New Zealand’s National Adaptation Plan.

2.2 Engagement

Climate Science 2050: National Priorities for Climate Change Science and Knowledge was developed as part of an ongoing science policy dialogue, led by Environment and Climate Change Canada, that started in 2018 with engagement for the first CS2050 report. This process involved convening a broad range of climate program leaders from across governments and sectors, as well as experts from the Canadian climate change science community. In developing the report, it was important to address knowledge gaps identified by climate policy and decision-makers across jurisdictions to better understand their priorities for climate action and what information is most needed to help this climate action succeed. The scientific community was also asked to consider what new science or knowledge syntheses are needed to meet these information needs, and where future scientific developments will enable policy makers to fill knowledge gaps and achieve climate change goals.

Working with the Office of the Chief Science Advisor’s network of Departmental Science Advisors, a Science Advisory Group was established to guide engagement and report development, prioritization, and peer review. Federal science leaders from multiple departments Footnote 5 analyzed input from the engagement and wrote this report. Throughout this process, it was evident that the organizing structures required for effective national science coordination and planning are limited, especially in light of the ambition and diversity of climate objectives.

The engagement conducted in 2021–2022 benefited from input to the broader Government of Canada engagement on the 2030 Emissions Reduction Plan and Canada’s National Adaptation Strategy. In addition, the process involved engagement specifically for CS2050, including provincial and territorial engagement (Box 2.1); a targeted stakeholder survey; a Request for Information to academic organizations; and a series of seven expert science roundtables (Figure 2.1). The science roundtables discussed scientific “grand challenges” fundamental to success in mitigating GHGs and adapting to climate change. These discussions were framed by climate program leaders’ information needs, expressed through the engagement process.

A small workshop of Indigenous academic scholars complemented the science roundtable exercise, to garner insights from First Nations, Inuit, and Métis knowledge systems. This workshop further shaped the report, and, in particular, guided the development of Chapter 3, reflecting the importance of Indigenous science and capacity in weaving together Indigenous and Western science approaches.

The draft report was peer reviewed by 14 Canadian and international experts with multidisciplinary perspectives, grounded in their own specific areas of expertise. All had an appreciation of the Canadian science context through substantive engagement and/or collaboration with Canadian scientists.

Box 2.1. Provincial and territorial engagement: What we heard

Provincial and territorial governments are important users of climate change knowledge. They apply science results to reduce GHG emissions and implement adaptation that will be effective in their geographic and decision-making context. The information needs of all levels of government need to continue to inform climate change science, notably to:

  • improve coordination of research across sectors and actors and improve mobilization of knowledge;
  • create space and equity for Indigenous knowledge;
  • improve emissions performance reporting, estimation methods, disclosure, and targets for accountability;
  • improve monitoring; data collection; research on climate, risks, hazards, and opportunities; research to support vulnerability and risk assessments; and metrics, monitoring, and evaluation of interventions—in particular, in fisheries, forestry, agriculture, biodiversity, and ecosystems;
  • improve prediction of climate extremes and extreme weather events;
  • project climate impacts on water demand, supply, and management;
  • develop hydrological, flood, and coastal hazard maps for planning, navigation, and emergency response;
  • predict climate change on a local scale, and understand impacts for infrastructure, health, safety, culture, and heritage;
  • develop projections, observations, data, and indicators to inform nature-based solutions and management of land, waters, wildlife, and ecosystems;
  • co-develop information for mitigation, adaptation, and planning tools that municipalities, communities, local stakeholders, emergency management personnel, urban planners, engineers, and others can use to respond to climate change;
  • develop integrated assessment tools, which factor climate change into policy as well as financial and economic planning; and
  • understand and predict climate impacts on food security, including country foods and sustainable harvesting.

Figure 2.1. The development process for Climate Science 2050: National Priorities for Climate Change Science and Knowledge

Text description below

A graphic that outlines the development process for the National Priorities for Climate Change Science and Knowledge report:

  • Targetted stakeholder survey
  • Academic request for information
  • Provincial and territorial meetings
  • National Indigenous organizations meeting
  • The National Adaptation Strategy and Emission Reduction Plan tables
  • Earth system climate change
  • Healthy Canadians

Sustainable natural resources

Resilient aquatic and terrestrial ecosystems, resilient, net-zero communities and built environment.

  • Quantifying GHG emissions
  • Communication and motivating action
  • First Nation, Inuit, Métis knowledge systems insights.
  • Canadian and international experts review, enhancing horizontal linkages across the report, and clarification of prioritization approach.

2.3 Transdisciplinary science and convergence research

The engagement and expert roundtables found that research frameworks must align with the increasing complexity of decision making for mitigation, adaptation, and sustainable development. This alignment requires advancing these frameworks toward transdisciplinary science (Box 2.2). Related to this alignment, several “nexus” topics, in which disciplines intersect, and “convergence” research topics (Box 2.2) emerged in discussions.

Box 2.2. Research paradigms for transformative science

The most challenging knowledge gaps require transdisciplinary science frameworks in order to include social, economic, natural, health, and Indigenous sciences and to integrate climate change, health, and economic well-being. The 2017 report Investing in Canada's Future: Strengthening the Foundations of Canadian Research notes that the multifaceted challenges facing society require science that goes beyond disciplines, bridging previously disconnected fields of knowledge and creating new disciplines.

Developing climate change knowledge requires participatory research paradigms, creating stronger relationships among disciplinary experts and between experts and decision makers. Furthermore, giving equal value and respect to Indigenous knowledge, alongside Western science, is itself a research paradigm that continues to develop.

In this science and knowledge report, the following terms are used (adapted from The Difference Between Multidisciplinary, Interdisciplinary, and Convergence Research | Research Development Office (ncsu.edu) and Research Types - Learn About Convergence Research | NSF - National Science Foundation). Transdisciplinary frameworks should enable equity and unity.

Interdisciplinarity science involves two or more disciplines coming together to develop a coordinated and inclusive definition of the research problem and to design and execute the research project.

Multidisciplinary science connects researchers from different disciplines, each contributing their disciplinary perspective.

Transdisciplinary science creates a unity of intellectual frameworks, integrating approaches beyond disciplinary perspectives and resulting in a synergistic and novel approach to defining the research problem, modalities, and knowledge synthesis and mobilization.

Convergence research brings together diverse researchers to communicate across disciplines in pursuit of a common research challenge, resulting in an intermingling of knowledge, theories, methods, data, and communities. It is similar to transdisciplinary research but intentionally creates new paradigms or disciplines.

Two-eyed seeing , a concept proposed by Mi’kmaq Elder Albert Marshall , refers to learning to see from one eye with the strengths of Indigenous knowledges and ways of knowing, and from the other eye with the strengths of Western knowledges and ways of knowing, taking advantage of multiple perspectives (see Guiding Principles (Two Eyed Seeing) | Integrative Science ).

2.4 Report structure

The structure of this report Footnote 6 is closely aligned with the themes in the original CS2050, but also reflects the need for transdisciplinary science to address convergence research topics. This also reflects the importance of advancing science on multiple fronts in parallel, as climate change continues to affect decision making in every region, community, and economic sector.

The priorities in this report emphasize bringing social sciences more fully into climate change science, as an essential element in advancing work across all theme areas and in empowering action. Specifically, behavioural science is needed to design and evaluate climate change communication to increase awareness and understanding and to inform and motivate action. Figure 2.2 illustrates the conceptual framework for this report.

Figure 2.2. Conceptual framework for Climate Science 2050: National Priorities for Climate Change Science and Knowledge

Text description below

Climate Science 2050: National Priorities for Climate Change Science and Knowledge report identifies research and knowledge synthesis priorities over the next five-10 years to inform investments in science and the national coordination to achieve a net-zero, resilient Canada.

The graphic outlines the conceptual framework for this Science and Knowledge Report.

  • Collaborative
  • Indigenous People and the land
  • Equitable science system
  • Health and resilient Canadians
  • Quantitative GHG measuement and monitoring

Predicting and projecting climate extremes and extreme events

Carbon cycle science.

  • Water – Climate nexus science

Arctic climate change science

  • One health and climate change nexus science

Net-zero pathway science

Climate change and sustainable development, climate change and security.

  • Knowledge synthesis and mobilization
  • Open science
  • National coordination
  • International engagement

2.5 Analysis and prioritization

Chapters 3 to 6 identify priorities for research and knowledge synthesis and mobilization. The priorities reflect the need for both foundational research (advancing science to address challenges in scientific disciplines) and transformative research (addressing complex challenges that require the collective and integrated contributions from social, economic, natural, and health sciences), both of which are required to inform and evaluate progress in meeting Canada’s climate objectives.

To select the priorities for science and knowledge, the guiding principles identified in CS2050 (Box 1.1) were used. Three additional principles were developed specifically for this report to ensure that the highest-priority science activities reflect:

  • relevance and responsiveness to the needs of climate change policy and program information, to help achieve the challenging transformative climate action needed to reach a resilient, net-zero Canada;
  • scientific excellence , guided by emerging science and scientific foresight; and
  • benefits from increased national coordination and/or collaboration .

As well, eight criteria were developed to guide discussion of the science priorities. Science priorities should:

  • result in substantial opportunities to develop science assessments and knowledge synthesis products that mobilize the investments already made in climate change science;
  • advance knowledge and capacity through increased national coordination and collaborative research partnerships that extend across federal departments and encompass provincial/territorial, Indigenous, municipal, academic, environmental non-governmental, and industry organizations;
  • enable multi-scale responses to climate change from national to regional and local contexts;
  • build on leadership and participation in international science and knowledge to mobilize knowledge and tools in Canada’s interest and context;
  • reflect a multi- or transdisciplinary approach to advance research and knowledge synthesis and mobilization, where integration of understanding across disciplines is required;
  • identify readiness in the state of knowledge or tools, in order to make rapid progress with targeted and modest investment;
  • apply an intersectional lens to develop solutions that tackle climate change, sustainable development, and social inequity; and
  • intersect multiple disciplines and interdependencies , so that advances in climate science have co-benefits for other social or environmental objectives (e.g., health, biodiversity conservation, air and water quality) or specific economic sectors (e.g., agriculture, fisheries, forestry).

Following from these principles and criteria, the process identified  convergence research topics that:

  • intersect multiple themes and science disciplines;
  • are transdisciplinary;
  • are relevant across regions and sectors; and/or
  • share complex interdependencies, interactions, and feedbacks across environmental, ecological, socio-economic, and health systems.

These convergence research topics reflect where investments in research, facilitated national coordination and collaboration, infrastructure, and knowledge synthesis and mobilization activities will have the greatest impact on achieving a resilient, net-zero Canada. They also reflect critical science needed to evaluate our progress toward our climate goals.

The key messages and findings from the engagement discussions and expert roundtables were then synthesized. In this process, we acknowledged the importance of perspectives of users—those who design, implement, and evaluate climate policy and programs—and we listened to their information needs and knowledge gaps. This perspective shaped the prioritization of science activities for research, knowledge synthesis, and knowledge mobilization (Chapters 4 through 6). As a final step, a holistic review of the science priorities against the engagement input confirmed that science must advance on multiple fronts to address the diverse set of information needs expressed during engagement.

Chapter 3 Indigenous climate change science and knowledge

This chapter has been written by the CS2050 Secretariat in Environment and Climate Change Canada (ECCC), reflecting many conversations and materials prepared in the context of other national climate programs. Specifically, it summarizes findings from the federally led National Adaptation Strategy engagement and Table discussions, the three Joint Indigenous Nation-Canada Tables for the Pan-Canadian Framework on Clean Growth and Climate Change, the federal Indigenous-STEM (science, technology, engineering and math) community, the Environmental Damages Fund-Climate Action and Awareness science theme scoping, a small Indigenous academic scholars workshop, and the ECCC Indigenous Science Division. While this chapter is specific to Indigenous science and knowledge for climate change broadly, the subsequent chapters also identify specific areas in which Indigenous science and knowledge are important to addressing knowledge gaps and mobilization.

The First Nations, Inuit and Métis Peoples, their knowledge, and their relationship with the land, water, and ice make a critical contribution to developing solutions and responding to environmental challenges, including climate change. The reconciliation pathway—as guided by the Truth and Reconciliation Commission of Canada: Calls to Action (PDF) report of 2015—calls for all Canadian institutions to re-envision relationships, policies, and programs to heal the wounds of the past.

Colonization has increased the susceptibility of Indigenous Peoples’ physical, cultural, economic, and spiritual well-being to climate change. Indigenous Peoples have unique relationships and responsibilities between Indigenous knowledge systems, and the land, water, and ice. These concepts among Indigenous Peoples are multi-faceted and place-based, with traditions, languages, ceremonies, and knowledge systems driving the unique world views of communities and Indigenous nations. The responsibilities inherent in those knowledge systems and ways of being are known as Natural Laws . In Indigenous contexts, land represents more than simple physical landforms, territories, or ecosystems. Across Indigenous cultures, land, water, and ice are understood to be foundational elements of Indigenous identity. They serve as the landscape upon which human and more-than-human relationships evolve and develop. At the same time, they create reciprocal relationships that define the obligations of all entities to each other. This concept of land, water, and ice as interacting elements in the web of life and as arbiters of responsibility makes Indigenous science and knowledge essential to addressing climate change and co-developing solutions for all Canadians.

Indigenous science priorities and Indigenous leadership must be integrated into the entire spectrum of science practice, from hypothesis generation to policy development and implementation, to support Canada’s commitments to reconciliation with Indigenous Peoples. The respectful bridging of Indigenous and Western science enables this reconciliation but must be sensitive to the capacity of Indigenous communities to engage equitably. One of the ways we reconcile is by creating equitable spaces that acknowledge the role of academia, science, and colonialism and their impact on Indigenous science.

Box 3.1. Indigenous science

Indigenous science is a culturally specific method of accumulating knowledge, refining hypotheses, and changing practices associated with First Nations, Inuit, and Métis Peoples’ deep understanding of the natural world. Indigenous science is “wholistic” (a term used to describe the ecosystem as a whole), and deeply braids, or weaves, new information over a longer-term perspective, while respecting expected codes of conduct and due diligence toward the collective benefit of all components, including humans, in ecosystems. Indigenous research paradigms have a number of common components; for instance, relational accountability, wholistic use and transmission of data and information, and respect for people as part of processes that can influence scientific outcomes. Footnote 7

3.1 Creating an equitable science system through Indigenous science

Distinctions-based approach The term “distinctions-based approach” acknowledges the distinct histories, interests, and priorities of the three major groups of Indigenous Peoples recognized in Canada’s constitution: First Nations, Inuit, and Métis Peoples.

Indigenous leadership has historically been silenced, unrecognized, and devalued. Only very recently has the development of climate change science and global climate change policy involved Indigenous leadership, with s elf-determination and governance as core concepts shaping environmental science and policy. Establishing a representative, diverse, and inclusive science system in Canada requires continued and renewed relationship-building. The system must readily incorporate both Western and Indigenous methods and ways of knowing in a strengthened path forward.

Research and science activities that are Indigenous-led and/or co-developed with Indigenous communities foster grassroots participation and allow communities to benefit from current information to make decisions. Footnote 8 Such activities can also lead to community engagement on a long-term basis, reducing “consultation fatigue.” Locating government facilities, research infrastructure, and personnel in Indigenous and remote communities further increases the potential for long-term relationships with Indigenous communities and builds the community’s capacity.

Equitable outcomes of climate change science must include Indigenous science methods to inform mitigation and adaptation. The following priorities are designed to build Indigenous science and strengthen equity across knowledge systems. However, Indigenous-developed research strategies are the primary articulation of Indigenous Peoples’ priorities.

ISK1. Develop Indigenous leadership in climate change science and Indigenous science networks; support science and knowledge clusters and networks that actively build relationships with Indigenous Peoples in creating pathways that respect local grassroots climate science concerns and priorities . This includes preparing the existing system for the influx of Indigenous science—training existing professionals, incorporating Indigenous science into science education materials at all levels nationally, working with licensure bodies, and others. It also includes building relationships, learning jointly with Indigenous communities, and developing Indigenous climate change and science youth leadership or mentorship programs to restore and increase the number of knowledge-holders in communities, Indigenous nations, academia, industry, and the public service.

ISK2. Braid and weave Indigenous and Western science planning and implementation with Indigenous governments, organizations, and citizens to craft approaches to climate change science and knowledge that are relevant to regions, based on distinctions, and uphold Indigenous rights and self-determination . This includes building networks of regional distinctions-based forums to guide climate change science. It also includes developing Indigenous-determined indicators that track Canada’s progress in engagement of Indigenous climate change science, so that science outcomes inform measures to mitigate the socio-cultural and socio-economic impacts of climate change.

ISK3. Create materials for Indigenous climate change science and knowledge that are responsive to Indigenous Peoples’ goals of cultural revitalization, and develop policies, programs, and initiatives respecting Indigenous languages . This approach requires the production of technical and communications materials in Indigenous languages, grounded in co-development.

ISK4. Strengthen scoping and funding mechanisms to establish Indigenous science research capacity . This could include mechanisms to create research programs, hubs, or a fourth Footnote 9 Indigenous-led research funding council/agency, at the national or regional level, to lead research and administration of science programs by Indigenous science organizations (e.g., Indigenous Centre of Excellence for Climate Change), as well as Indigenous science programs at the community level with dedicated Indigenous science liaison people (see section 3.2 below).

ISK5. Train and build capacity in Indigenous local and regional place-based science and knowledge practice . Practice could include Indigenous-led monitoring and data infrastructure; community-level knowledge and environmental management systems; training opportunities for Indigenous youth; lifelong learning and technical skills related to local environmental and Indigenous science; and Indigenous project leadership and implementation (see section 3.3 below).

3.2 Indigenous Peoples’ sacred relationships to land, water, and ice

It is through the human lens that we observe, interpret, and build the ethical framework that drives how we interact with the land, water, and ice. Relationships to the land, and ultimately climate, are encoded in Indigenous identities, languages, practices, and stories. Historical and contemporary climate and environmental knowledge can take a range of forms that might not be understood without culturally specific interpretation and translation. Establishing relationships between communities and researchers, and between the Crown and settler populations, necessitates rebuilding trust and collaboration. Canada’s constitution recognizes three groups of Aboriginal Peoples: First Nations, Inuit, and Métis. Honouring the inherent rights of Indigenous Peoples means acknowledging the culturally distinct and diverse First Nations, Inuit, and Métis Peoples’ rights, agreements, treaties, interests, and circumstances. This distinctions-based and place-based approach remains essential to Indigenous science and knowledge.

The National Inuit Climate Change Strategy and the National Inuit Strategy on Research , the First Nations – Canada Joint Committee on Climate Action 2021 Annual Report , and the Métis Nation Climate Change & Health Vulnerability Assessment all highlight the need to develop local capacity to address the unique challenges of Indigenous Peoples, governments, organizations, and nations. Indigenous science and knowledge systems have developed responsibilities that are culturally defined. For example, the unique role and relationship of Indigenous women to water has traditionally been encoded within cultural practices and protocols, representing a branch of knowledge that can be accessed only through specific, local community-defined processes.

Box 3.2. Respecting Indigenous Peoples as climate scientists

Indigenous Peoples have an unbreakable and sacred connection with the land and water. The relationships between Indigenous Peoples, land, water, ice, animal life, and surrounding habitats are the foundation of Indigenous science and knowledge. In turn, this science and knowledge can provide context, interpretation, and deep insight. Article 25 of the United Nations Declaration on the Rights of Indigenous Peoples affirms Indigenous People’s rights to maintain and strengthen their distinctive spiritual relationships with the land and water. Indigenous science and knowledge are highly integrative and reflect an understanding that humans are part of ecosystems and must remain in balance with them. Indigenous land stewardship practices are inherently systems-oriented and wholistic in scope. The First Nations, Inuit, and Métis are well-positioned to be guardians and stewards of ecologically sensitive landscapes, especially those involving their traditional lands.

More recently, there has been a shift toward supporting Indigenous community ownership and control of data, information, and research outputs gathered by Indigenous communities (e.g., First Nations Information Governance Centre and the National Inuit Strategy on Research ). Efforts to blend the best available Indigenous and Western scientific information have led to meaningful, long-term partnerships that are place-based. In many Indigenous Nations, Indigenous-led and/or co-developed research programs are the new minimum (e.g., Mi’kmaq partnership tenets ). In the Inuit Nunangat (the Inuit homeland in Canada), partnerships with Inuit are essential to assess and address the impacts of climate change (see Chapter 5.4. Arctic climate change science). To put in place the data infrastructure fundamental to evidence-based decision making, Indigenous rights and protocols must be recognized, and Indigenous data must be recognized as inseparable from the people and the methods used to collect that data (see Chapter 6.2. Data infrastructure).

The Canada Research Coordinating Committee has prioritized the development of Indigenous research capacity in responding to the Truth and Reconciliation Commission of Canada’s calls to action and in contributing to reconciliation in Canada. Such approaches, although beneficial, are not yet specific or responsive to challenges facing Indigenous Peoples, such as food and energy security or access to clean water. There is a need to create space and capacity for Indigenous leadership in funding bodies by enhancing Indigenous leadership and participation in scoping, review, and decision making that reflects the relationship with land, water, and air. Flexible funding and Indigenous-led programs that avoid competition among First Nations, Inuit, and Métis knowledge systems are particularly important.

As noted in the fourth priority ( Strengthen scoping and funding mechanisms to establish Indigenous science research capacity ), novel Indigenous-led funding models are needed to enhance the scope and funding mechanisms for Indigenous science research capacity. This capacity can be achieved through new, culturally appropriate, Indigenous-led granting programs, councils, or hubs. Science coordination is a key part of this report, and such coordination can bring together Indigenous and Western science voices in Canada. Among other benefits, coordination could provide better opportunities for Indigenous scholars and knowledge holders to publish their work, thereby bringing the voices of Indigenous Peoples to other scientists, scholars, and communities.

3.3 Learning from, and stewardship of, the land, water and ice

Land, water, and ice are the essential components that drive relationships between people and ecosystems and from which Indigenous Peoples derive their responsibilities. These relationships are celebrated, encoded, and learned through traditions and ceremony. This is not a uniquely Canadian concept, as Indigenous Peoples are being recognized globally as leaders in landscape and biodiversity conservation. Indigenous science is about the long-term understanding of ecological cycles and environmental processes that are embedded in the intimate knowledge of environment and in traditional and cultural activities. This understanding has served as a resilient force in Indigenous adaptation and mitigation strategies, as Indigenous communities monitor and respond to changes in the environment (Box 3.1).

A key element of the human–environment relationship in many Indigenous cultures is the concept of stewardship. Being part of the land provides a rich knowledge of ecosystems and biodiversity. Through Indigenous concepts such as “living well with Earth,” “all my relations,” and “kinship relationships” with the land, oceans, waterways, and animals, Indigenous science can help promote understanding and guide future human interactions with land, water, ice, and the climate. Indigenous science can also foster a longer-term strategic vision for the protection of resources that is inclusive, collaborative, and advances reconciliation.

Box 3.3. Indigenous climate change programs enabling science and knowledge-sharing

These programs foster Indigenous leadership in building and maintaining resilient ecosystems that are key to mitigating and adapting to climate change and revitalizing culture.

  • In 2017, the Government of Canada launched the Indigenous Guardians program, which gives Indigenous Peoples opportunities to exercise responsibility in stewardship of land, water, and ice, as well as rights and responsibilities in protecting and conserving ecosystems, developing and maintaining sustainable economies, and continuing the profound connections between natural landscapes and Indigenous cultures.
  • The Indigenous Community-Based Climate Monitoring Program supports Indigenous Peoples across Canada to monitor climate and the impacts of climate change using Indigenous knowledge systems and science.
  • The United States Bureau of Indian Affairs’ Branch of Tribal Climate Resilience has regional liaisons who serve as key links between Indigenous communities and the Department of the Interior’s Climate Adaptation Science Centers. The nine Climate Change Adaptation Centers are regionally representative, managed by the US Geological Survey’s National Climate Adaptation Science Center, which aims to develop “actionable science, information and products that address identified science needs and are directly usable in supporting resource management decisions, actions, and plans.” This network of science centres is responsible for developing leaders in climate change science through a variety of research, fellowships, and training programs.
  • The Canadian National Collaborating Centre for Indigenous Health supports the health of First Nations, Inuit, and Métis Peoples by improving evidence-based public health practice through a wholistic, strengths-based approach.

Approaches are needed in which priorities are determined by Indigenous Peoples and are designed to work with Indigenous capacity and community contexts. Such approaches lead to more successful and relevant science outcomes and are inclusive of culturally relevant training and Indigenous representation. Footnote 10 These outcomes should, to the greatest extent possible, be produced by Indigenous Peoples. This requires ongoing, meaningful inclusion of Indigenous Peoples in Western science research activities and programs as equal partners, to further trust and relationship-building. Such inclusion also helps build capacity in community-based Indigenous science (see priority 5 in this chapter). Combining Indigenous science and knowledge with strategic investments and support for coordination or partnerships can be a powerful tool for Indigenous Peoples, governments, and stakeholders to combat climate change. An example is the Indigenous Innovation Initiative , a challenge-based funding program that relies less on “competitive aspects in favour of a more holistic, community-oriented frame that values interconnection and communal values over individual triumphs.” This can inform novel funding models addressing the needs of communities and grounded in values based on culture, place, and distinctions. Models should avoid silos, be led by Indigenous science leaders, and favour a “one-window” approach, in which all programs are coordinated and accessible through a single system or application.

3.4 Knowledge gaps and mobilization opportunities

While the impacts and risks posed by climate change vary by region and community, common knowledge gaps emerged across the engagement undertaken to inform this report that should be addressed in order to strengthen Indigenous science leadership and capacity for First Nations, Inuit, and Métis knowledge systems. In each area, the knowledge gap reflects our understanding of the direct impact of climate change, as well as the impacts of Canadian policies, programs, and regulations that make up our response to climate change:

Food systems and security —Understanding food security in remote and rural regions through hunting, cultivating, harvesting, and access to resources, and, in urban contexts, the risks to supply chains, access, and storage of food.

Energy security —The implications of transitioning to net-zero and renewable energy solutions for employment and environmental impacts; energy security and impacts on food security, health, and shelter; opportunities for community-level energy solutions and infrastructure; and strategies for transitioning energy systems.

Infrastructure —Understanding how the lack or substandard condition of infrastructure, such as road access and connectivity (multiple routes and connections serving the origins and destinations), in remote and rural Indigenous communities limits the ability to respond to climate change and implement measures to reduce greenhouse gas emissions.

Resilient and sustainable infrastructure and critical services —Understanding community-level risks and opportunities to create net-zero and resilient communities.

Health and well-being —Understanding climate change impacts on access to medical care (for both physical and mental health); resilience of health services systems; risks of vector-borne disease and invasive species; access to freshwater; food security and safety; physical dangers; as well as search and rescue implications of a changing climate.

Climate extremes and extreme weather events —Understanding how changing climate affects livelihoods and well-being through research on extreme weather events, particularly wildfires and flooding, that is oriented to the community and aligned with the culture, to reduce disaster risk, improve response, and plan for evacuations.

Ecosystem resilience —Understanding healthy ecosystems, Footnote 11 carbon storage and conservation, and protection of biodiversity as pathways to climate resilience, and considering land, water, snow, and ice as critical natural infrastructure for Indigenous Peoples.

3.5 Looking forward

To advance climate change science and knowledge in a way that incorporates Indigenous Peoples and serves their interests, there is a need to create or expand research centres and fund programs sufficiently over the long term so that they are accessible, flexible, equitable, and integrative. Centres and programs must also be wholistic, bringing together related areas such as energy, infrastructure, food, water, and health. Regional or local research authorities and centres, and creation and access to data must respect data sovereignty and Indigenous knowledge while building Indigenous science capacity. This support should allow for the reciprocal recognition of Indigenous science and knowledge systems, creating informed rather than prescriptive spaces for the exchange of knowledge between Indigenous and non-Indigenous scientists.

A strengthened Canadian climate change science system should enhance our understanding of people and natural and managed ecosystems. It should guide our relationship with the land, oceans, and waterways to build ecosystem resilience. It should inform efforts to protect biodiversity and people. Self-determination and place-based approaches should be highlighted and respected in identifying priorities for research. Specific co-development policies, such as the 2022 Inuit-Crown Co-development principles and the Inuit Nunangat Policy endorsed by the Inuit Crown Partnership Committee, guide this work. Leadership in First Nations, Inuit, and Métis science and knowledge systems is key to informing the novel and transformative change needed for a resilient, net-zero Canada.

Chapter 4 Theme priorities

This chapter identifies science priorities according to five themes that contribute to successful mitigation and adaptation action. The priorities reflect the scale of climate change and the urgency of action required. Taking action in these areas will inform the development of mitigation and adaptation measures that are coordinated and complementary.

Healthy and resilient Canadians

To address the knowledge gaps on climate change and health, collaboration is required across all levels of government and all sectors important to health. Governments and health sectors need to look at how Canadians’ physical and mental health is affected by rising temperatures and catastrophic extreme events. They also need to address indirect effects, particularly on food security. Health systems are critical in protecting Canadians from climate change, and, like built infrastructure and critical services, they are vulnerable to extreme events. There are also opportunities to reduce emissions within the health sector on the pathway to net-zero. The research priorities focus on:

  • understanding climate change impacts on health and health systems to find feasible ways to adapt;
  • conducting research to create low-carbon, sustainable health systems; and
  • understanding policies, programs, measures, and technologies to develop sustainable health systems.

The knowledge synthesis and mobilization priorities emphasize:

  • assessing the latest scientific information on climate change and health;
  • sharing knowledge about health adaptation within the health services sector; and
  • changing behaviour by communicating the health risks of climate change and the adaptation options.

Most of Canada’s buildings and infrastructure (transportation, food and water supply, energy, shelter, safety, health care, telecommunications) were not designed or built with a changing climate in mind. During and after extreme weather events, Canadians may lose transportation links, water supply, and other vital services. Research is needed to:

  • improve climate change data products, predictions, and projections to support decision making, infrastructure investments, and reduced risks from extreme events;
  • inform mapping of multiple hazards, reflecting interdependencies and potential cascading infrastructure risks and failures;
  • expand the use of performance-based design for construction and operations;
  • develop an equity-based lens to better inform climate action;
  • inform a transition to low-carbon, resilient buildings, transport, and infrastructure; and
  • understand how to use nature-based solutions in the built environment.

The knowledge synthesis and mobilization priorities include:

  • understanding governance to guide effective coordination and implementation of adaptation and mitigation for infrastructure;
  • translating research results for practitioners;
  • fostering effective climate action through an understanding of behavioural science and socio-economic context; and
  • advancing methods, tools, and technology to benchmark community resilience and improve it.

Natural ecosystems are facing multiple stresses—including climate change—that combine to influence their resilience and integrity. These combined stresses can jeopardize many ecosystems’ ability to sustain themselves and to provide a diversity of services, values, and benefits, including those for nature, health, the economy, and society. Understanding the spectrum of different ecosystems’ responses to climate change will inform actions to sustain and restore these ecosystems, for biodiversity and ecosystem services. Research priorities include:

  • understanding how climate change and extreme weather events affect ecosystems and biodiversity;
  • examining the effectiveness and permanence of nature-based solutions; and
  • identifying adaptation solutions that promote resilient ecosystems.

The knowledge mobilization priority involves:

  • producing regular reports on status and trends in biodiversity and ecosystems to improve adaptive management and evidence-based decision making.

Climate change continues to impact the forestry, agriculture, fisheries, mineral, and energy sectors. As a result, there is a growing emphasis on developing capacity for responses that integrate both emissions mitigation and adaptation. Each sector experiences different impacts. However, research that informs cross-sectoral solutions and system-level transitions to net-zero and resilience is critical. This research will enable natural resource sectors to explore opportunities and develop decision-support tools in the circular bioeconomy as well as “climate-smart” technologies and practices.

The research priorities are to:

  • understand emerging risks and vulnerabilities to Canada’s natural resource sectors;
  • accelerate the contribution of natural resource sectors to climate action;
  • develop and track indicators of resilience to support natural resource sectors; and
  • explore mitigation and adaptation actions across sectors through collaborative and transdisciplinary approaches, including greater inclusion of social sciences.

Knowledge mobilization activities include:

  • developing relevant tools to inform evidence-based policy and decision making; and
  • incorporating behavioural and social science to inform more effective decision making and communication.

Informing progress towards net-zero greenhouse gas emissions

To measure progress toward net-zero GHG emissions, emissions and removals from the atmosphere must be estimated and reported using multiple methods. The research priorities allow us to use new data on source activity as well as emerging surface and satellite-based observations to improve the accuracy and timeliness of reported emissions. Research is needed to:

  • develop integrated monitoring systems for atmospheric GHGs and reconcile different methods to estimate anthropogenic GHG emissions;
  • improve quantification of ecosystem carbon stocks and natural GHG fluxes;
  • better understand and monitor how land use change and management practices impact carbon fluxes and progress towards net-zero; and
  • examine the trade-offs  and societal impacts of policies involving GHG emissions reductions and carbon-dioxide removal technologies.
  • reconciling publicly available emissions data, information, and knowledge; and
  • comparing and improving ecosystem models to understand natural carbon fluxes and how humans are driving changes in terrestrial carbon storage.

Climate Science 2050: Advancing Science and Knowledge on Climate Change (CS2050), published in December 2020, identified four science and knowledge outcomes—and a fifth area of foundational research—that contribute to successful mitigation and adaptation action. This chapter provides science priorities under these five themes. The priorities must unfold in parallel across themes, to inform climate action underway across all sectors and communities, and to reflect the scale of climate change and urgency of action required.

The priorities for research and knowledge synthesis and mobilization are of equal importance. Ongoing research adds knowledge and identifies opportunities for action, while knowledge synthesis and mobilization help translate the research investments into action.

As an example, the priorities in this chapter advocate for more frequent, more accurate, and higher-resolution information concerning weather, climate, and greenhouse gas fluxes. Such information informs climate change adaptation, risk assessment, communication, and climate literacy, and is needed to evaluate the progress of climate policy and action.

For all priorities involving data, open-access datasets that uphold the FAIR principles (findable, accessible, interoperable, and reusable) need to be developed to improve our capacity to identify, predict, monitor, and evaluate climate change and its impacts. Such datasets are needed to understand drivers, develop indicators, and evaluate the effectiveness of management actions under a range of future scenarios.

All climate change research should support and create space for First Nations, Inuit, and Métis Peoples and communities. Researchers should learn from, and partner with, Indigenous Peoples and communities. As discussed in Chapter 3, local knowledge and the science and knowledge systems of the First Nations, Inuit, and Métis Peoples should be integral to research. Research should further take into account the impacts of climate change on First Nations, Inuit, and Métis Peoples and their distinct and diverse traditional practices. Some Indigenous Peoples and communities may be more seriously impacted by climate change and experience greater barriers to adaptation. Regardless of the specific impact of climate change, Indigenous Peoples and communities should be involved in monitoring indicators and in defining and evaluating resilience for their communities, in ways relevant to their culture.

4.1 Healthy and resilient Canadians

Climate change risks to human health continue to increase. These risks include impacts on the physical and mental health of Canadians, on Canada’s health systems, and on those disproportionately affected and vulnerable. Human health cannot be protected from climate change impacts without robust knowledge of risks to Canadians and their health systems, economic costs of health impacts, and effective adaptation measures. This includes new approaches to communicating climate change that support behavioural change. The Public Health Agency of Canada Chief Public Health Officer’s Report in 2022 focused on mobilizing public health action on climate change through current public health functions (e.g., emergency preparedness). Indigenous-led research is highlighting the interplay between the health impacts of climate hazards and underlying drivers of vulnerability (e.g., racism, current and historical colonization, social determinants of health). This research also highlights culturally meaningful approaches to protect health (see Box 4.1 Climate change poses serious risks across the Métis Nation). However, knowledge gaps continue to hinder health-adaptation efforts. Knowledge gaps also limit efforts to design and implement net-zero transitions in ways that support livelihoods, benefits health, and develops environmentally sustainable health systems.

Box 4.1. Climate change poses serious risks across the Métis Nation

Métis Nation citizens living in western Canada are uniquely sensitive to the impacts of climate change because they depend on the land for their identity, culture, livelihoods, and resource economies. Over many generations, Métis People have found innovative ways to live in their environment despite diminished access to land and waters. This resilience to change, built over generations, and Métis environmental knowledge can support adaptation solutions for Indigenous and non-Indigenous populations. In 2020, the Métis National Council released its Métis Nation Climate Change & Health Vulnerability Assessment Report , to explore the risks and current gaps for the Métis Nation and identify supports needed to develop chart a path forward to climate change resilience.

Addressing the science priorities (below) requires a commitment to multi-sectoral, transdisciplinary, and “systems thinking” approaches. Such approaches include “Health in All Policies” and “One Health.” “Health in All Policies” involves collaboration, horizontally and vertically, among all levels of government and across sectors important to health (e.g., energy, transportation, agriculture, forestry, fisheries, water, urban planning, conservation). In this approach, those involved recognize and exercise their role in influencing key determinants of health and drivers of health outcomes. The “One Health” approach recognizes that the health of humans, domestic and wild animals, plants, and the wider environment (including ecosystems) are interdependent (see Chapter 5.5 One Health and climate change nexus science).

The following research priorities support efforts to protect the health and resilience of Canadians and prepare health systems for a changing climate.

R1 (HRC). Understand the impacts of climate change on health and health systems, to advance effective, equitable, and feasible measures for health adaptation . Research is needed to understand the current impacts and projected health risks to Canadians related to climate change. These include risks affecting air quality, food security and safety (see Box 4.2 Food security in an uncertain future climate), as well as infectious or chronic diseases, mental health, water quality and security, and natural hazards (See Box 4.3. Reducing risks to the health of Canadians from severe weather events). Many of these impacts threaten livelihoods and hunting and fishery traditions, as well as potentially displacing First Nations, Inuit, and Métis People. Research is also needed on how underlying social and environmental factors, such as low income or socio-economic status, inadequate housing, racism, and colonization may increase these risks.

New and innovative methods, tools, and indicators are needed to understand, measure and model health risks, climate stressors, and vulnerabilities (e.g., monitoring indoor heat, using artificial intelligence applications and molecular tools for tracking climate-sensitive pathogens and antimicrobial resistance in food, soil, water, animals, and plants). This includes monitoring the state of resilience of health systems. The costs of the health impacts and risks of climate change on people living in Canada, on health systems, and on the economy must also be analyzed.

Effective, equitable, and feasible measures for climate change adaptation and mitigation actions related to health must be developed to increase the climate resilience of Canadians and their health systems. Research is needed to better understand the co-benefits and possible risks of these measures on human health, as well as to analyze their economic costs and effectiveness. This research should examine ways to avoid “maladaptation,” an adaptation action that does not succeed in reducing risks but increases them instead. This requires improved understanding of the impacts of adaptation and mitigation measures, taken both within and outside of the health sector, on human health. This will inform how to minimize risks and health inequities at regional levels and over varying time scales. Research is also needed to better understand the governance mechanisms, institutional and regulatory capacity, leadership approaches, and networking and collaboration opportunities to reduce health risks from climate change.

Box 4.2. Food security in an uncertain future climate

Food security is when all people, at all times, have physical and economic access to sufficient safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life. Climate change is already affecting Canadian food systems and is contributing to food insecurity. For example, Canada’s Food Price Report 2022 found that climate change has contributed to rising food prices. Increasing globalization has resulted in a global food system in which Canada participates, importing and exporting raw and prepared foods. Thus, factors disrupting global food systems, such as acute and chronic climate change impacts and political instability, can also affect food security and disrupt food systems in Canada. Chapter 8 of the report Health of Canadians in a Changing Climate (published in 2022) reviews evidence on the impacts of climate change on health through effects on food safety and security, and existing knowledge gaps.

Box 4.3. Reducing risks to the health of Canadians from extreme weather events

Canada is experiencing more extreme weather events and hazards (e.g., heatwaves, floods, and wildfires), and these can have catastrophic impacts on human health. For example, the unprecedented heat event that affected British Columbia in June 2021 led to 619 deaths and to disastrous wildfires in a number of communities. Climate change is increasing the risk of compounding or cascading events that can overwhelm health and social services’ capacity to respond. This can affect the availability or quality of care. This can be particularly acute when such events occur at the same time as other societal shocks and stressors.

Chapter 3 of the report Health of Canadians in a Changing Climate (published in 2022) reviews evidence of the physical and mental health impacts of natural hazards related to climate change and key knowledge gaps.

Assessing the health system’s capacity to adapt to climate-related hazards is critical to avoid disruption of services and severe impacts on patients and staff due to climate hazards, such as extreme events. More research is needed on climate-related impacts and risks, vulnerabilities, and costs to health systems and facilities from immediate hazards (e.g., flood) or longer-term events (e.g., droughts, infectious diseases, storm disruptions to transportation and critical services). This includes impacts on health policies, programs, services, infrastructure, human resources, and supply chains (e.g., drugs, medical equipment), especially for rural, remote, and Northern health systems and those serving First Nations, Inuit, and Métis Peoples. These health systems are often more vulnerable, and gaps in health outcomes between First Nations, Inuit, and Métis Peoples, on the one hand, and non-Indigenous Canadians, on the other, remain.

R2 (HRC). Conduct research to support the transition to a sustainable, low-carbon health system . Health systems and services play a critical role in protecting Canadians from the current impacts and future risks of climate change. They also present opportunities to reduce greenhouse gases within this sector as they account for approximately 5% of Canada’s annual emissions. Climate-resilient and sustainable low-carbon health systems offer a triple dividend of better health and safety for individuals, reduced costs of operations and services, and substantial GHG emissions reductions. The Government of Canada expressed its support for the United Nations Framework Convention on Climate Change COP26 Health Programme, committing to developing climate-resilient and sustainable low-carbon health systems.

Research is needed to support the development of low-carbon health systems. Information and methods are needed to more accurately measure and monitor GHG emissions from health sector activities. These include direct emissions from health care facility operations (e.g., on-site boilers and medical gases) and indirect emissions through purchased electricity and the supply chain.

R3 (HRC). Improve understanding of policies, programs, measures, and new technologies available to health authorities and their partners to develop low-carbon and sustainable health systems . Methods are also needed to measure other non-climatic factors impacting health system emissions, such as population changes, health care demand and utilization, and new technology development. Research can contribute to developing best practices and cost-effective new technologies to manage the health sector’s carbon footprint through, for example, retrofits of existing health care facilities, reusable medical supplies, remote medical care technologies, and lower GHG-emitting transportation in supply chains. Additionally, evaluation of current purchasing practices in the Canadian health system and innovative finance-based mechanisms, such as green revolving funds and green bonds, is needed. Last, how measures that support climate resilience, adaptation, and the reduction of GHGs can reduce the costs of climate actions for the health services sector needs to be understood.

Assessing the health system’s capacity to adapt to climate-related hazards is critical to avoid disruption of services and severe impacts on patients and staff during extreme events. More research is needed on climate-related impacts and risks, vulnerabilities, and costs to health systems and facilities from immediate hazards (e.g., flood) or longer-term strains (e.g., droughts, infectious diseases, storm disruptions to transportation and critical services). This includes impacts on health policies, programs, services, infrastructure, human resources, and supply chains (e.g., drugs, medical equipment), especially rural, remote, and Northern health systems and those serving First Nations, Inuit, and Métis Peoples. These health systems are often more vulnerable, and gaps in health outcomes between First Nations, Inuit, and Métis Peoples, on the one hand, and non-Indigenous Canadians, on the other, remain.

Knowledge synthesis and mobilization priorities include:

KM1 (HRC). Conduct regular national, regional, and local-scale assessments of climate change and health . Assessments should summarize the latest information on impacts on human health, health systems, and health equity; variations in vulnerabilities and risks to health; and options for adaptation and for sustainable low-carbon health systems.

KM2 (HRC). Develop innovative strategies and approaches for knowledge exchange among health professionals, practitioners, and administrators . These strategies and approaches should include education and training materials and tools tailored to the specific partners involved, to meet the health-adaptation needs of diverse audiences.

KM3 (HRC). Effect behavioural change among decision makers, stakeholders, and the public by improving strategies for effective communication of the health risks of climate change, adaptation options, and the health benefits of proactive action . This priority includes applying insights from behavioural science, relatable narratives, and participatory approaches, including diverse voices. This includes learning from, and partnering with, First Nations, Inuit, and Métis Peoples and other communities and individuals who may be more seriously impacted by climate change and experience greater barriers to adaptation.

4.2 Resilient, net-zero communities and built environment

Most Canadian communities were not designed and constructed with a changing climate in mind. As a result, the infrastructure systems we rely on to meet basic needs—such as food and water supply, energy, shelter, safety, and access to health care—are increasingly vulnerable to climate extremes and extreme weather events. As hazards—such as heavy precipitation, heatwaves, wildfires, and flooding—become more extreme, these systems face increased risks of compound hazards and cascading failures. The infrastructure sector is also a contributor to climate change, with transport and buildings representing the sectors with the second- and third-highest emissions in Canada. Long-term assets, buildings, and infrastructure constructed or retrofitted today are anticipated to have lifespans of several decades. Careful design and planning of our built environment can avoid locked-in emissions and contribute to carbon uptake (through use of innovative carbon-capturing products, bio-based products, and nature-based infrastructure solutions, as examples).

Box. 4.4. The intersection of adaptation and mitigation in the built environment

Actions to adapt to climate change and reduce GHG emissions are inextricably linked and should be considered together to maximize co-benefits. Examples of these linkages include:

  • Lifecycle environmental performance : Increased climate resilience can reduce lifecycle carbon emissions by extending service life and lowering maintenance needs.
  • Natural infrastructure solutions : Natural carbon sinks can complement or replace conventional engineered high-carbon infrastructure to mitigate impacts of flooding, reduce urban heat islands, and lower energy loads to cool buildings.
  • Resilient low-carbon, zero-emission solutions : In building and transportation system retrofits and maintenance, integrating resilience to climate change and extreme weather events can increase overall community resilience, reduce emissions, and achieve public health outcomes.

Adapting to climate change requires meaningful and profound rethinking of where and how our communities are planned, built, and maintained, from their overall design to individual homes. There is a need to understand where adaptation and mitigation actions will have the biggest impact, and where resilience and mitigation goals reinforce each other or where there are diverging goals (see Box 4.4. The intersection of adaptation and mitigation in the built environment). Vulnerabilities and risks are not distributed uniformly across regions or across social, cultural, and economic groups. This needs to be taken into account in determining priorities and solutions.

The research priorities for the built environment span the information needs of all orders of government and economic sectors that must integrate adaptation and low- or net-zero-GHG–emission considerations into decision making for public safety, critical services and infrastructure, livelihoods, and the livability of our communities.

R1 (RNCBE). Generate climate data, predictions, and projections to inform risk assessment, adaptation, and actions to reduce GHG emissions for the built environment . Climate observations, predictions, and projections at relevant spatial and temporal scales are needed, as well as a better understanding of the impacts of climate change on the built environment. This information is critical to shifting to low- and net-zero carbon, resilient buildings, transport, energy, and infrastructure systems (e.g., housing, transit, energy, drinking water, telecommunications). The data should be suitable for estimating emissions and characterizing hazards—such as extreme precipitation, heatwaves and cold snaps, wildfires and smoke, dust storms, ice accretion, extreme winds, high lake and ocean waves, storm surges, flooding, and overland floods—as well as slower-onset disruptions—such as sea-level rise; severe shifts in drought cycles; permafrost thaw; and thinning river, lake, and sea ice.

R2 (RNCBE). Create maps of multiple hazards to identify and prioritize high-risk areas, manage interdependencies, and address potential cascading risks to infrastructure systems . Advances are needed to enable multi-layer geospatial mapping that integrates multiple and compound climate hazards and provides information for decision makers, such as:

  • infrastructure system details (location, jurisdiction, type, age, condition);
  • critical systems (health care, water treatment plants, emergency response, power, communications, bridges, escape routes, security services, community refuges, and district heating plants);
  • social infrastructure (e.g., government buildings, schools, universities, churches, heritage buildings, and libraries);
  • natural systems (air quality, parks, water, soils, minerals, wildfire fuel load, forest insects, and pathogens);
  • population vulnerabilities (e.g., seniors, children, people with chronic illnesses, socially disadvantaged groups); and
  • hazards (e.g., floods, droughts, wildfires, heatwaves).

This research must address current challenges to integrating map layers, which would allow novel ways of combining data and understanding their relationships. These challenges include:

  • unavailability or lack of homogeneity in the data structures, limiting concurrent use at common space and time scales;
  • uncertainty in climate projections, including those due to difference global emission scenarios; and
  • integration of real-time or near-real-time data.

This work must also include integrated mapping tools to identify, assess, and rank risks, system interdependencies, and potential cascading failures (e.g., floods impacting energy distribution, food supply, and telecommunications).

R3 (RNCBE). Expand the use of performance-based design to find innovative construction and operating solutions. Research is needed to help move from “prescriptive-based” to “performance-based” design, a goal-oriented design approach that addresses criteria for the performance of the building or infrastructure, such as energy use, operating cost, and occupant comfort, among others. Performance-based national codes and standards will foster innovation and flexibility in how regulations are met. They will ultimately make it easier to attain low-carbon and resilient-performance targets. Research should identify ways to evaluate the performance of materials and systems, and set acceptable performance levels (e.g., for whole-asset life-cycle carbon, material durability, building comfort, wildfire resilience, accessibility). Clear performance-based design requirements level the playing field for a variety of technologies, including bio-based products and nature-based solutions.

R4 (RNCBE). Develop and apply an equity-based lens to better inform climate change adaptation and GHG emission mitigation actions. Research is needed to develop socio-economic and geographic (or place-based) datasets and metrics to characterize the various dimensions of vulnerability. This information can be used to inform the design and management of net-zero infrastructure and built environments in vulnerable communities. Knowledge gaps include understanding the cumulative effects of climate change; how they interact with existing vulnerabilities (e.g., poverty, lack of drinking water, transit, housing, or energy); and how they may amplify systemic or societal inequities and affect lived experiences.

R5 (RNCBE). Inform the transition to low-carbon buildings, transport, and infrastructure. Research is needed to develop methods, technologies, best practices, and guidance to support transition to low-carbon built environments and a zero-waste circular economy (see Box 4.7. Cross-sectoral and transdisciplinary approaches for the circular bioeconomy). This research needs to help us move from conventional prescriptive planning and design approaches toward life-cycle–based approaches, which identify opportunities and risks throughout the life cycle, from raw materials to disposal. Further research is needed to advance life-cycle cost and environmental assessment, low-carbon supply chain systems, and low-cost and rapid construction methods. Technical solutions for construction materials and systems will need to be developed, de-risked, and demonstrated.

R6 (RNCBE). Improve understanding of nature-based solutions for use in the built environment. Regional studies, pilot projects, modelling, and sustained monitoring of the performance of nature-based solutions are needed. This research will determine where natural solutions, alone or in combination with conventional human-made solutions, can help manage the risks associated with climate change, extreme events, and associated natural hazards. These risks include urban, riverine, and coastal flooding; urban heat islands; erosion; and permafrost thaw. Research can show how natural solutions can contribute to carbon uptake (e.g., by retaining soil carbon in both natural and managed landscapes). Research is also needed to identify the conditions of regions or sites that affect the viability of nature-based solutions. Such research can help assess the value (including economic value) of ecosystems and nature-based solutions in the built environment, including contributions to carbon sequestration, risk reduction (avoided losses), ecosystem services, and other co-benefits (aesthetic, cultural, health and well-being, recreational value). This priority is closely aligned with science priorities for ecosystems (see Chapter 4.3. Resilient aquatic and terrestrial ecosystems).

The priorities for knowledge synthesis and mobilization include the following:

KM1 (RNCBE). Develop guidance for effective governance, coordination, and implementation of adaptation and mitigation measures at various levels of government and at various phases of infrastructure life cycles. Governance both enables and challenges effective action to mitigate GHG emissions and improve the resilience of communities and their associated built environments. Effective coordination and implementation involve understanding the complex web of relationships, jurisdictions, and key players to inform effective governance of adaptation and mitigation. Research and guidance for effective climate action in our communities and built environments are needed at various phases of infrastructure life cycles, such as pre-planning, planning, and project monitoring, evaluation, and learning.

KM2 (RNCBE). Translate research results into guidance, protocols, and tools for practitioners to help them develop low-carbon, resilient built environments . To bring scientific capacity and awareness to the community level, results must be translated into accessible, locally relevant, and easy-to-use guides, policies, and information to inform decision making. Tools, standards, guidance, data, and other knowledge synthesis products should be targeted and strongly aligned with the intended users. The tools developed, and the information they provide, should be used to inform relevant decision making. Specifically, they should include risk analysis to prioritize built environments most at risk, which helps maximize the value of climate action.

KM3 (RNCBE). Incorporate behavioural science and understanding of the socio-economic contexts to foster climate action in the building, transport, and infrastructure sectors . To facilitate the uptake of technology and policies, effective evidence-based strategies that consider behavioural science and socio-economic factors should be used. An analysis of regulatory, cultural, social, and economic methods for change (including codes, standards, and assessment tools) is needed to identify the most effective ways to realize performance targets. However, a range of methods will be needed to meet a variety of desired benefits, depending on context and goals.

KM4 (RNCBE). Advance methods, tools, and technology to benchmark and increase community resilience, including investments in climate action. Substantial advances are needed in methods, tools, and technology to benchmark and increase community resilience to climate and extreme weather events. Innovative methods are needed to rapidly and reliably assess the capacity of existing buildings, infrastructure, energy, and transport systems to withstand climate risks, and to identify requirements and timelines for maintenance and retrofits. Decision making should inform proactive strategic planning and investments, which may include relocation and decommissioning. Strategic planning should avoid continued investment in high-risk areas where climate resilience is no longer possible.

4.3 Resilient aquatic and terrestrial ecosystems

Healthy, biologically diverse ecosystems are more resilient to the adverse effects of climate change and play a vital role in Canada’s ability to mitigate GHG emissions and adapt to climate change. Resilient ecosystems can cool cities, sequester carbon, regulate disease, supply food and materials for people and communities, buffer against floods and droughts, and contribute to the economy as well as the health and well-being of Canadians (see Box 4.5. The UN Convention on Biological Diversity).

Climate-resilient ecosystems are not static. They evolve and adapt with a changing climate and continue to provide a diversity of services and multiple values to humans and nature. Some of the ecosystem values, such as intrinsic and relational values (e.g., cultural, spiritual, societal), are unrelated to climate, but climate change may put these values at risk. Considering these multiple values of nature can help to improve the uptake and relevance of ecosystem science for a broad suite of Canadian priorities, including addressing climate change. 

Box 4.5. The UN Convention on Biological Diversity

The UN Convention on Biological Diversity calls for scientific co-operation to minimize threats to biodiversity. The December 2022 COP15 meeting in Montreal culminated with the adoption of the  Kunming-Montreal Global Biodiversity Framework , which identifies four goals and 23 targets to be achieved by 2030—including urgent actions to conserve biodiversity in a changing climate and meet people’s needs through sustainable use and benefit-sharing. Specifically, Targets 8 and 11 underscore the importance of nature-based solutions and ecosystem-based approaches in achieving these actions. These reflect other international agreements in which parties, including Canada, emphasize the role of nature-based solutions in addressing climate change mitigation and adaptation. Such agreements include the UNFCCC Sharm el-Sheikh Implementation Plan 2022 (COP27) and the Ramsar Convention on Wetlands (COP14).

Interdisciplinary science (in which two or more disciplines come together to define the research problem and to design and execute the research project) is key to understanding how non-climate stressors interact with the impacts of climate change. Non-climate stressors include such issues as introduced alien species; pollution; contaminants; habitat loss; habitat degradation; shifts in land, freshwater, and ocean use; and natural variability. These may interact with climate impacts such as ocean acidification, hypoxia, drought, desertification, and changes to species’ distribution and productivity. The UN Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report highlights the importance of using interdisciplinary scientific information, Indigenous knowledge, local knowledge, and practical expertise in identifying solutions for ecosystem management and adaptation, such as preservation, protection, creation, and restoration. Research is needed to understand the complex and inter-related ecological, social, and economic challenges of climate change in order to develop and apply a solutions-oriented lens to increase the potential for co-benefits for biodiversity and ecosystems.

Understanding climate change impacts on ecosystems requires linking biodiversity and climate data with information at temporal and spatial scales that are relevant to decision making. Canada can use this knowledge to inform action that will sustain and restore ecosystems and ecosystem services, further protect biodiversity, and benefit human health, the environment, the economy, and society as a whole.

R1 (RATE). Better understand climate change impacts on ecosystems and biodiversity. This priority involves characterizing ecosystem resilience under changing climate conditions to expand our understanding of habitat diversity, natural variability, connectivity, and biodiversity, as well as of climate change impacts on ecosystem function and services. This includes:

  • Developing coordinated, collaborative, and cross-sectoral approaches to monitor, predict, assess, and characterize ecosystem risks and vulnerabilities. It is critical to understand climate impacts and drivers, climate extremes, and extreme weather events that affect the integrity of ecosystems. This research is needed to address uncertainty, especially in regions that are poorly monitored and understood, such as the Arctic and coastal areas.
  • Integrating data to characterize key drivers of ecosystem and biodiversity change, and to assess status and trends, as well as attributes of climate-resilient ecosystems and ecosystem services. This information can then be used to support and inform a variety of climate actions, including identifying nature-based and hybrid (combined engineered and nature-based) climate solutions (see Box 4.6. Nature-based solutions); carrying out adaptive management of ecosystems; recognizing and characterizing climate refugia; and developing indicators of ecosystem health, connectivity, function, and biodiversity.
  • Understanding and assessing cumulative impacts of long-term environmental changes, short-term extreme events, and anthropogenic stressors (e.g., resource and infrastructure development). This research provides valuable information to determine how vulnerable an ecosystem is to environmental change and to inform evidence-based decisions.

Box 4.6. Nature-based solutions

Nature-based solutions protect, sustainably manage, and restore natural or modified ecosystems to address societal challenges effectively and adaptively, while providing benefits for human well-being and biodiversity (UN IPCC Working Group III). In a broad context, resilient ecosystems play a two-fold role as nature-based solutions for both climate mitigation and adaptation. Resilient ecosystems sequester, store, and release atmospheric carbon through natural processes. They can contribute to long-term climate change mitigation through human interventions in the natural carbon cycle (e.g., above- and below-ground biomass, such as that found in soils). Resilient ecosystems and the multiple services and values they deliver also enable climate adaptation for humans and nature, by buffering and rebounding from climate change impacts (e.g., slow-onset hazards, catastrophic events). This adaptive capacity of resilient ecosystems protects carbon stocks and sequestration capacity over time. Taken together, the mitigation and adaptation benefits of resilient ecosystems help address the dual biodiversity and climate crises. 

R2 (RATE). Advance multidisciplinary science and knowledge to inform climate adaptation solutions that promote resilient ecosystems in a changing climate. These approaches should respect multiple knowledge systems, support net-zero and adaptation goals, maximize co-benefits to humans and nature, and evolve as new knowledge becomes available. This includes:

  • Development of innovative approaches to multi-disciplinary and interactive decision support and visualization tools, including leveraging and expanding existing platforms (e.g. GEO.ca, ClimateAtlas.ca) and multiple ways of knowing, to inform preservation, protection, creation, and restoration of ecosystems, habitats, and terrestrial and aquatic protected areas.
  • Creating multidisciplinary research and monitoring frameworks to identify, characterize, and measure the multiple values of nature and how they interact. Such frameworks can be used to put a value on ecosystems and ecosystem services that benefit nature, human health, the economy, and society. Footnote 12 These frameworks are needed to develop baseline assessments for different ecosystems, social-ecological systems, and regions.
  • Understanding the effectiveness, efficacy, and permanence of solutions, including nature-based solutions. Assessments of solutions should take into account benefits, trade-offs, opportunities, scalability, and effectiveness across diverse ecosystems and regions. They should also consider changes to ecosystems and biodiversity under future climate conditions. Carbon-flux models and data mobilization need to be improved to better evaluate the effectiveness of nature-based solutions. Overall, greater understanding is needed to identify solutions, particularly nature-based solutions, that are informed by multiple knowledge systems and transdisciplinary research (i.e., unifying intellectual frameworks, integrating approaches beyond disciplinary perspectives).

KM1 (RATE). Synthesize and mobilize knowledge of ecosystem resilience to support and improve adaptive management and evidence-based decision making in a changing climate. Key synthesis products include regular and systematic reports on national biodiversity and ecosystem status, trends, projections, and services. Reports may synthesize information at an ecosystem, watershed, or biome level, including impacts of multiple stressors on ecosystem functioning for aquatic and terrestrial systems. Needed synthesis products include:

  • assessments of the effectiveness of regional and national conservation efforts in achieving conservation and climate goals (e.g., Canada’s Biodiversity Target 1 Challenge to conserve 25% of lands and ocean by 2025; targeted conservation through the Species at Risk Act ), including protected areas, other effective area-based conservation measures, and Indigenous Protected and Conserved Areas; and
  • assessments to synthesize knowledge and lessons learned from programs across sectors and jurisdictions that promote nature-based solutions.

Current efforts to synthesize and mobilize science outcomes for national, regional, and local decision and policy makers, as well as systems to collate and disseminate data, must be expanded. These include developing innovative approaches to multidisciplinary (involving researchers from different disciplines, each contributing their disciplinary perspective) and interactive decision-support and visualization tools. These tools should build on and expand existing platforms (e.g., GEO.ca, an online platform for open Canadian geospatial information, managed by Natural Resources Canada) and multiple knowledge systems. They will be designed to inform preservation, protection, creation, and restoration of terrestrial and aquatic ecosystems, habitats, and protected areas.

Box 4.7. Cross-sectoral and transdisciplinary approaches for the circular economy

Building a robust circular economy requires more cross-sectoral, interdisciplinary collaborations. The circular economy transitions society from a take-make-waste economic system to the use, reuse, recycling, and reintegration of materials back into the economy and nature. It would see many products made from fossil fuels, such as plastic, replaced by products made from biomass, such as wood fibre, and fossil-fuel energy sources replaced with renewable sources such as wind, solar, tidal, and bioenergy. Developing the circular economy is a meaningful way to reduce waste, mitigate GHG emissions, and protect biodiversity and ecosystem services.

Science and knowledge synthesis and mobilization are required to enable transformative solutions and break down barriers between sectors. Transdisciplinary research is needed to expand opportunities in the circular economy to achieve sustainability. The circular economy cannot be achieved without a concerted, whole-of-society effort, and the right information, insights, connections, and relationships.

Transdisciplinary research frameworks should be used to develop, test, monitor, evaluate, and implement new practices, processes, and technologies to build the circular economy that achieves a net-zero, resilient Canada.

4.4 Sustainable natural resources

The science priorities for sustainable natural resources emphasize multi-sectoral, interdisciplinary, and transdisciplinary perspectives, to build capacity for integrated mitigation and adaptation action. This action across natural resource sectors—including fisheries, aquaculture, forestry, agriculture, mining, and energy—informs long-term sustainable solutions and takes into account the connections among Canada’s natural resources. The impacts and risks of climate change are experienced differently in each sector but have implications that cross sector operations. Thus, cross-sectoral solutions need to be developed to achieve a resilient, net-zero, and sustainable natural resource economy.

In developing knowledge for these solutions, strategies specific to each geographic region are needed. Taken together, the following priorities enable science-informed decision-support tools, “climate-smart” technologies and practices, and exploration of circular economy opportunities (see Box 4.7. Cross-sectoral and transdisciplinary approaches for the circular economy).

The research priorities include:

R1 (SNR). Understand how natural resource sectors in Canada are affected by climate change . Observations and predictions (of climate, biological, physical, chemical, ecosystem, socio-economic, and health factors) need to be accessible and available to inform risk and vulnerability assessments. These data are key to characterizing the cascading impacts of climate change on the biological and social-ecological systems that make up each sector. They help us understand these risks within Canada and internationally, and how risks and vulnerabilities may change in future climate scenarios, including the impacts of climate extremes and extreme weather events.

To enhance resilience within the natural resource sectors, we must increase knowledge and understanding of the following:

  • the impacts and risks from climate extremes and extreme weather events;
  • cascading climate change impacts and risks; and
  • the cumulative effects of multiple climate and non-climate stressors.

The impact of extreme events and disturbances (including their timing, frequency, and intensity) on natural resource sectors needs further research.

R2 (SNR). Develop and track indicators of social-ecological resilience in natural resource sectors and communities and understand how these sectors contribute to climate action . This priority requires understanding processes and thresholds affecting resilience, in order to design appropriate indicators and to gather relevant data. Indicators should be developed and data collected for managed and unmanaged areas and for social-ecological systems:

Forest sector : Indicators should help inform and evaluate adaptive “climate-smart” management practices. Such practices support healthy and resilient forests, biodiversity, wildlife habitat, safe and resilient communities, forest genetics, future fibre supply, biofuel production, and forest sector infrastructure. Research is also needed on the impact of forest management on carbon stocks in managed forests; this includes measuring forest carbon and determining social-ecological resilience to climate change. This work should be inclusive, engaging with the forest industry, other resource sectors, communities, and other relevant rights holders, stakeholders, and decision makers.

Fisheries and aquaculture sector : Indicators should identify and track risks and vulnerabilities of species, ecosystems, industries, and communities to the impacts of climate change, including extreme events and slow-onset changes, to build resilience in the sector. There is also a need to better understand the impacts on the sector of loss of coastal habitats, changes in species distributions (including invasive species), changing ocean conditions, and resource development (e.g., marine renewable energy, deep-sea mining, offshore oil and gas development).

Agricultural sector : Research is required to improve indicators that will inform decisions and forecast changes in climate conditions (e.g., soil moisture, growing season length), biodiversity, and climate mitigation efforts (e.g., changes to tillage and fertilization practices) at various time and space scales. Research on the long-term impacts of management practices under changing climate conditions—and their connection to soil carbon, water quality/quantity, and biodiversity—is critical for long-term food security (see Box 4.3. Food security in an uncertain future climate) and emissions reduction in the sector.

Mining and energy sectors : Research is needed on indicators for operational resilience, to reduce climate risks as these sectors evolve. This research should include a better understanding of regulatory gaps, supply and distribution systems in a net-zero world, critical minerals, site access, waste management, managing legacy contaminants (e.g., re-release from sediments due to warming), water supply, and implications or trade-offs for ecosystem restoration, reclamation, conservation, and biodiversity. Research must inform the transition to net-zero, resilient energy systems across all operations and transportation systems, and future scenarios to expand renewable energy sources.

R3 (SNR). Use collaborative research and transdisciplinary approaches to explore mitigation and adaptation actions, trade-offs, and benefits across natural resource sectors . An integrated, systems-based understanding of natural resource sectors, and the natural systems they are a part of, will help to grow the circular bioeconomy and achieve net-zero goals. Transdisciplinary research is required to develop integrated practices and policies that build adaptive capacity across and within sectors, supporting waste reduction, economic diversification, and development of “climate-smart” solutions for infrastructure and equipment. Research is also needed for low-carbon technologies that realize multiple benefits in sustainable resource management, land-use and aquatic-use planning, and food production from national to local scales.

KM1 (SNR). Develop relevant tools to enable evidence-based climate actions for all levels of policy and decision making . Integrated, interactive visualization and decision-support tools that consider future climate scenarios need to be developed, used, and promoted. These tools should be spatially, temporally, and culturally relevant to enable policy and management decisions that support environmental, economic, social, and cultural objectives for Canada’s resource sectors and resource-dependent communities, while minimizing trade-offs. The effectiveness of these innovative tools needs to be assessed to ensure that they are appropriate, accessible, and relevant to the communities, governments, practitioners, and decision makers that use them.

KM2 (SNR). Incorporate behavioural and social science in decision making and communication strategies specific to each sector . Research is needed to address gaps in knowledge implementation and to determine which factors enable and which pose barriers to climate action in the natural resource sectors. Social sciences, and specifically psychology and behavioural science, are needed to understand:

  • challenges related to misinformation and disinformation; and
  • how information and knowledge synthesis and mobilization products can be better targeted.

Behavioural science research should explore the impact and effectiveness of current policies and measures, such as incentives for climate-smart practices, and assess how they can more effectively support climate action. This research can also be used to support co-development and co-implementation of solutions with industry leaders in the natural resource sectors.

4.5 Informing progress towards net-zero greenhouse gas emissions

Accurate and timely monitoring of emissions reductions and removals (see Box 5.4. Carbon dioxide removal) is essential to gauge progress toward net-zero GHG emissions. Emissions may be reduced or removed through changes to energy, manufacturing, agricultural, and transportation systems, urban infrastructure, and management of the land base and natural ecosystems. Monitoring and reporting allow us to evaluate the effectiveness of policies and inform decision makers and the public on the progress toward net-zero.

The National Inventory Report is Canada’s official inventory of anthropogenic GHG sources and sinks, reporting mainly at annual time scales and provincial spatial scales, with a 16-month time lag. Canada has some of the most advanced emissions reporting methods in the world and continues to improve its reporting. However, reported emissions estimates derived from activity-based methods (i.e., bottom-up methods) can differ from those based on other methods, such as emissions estimates from atmospheric measurements (i.e., top-down methods). Both approaches have inherent uncertainties. New methods present opportunities to improve the quality and quantity of information used to estimate GHG sources and sinks. These include improved models, monitoring networks for specific sources or regions, new technologies, low-cost sensors, and satellite observations. The research priorities to improve GHG flux estimates are as follows:

R1 (IPNZ). Enhance GHG data reporting by making advances in measuring and modelling GHG emissions and reconciling complementary techniques for estimating emissions . Reporting can be made more accurate and transparent, at finer spatial and temporal scales, by integrating complementary estimation methods and data sources and by addressing remaining gaps in observations. Collecting and reporting activity data (e.g., fuel volumes) more frequently (e.g., subannually) can improve understanding of emissions. Systematic field measurements can provide information on these shorter time scales. Such information can help identify opportunities for mitigation, inform bottom-up inventory methods and models, and measure progress for emissions reduction programs for carbon dioxide and methane. Integrating multiple data sources and methods will also improve reporting of emissions and removals across the Canadian landscape. An example is the use of high-resolution remote sensing data with validated, spatially explicit landscape models to track human impacts on GHG fluxes across Canada’s land area.

Research on reconciling differences between estimates of sources and sinks obtained with complementary methods (i.e., top-down and bottom-up methods) will increase confidence in GHG data. Greater understanding of the various methods is needed to understand the source of discrepancies (e.g., missed sources, detection limits, incomplete activity data, limitations of reported data, misallocation of emission sources) and to accurately report changes in emissions over time.

Improved quantification of greenhouse gas emissions also requires integrated atmospheric GHG monitoring systems.  

Research is required to evaluate and guide methods to observe atmospheric changes and to continuously track emissions, for example differences between in situ versus remote sensing observations, or stationary observations versus mobile platforms (ground- and water-based vehicles, aircraft, drones, and satellites). Research should also consider differences between sectors, GHGs, and spatial and temporal scales. A near-term priority is detection, measurement, and reduction of fugitive methane emissions from oil and gas operations, as outlined in Faster and Further: Canada’s Methane Strategy .

R2 (IPNZ). Monitor, analyze, and assess changes in ecosystem carbon stocks . Stocks of carbon stored in Canada’s biomass, soils, aquatic, and coastal environments are important on a global scale. Research is needed to better understand the permanence and vulnerability of carbon stocks in managed and unmanaged wetlands, agricultural, coastal, and forest systems. This research should build on existing data sources and analyses, such as provincial forest inventories. Further research is needed to develop methods and data to regularly and more frequently measure natural carbon sinks at different spatial scales. Improved data on carbon sinks can identify their potential to remove carbon from the atmosphere and contribute to national net-zero objectives. This priority is closely aligned with science priorities for nature-based solutions and the carbon cycle (see Chapter 5.2. Carbon cycle science).

R3 (IPNZ). Better understand the contribution of land use and land-use change to achieving net-zero by developing land-use monitoring systems with high spatial resolution . Research is needed to improve the network design and methods used to provide fully reconciled and authoritative systems to monitor land use. Models that are continually validated against measured data are needed to assess how land use and land-use change may affect carbon fluxes and contribute to achieving net-zero. Intercomparison studies are needed to inform alignment of monitoring and modelling methods across land-use categories (i.e., forests, croplands, wetlands, and settled lands) and coastal zones. Land-use models should be used in both national inventory reporting and atmospheric observations-based methods as they become available (see Chapter 5.6. Net-zero pathway science).

R4 (IPNZ). Examine trade-offs involving GHG emissions and removals in economic, environmental, policy, health, and social spheres of Canadian society . Integrated analyses are needed to understand trade-offs associated with GHG emissions and removals and support informed climate policies. These analyses should use ecosystem and socio-economic models to consider the impacts of GHG policy directions. Research should also consider economic, technological, and nature-based solutions, including evaluating the potential benefits, costs, and risks of solutions, and uncertainty associated with them. For example, research and/or modelling should compare carbon dioxide removal methods, such as technologically-based versus nature-based carbon sequestration for multiple climate scenarios, including in the context of extreme events.

The priorities for knowledge synthesis and mobilization are designed to make knowledge and data more useful and accessible. They include:

KM1 (IPNZ). Reconcile publicly available data, information, and knowledge needed to inform calculation of emissions . Comprehensive, authoritative and accessible data is needed for emissions modelling and integrated analyses. Existing data infrastructure should be coordinated and linked. New data and knowledge management infrastructure must be promoted to enable a broader range of academic, stakeholder, and public contributions to the analysis of GHG mitigation opportunities and progress. Remote sensing products also need to be aligned and integrated with data from various sources, including other survey-based data sources. Technology should be developed to integrate datasets, validate models, and allow the free flow of data and knowledge products among governments at all levels, academia, and the public.

KM2 (IPNZ). Conduct intercomparisons and make improvements to ecosystem models to understand anthropogenic drivers of carbon change in the land sector . To improve accuracy and reduce uncertainty in estimates of emissions and removals, research is needed to validate ecosystem models against existing historical datasets and capture how human activities modify emissions and removals in managed ecosystems. A coordinated study comparing models is required to establish the strengths and weakness of various modelling platforms and to assure that functional elements of ecosystems affecting carbon and nitrogen cycles are adequately simulated and consistent across scales. Innovative approaches to combining and refining model function should be explored. These models, which project the impacts of climate change on the Canadian landscape, should play a role in integrated socio-economic analyses of mitigation strategies (see also Chapter 5.2. Carbon cycle science and Chapter 5.6. Net-zero pathway science).

These priorities for research and knowledge synthesis and mobilization would improve understanding of Canada’s GHG emissions and trends, as well as enable Canada to contribute to international GHG monitoring efforts, such as the International Methane Emissions Observatory initiative of the UN Environment Programme and the global stocktake process of the Paris Agreement. As well, the priorities help us make continued progress toward meeting Canada’s nationally determined contributions.

Chapter 5 Convergence research topics

The far-reaching impacts of climate change, and the complexity of the relationships among our environment, economy, and well-being, mean that research needs to work across all disciplines (“convergence research,” see Box 2.2. Research paradigms for transformative science). Frameworks for transdisciplinary research are needed to inform how society responds to climate change and other simultaneous challenges. Knowledge synthesis and dissemination ensures that information on these topics is available to a broad range of policy and decision makers. Using this information will enable us to more effectively transform social and economic systems to address climate change while achieving adaptation and mitigation goals.

Accurate predictions and projections of how the climate will change are essential to characterize risk and plan adaptation responses. They are also critical to inform climate strategies that reduce GHG emissions and will continue to be effective in the face of extreme events and ongoing climate change. Predictions need to go beyond temperature and precipitation extremes. They must provide insights into how frequent and how severe extreme events will become and how they may unfold simultaneously or sequentially, increasing risks to Canadian communities, human and ecosystem health and well-being, and the economy. The science priorities include developing climate predictions on seasonal to annual and decadal time scales, and on kilometric spatial scales. The Arctic region, in particular, would benefit from improved climate monitoring and data to predict climate extremes. Partnering with communities to monitor and predict regional-scale climate change is key to supporting climate action.

Carbon cycle science involves understanding how carbon flows through ecosystems, the atmosphere, communities, and industrial and natural resource sectors. This informs mitigation opportunities, as well as adaptation strategies. For example, nature-based solutions can conserve and enhance natural carbon sinks while also supporting climate adaptation (e.g., through natural cooling influences in urban environments). The efficacy of nature-based solutions is dependent on how the carbon cycle will respond to further climate change. Carbon cycle research is needed to inform how we integrate nature-based solutions, as well as technologies that remove carbon dioxide, into plans for net-zero pathways. Effective deployment of and reporting on natural carbon sinks requires strengthened collaborative research to include consideration of the carbon cycle within climate models. Research is also needed to track changes in carbon stocks (both in land and sea) and to understand their response to changing climate conditions and disturbances (natural or human-caused). Complementing this is the need for regular science assessments to track trends and inform integrated methods to measure and calculate carbon. Assessments can also inform reporting on co-benefits of nature-based solutions for biodiversity and health.

Water–climate nexus science

Advancing this nexus science (in which disciplines intersect) will inform interventions to protect human health, safety, and well-being as well as to sustain healthy aquatic and terrestrial ecosystems that, in turn, are integral to human well-being. The science priorities include developing tools to predict water supply and water quality for communities and for natural resource sectors, including hydroelectric facilities. These tools will inform planning to reduce risks from climate extremes and extreme weather events. The science priorities include understanding the sustainability of the water-supply; predicting water-related extremes and their impacts on built infrastructure and critical services; predicting water-related risks to human and ecosystem health; and developing communications about water and climate to improve climate literacy.

Climate change science priorities for the Arctic are cross-cutting. Rapid warming is underway in northern Canada, with deep societal, environmental, and ecological impacts. Global implications of these changes present an opportunity for Canadian scientific leadership and participation. Inuit, First Nations, and Métis organizations must be actively engaged as partners in setting and addressing research priorities across Canada, especially in northern Canada, where how research is conducted is as important as what research is done. Community-led initiatives are needed to improve environmental monitoring, increase northern research capacity, and analyze future climate change scenarios and their implications to food and water security, transportation, infrastructure, and traditional livelihoods. The five themes of the National Inuit Climate Change Strategy provide a strong foundation for research and capacity needs. Critical science and knowledge priorities in the Arctic include developing monitoring strategies that better integrate surface observations and satellite data, and improved representation of Arctic processes (e.g., the cryosphere) within Earth system models.

One Health and climate change nexus science

One Health is a collaborative, multi-sectoral, and transdisciplinary approach to achieve optimal health outcomes by recognizing the interconnection among people, animals, plants, and their shared environment (including terrestrial and aquatic ecosystems). Research is needed to strengthen our understanding of the risks and drivers of climate change and how these can have synergistic (also called “complex integrated”) health impacts, in which many stressors combine to affect health. This research will help us characterize, and respond to, health risks exacerbated by climate change, such as vector-borne and infectious diseases, invasive species, and pathogens. It will also help us understand associated risks from other threats and stressors influenced by climate change, including environmental contaminants, ecosystem loss and degradation, and loss of biodiversity.

Net-zero emissions mean that human-caused emissions of GHGs into the atmosphere are balanced by human removals of GHGs (over a specified period). Net-zero pathway science seeks to understand the elements required to achieve net-zero emissions while responding to societal needs. It includes the interconnected biophysical, technological, and socio-economic processes affecting efforts to achieve decarbonization. This research informs planning for a carbon-constrained future, by understanding the drivers and needed shifts in a wide range of natural and socio-economic factors. Science priorities include building datasets and understanding trends in emissions, to inform scenarios of transformational change in Canada. It is also important to better represent social, political, attitudinal, and behavioural processes, and analyze their impacts on net-zero pathways. It is necessary to integrate climate projections, including climate extremes, with models of ecosystems and social and economic trends, as part of the analysis of possible pathways. To nurture these science activities and to build capacity, Canada needs a national modelling strategy for net-zero pathways.

Climate change research and climate action are essential to sustainable development and to efforts to reduce vulnerability to climate change and the associated risk. However, there is limited research on the relationship between climate action and sustainable development in Canada. Research on this topic can help to show whether, and to what extent, climate actions have advanced or hindered social, economic, and environmental dimensions of sustainable development.

Climate change is impacting many aspects of people’s well-being, safety, and security. Research is needed to better understand the potential implications of climate change on well-being and security, conflict, national defence, and social and geopolitical stability. Such research should analyze intersecting stressors (related and unrelated to climate), environmental risks, and social impacts and issues. Applying a lens that considers climate change and security factors would improve understanding of how climate change affects future development choices, their distributional aspects, and solutions. This lens would incorporate existing data and knowledge on environmental, socio-economic, and health factors to better inform climate and security solutions. Research must also assess long-term climate, economic, political, and financial changes for Canada, and how these are affected by changes on a global scale. Transdisciplinary research frameworks are essential to evaluate the security implications of climate change policy for geopolitical risks, risks to financial systems and energy supply, humanitarian responses, and foreign policy.

Social science and climate change

Social and behavioural science are critical to helping us understand Canadians’ attitudes, beliefs, values, and biases related to climate change. This information can be used to develop targeted communication strategies and translate climate change science in way that connects with different audiences. Effective communication, based on the latest scientific knowledge and delivered clearly and concisely, can contribute to the shifts in attitudes and behaviours needed to drive transformational societal change and achieve net-zero GHG emissions.

Convergence research topics were identified according to shared cross-cutting characteristics, high relevance across multiple climate system components and regions, and broad impacts across communities and socio-economic sectors. They focus on biophysical, socio-economic, and policy interactions, as well as feedbacks (i.e., responses that either intensify or minimize the initial effect). These topics require particular attention and support to build multi- and transdisciplinary scientific approaches, looking beyond cause and effect to reflect increasingly complex and difficult-to-manage responses to climate change.

Taken together, these topics reflect knowledge needed to guide integrated approaches to mitigating greenhouse gas (GHG) emissions and adapting to climate change. Such initiatives can transform social and economic systems, promote the health of Canadians and the environment, and conserve natural ecosystems and biodiversity.

5.1 Predicting and projecting climate extremes and extreme events

Research is needed to improve prediction (in the near term) and projection (over the long term in response to GHG emissions) of climate extremes and extreme weather events (see Box 5.1. Climate extremes and extreme weather events). Stakeholders and experts have emphasized that this research is fundamental to advancing a wide range of climate change science and knowledge. It is also critical to planning effective adaptation and mitigation actions. Advances in Earth system climate science and modelling of extreme events require a better understanding of how climate change will influence terrestrial, hydrological, oceanographic, biogeochemical, cryospheric, and atmospheric processes (including those associated with clouds, precipitation, and storms).

Box 5.1. Climate extremes and extreme weather events

Climate extremes and extreme weather events may be short-term (such as storms and heatwaves that occur over hours, days, or weeks) or long-term (such as multi-year droughts). Prediction and projection of their evolving frequency and intensity should encompass extremes on all time and space scales.

Extremes —The far ends (tails) of the distribution of a particular variable (e.g., hottest or coldest temperature) .

Extreme event —An event that is rare at a particular place and time of year (e.g., heatwaves, wildfires, floods, droughts, storm surges).

Compound extreme events —Simultaneous or sequential combined extremes or multiple events or hazards (e.g., sea level rise and storm surge; drought coupled with heatwaves and/or wildfires).

Predictions and projections rely on a strong Earth system climate modelling capacity. These models simulate how chemistry, biology, and physical forces work together. Understanding extremes can also contribute to climate literacy, which, in turn, can help build competencies for climate adaptation in the public and private sectors and increase awareness of climate risks among citizens, motivating individual and collective climate action.

Improved predictive capacities should be coupled with risk assessment tools to plan for climate extremes and extreme weather events, especially for compound extreme events (see Box 5.1. Climate extremes and extreme weather events). Compound events may be more likely than individual events to push natural resource sectors, infrastructure, and public safety, beyond their resilience thresholds. A further step in understanding the consequences of compound extreme events is considering concurrent socio-economic conditions, such as economic recession, which may exacerbate or create additional vulnerabilities and challenges to recovery (see Box 5.2. Responding to climate and weather emergencies).

Box 5.2. Responding to climate and weather emergencies.

For Métis Nation BC (MNBC), the challenges posed by climate change, such as more intense storms, frequent heavy rain and snow, heatwaves, drought, extreme flooding, and higher sea levels, could significantly alter the types and magnitudes of hazards faced by communities and the teams of emergency management professionals serving them. This is reflected in the Emergency Support Framework Phase 1 project started in 2020 to help MNBC support MNBC Chartered Communities and Métis Citizens in emergency preparedness and readiness in case of future disasters. The project included an assessment of existing conditions, emergency response capabilities, program status, and identification of challenges for Métis Citizens regarding emergency operations. This critical preliminary assessment will help deliver effective emergency support for the MNBC to supplement existing systems managed by the local, regional, and provincial government. For more information:  Climate Preparedness Workshop Series Final Report Released | MNBC .

Ongoing research and investment are needed to improve climate predictions. Within the following priorities, progress may be accelerated through a more coordinated national approach, closer integration with the community or stakeholders, and/or interdisciplinary approaches that include social and health sciences. The science priorities are:

R1 (PPCEE). Improve predictions and projections of extremes, on time scales of seasons to decades, and on kilometric spatial. Develop and improve predictions on seasonal to interannual time scales, projections on decadal to century time scales, and parameters (measures of specific aspects of climate or weather) relevant to users in Canada. These include extremes and conditions conducive to extreme events, air quality, ocean conditions and sea level, and hydro-climate parameters related to freshwater security. These parameters should be “downscaled” from large-scale models or observations to kilometre scales for use in models (e.g., hydrological, oceanographic, vector-borne disease, wildfire, and coastal erosion models). Improved projections of climate extremes will inform climate metrics and design codes for specific sectors, disaster risk reduction and emergency preparedness, public health and security, food security, and other applications of climate risk management.

Larger-scale models provide information that becomes input into smaller-scale receptor models useful for planning at the regional and local level. This “modelling chain” of global to high-resolution regional Earth system models needs to be improved to better represent conditions (e.g., soil moisture, permafrost, ocean temperature) and atmospheric processes (e.g., convective instabilities, extreme winds, storm tracks), and predict climate and climate extremes. The modelling chain of Earth system models must output data at high resolution so that the data can be used in regional or local receptor models. Interdisciplinary research is required to expand the range of variables and parameters that are predicted and projected to include those relevant to impacts and risks for Canadian users (discussed above). This will allow models to better inform health and safety, infrastructure, disaster preparedness, and other economic and societal outcomes. For example, data from models can be incorporated into climate services to help governments and communities prepare for and react to extreme weather events.

Currently, capacity in seasonal, interannual, and decadal predictions is limited. Advances are possible in seasonal prediction systems and in the quality of observations and reanalyses used to initialize simulations. To expand the range of variables and parameters, research is needed on how machine learning and artificial intelligence could build on existing Canadian capacity for seasonal predictions. Improved models would be valuable for environmental prediction (e.g., of floods, storm surges, and fires) as well as for socio-economic applications, such as agricultural practices and management of natural resources (e.g., water, forestry, fisheries).

R2 (PPCEE). Improve monitoring, data collection and accessibility. Accessible, integrated, and interoperable datasets of climate and Earth system observations are essential to inform Earth system modelling and prediction of extremes, help us understand long-term evolution of extremes, and inform adaptation and infrastructure investments. Such datasets should also be updated on a regular basis. Climate monitoring (both land surface and ocean) must be improved and better aligned with user-defined climate indices (used to characterize an aspect of a system, such as a circulation pattern), especially for extreme events, precipitation, wind and cryosphere changes. Specifically, sparsely observed regions, such as the Arctic, need to be better covered (see Box 5.3. Filling the gaps in atmospheric Arctic observations), and monitoring systems (i.e., siting and technology) must be maintained over the long term. At the same time, investments are needed in new technology to sustain and extend monitoring capacity and provide products at higher resolution. This technology includes autonomous systems, space-based Earth observation products and their calibration, and blended in situ and remote sensing products.

Box 5.3. Filling the gaps in atmospheric Arctic observations

Temperatures in the Canadian Arctic are increasing at a rate of two to three times the global average, yet a significant gap still exists in atmospheric Arctic observations compared to the rest of the world. There are only a small number of ground-based atmospheric measurement stations (that gather data on weather and climate variables as well as GHGs) in Canada’s northern regions, which limits our ability to track changes in vulnerable northern ecosystems and feedbacks due to the more rapid rate of warming in these regions. As a result, studies to predict future climate conditions may not be accurate enough to inform adaptation efforts and to assess progress toward stabilizing global temperatures. Although planned satellites to monitor carbon dioxide and methane will increase global observational coverage, Canada’s northern latitudes will continue to be under-observed. The Government of Canada is proposing the Terrestrial Snow Mass Mission and the Arctic Observing Mission, which could observe the Arctic like never before. These missions being developed in partnership between Environment and Climate Change Canada, the Canadian Space Agency and Natural Resources Canada, working with domestic academic institutions and international scientific experts, would have unprecedented capabilities for observing climate change impacts, improving emergency preparedness to extreme weather events and supporting resilient adaptation in the North. This is an opportunity for Canada to take international leadership to advance progress in satellite Earth observation capacity, focused on the North.

R3 (PPCEE). Co-develop approaches to monitoring, conducting research, and predicting climate change with affected communities. For prediction of extremes and climate change monitoring, partners include First Nations, Inuit, and Métis communities, municipalities, provinces and territories, and other involved groups. Existing science activities need to move beyond an expert role and instead co-create knowledge directly with affected communities, in order to provide relevant climate information that supports climate mitigation and adaptation. There are opportunities to form or strengthen partnerships for observational and process studies as well as long-term monitoring and modelling efforts. Community partnerships can also build local and regional capacity, strengthening understanding of climate change and the engagement of citizens, organizations and communities in climate mitigation and adaptation.

For this convergence research topic, there is a priority for knowledge synthesis and mobilization:

KM1 (PPCEE). Synthesize and mobilize existing knowledge on the physical science of climate change, including extremes . Knowledge should be synthesized and mobilized through many avenues (see Chapter 6. Moving the climate change science agenda forward).

In regard to extreme weather events specifically, work is underway to develop rapid “event-attribution systems” that would evaluate and communicate the contribution of climate change to such events. A new federal program is using the growing field of “attribution science” to promptly establish to what extent a certain extreme event (for example, a flood in British Columbia or wildfire in Quebec) is due to climate change.

Tools, guidance, and training continue to be required to build competencies in taking action on climate change in all levels of government and private sector. This will allow decision makers to incorporate climate change considerations in policy development and infrastructure projects, to improve the resilience of projects climate extremes and extreme events.

5.2 Carbon cycle science

Carbon cycle science involves understand how carbon flows through communities, industrial and natural resource sectors, ecosystems, and the atmosphere. Carbon cycle science that reflects ecosystem responses to deliberate human actions and removal of carbon dioxide from the atmosphere is incorporated in national inventories of GHG sources and sinks, and in Earth system climate models, to varying degrees. This understanding informs mitigation opportunities, including enhancing natural sequestration and in situ conservation of carbon, as well as adaptation strategies that build on nature-based or hybrid solutions. Footnote 13 Overall, the mitigation potential of nature-based solutions that aim to preserve or enhance carbon storage has not been well calculated over space and time. Furthermore, the variables influencing these calculations are not used consistently, and various estimates of carbon sinks are not directly comparable.

The potential contribution of carbon dioxide removal to national emissions-reduction objectives requires ongoing research. Research is needed to improve calculation of removals and to understand the effects of ongoing warming on large-scale efforts to sequester carbon (see Box 5.4. Carbon dioxide removal). New research should build on atmospheric observations and model-based methods to estimate carbon fluxes, which can complement National Inventory Reporting. Broadly, this research contributes to:

  • improving mitigation strategies;
  • validating and refining reporting methods for carbon dioxide removal technologies and for natural carbon sequestration;
  • understanding potential contributions to emissions reductions; and
  • achieving and sustaining net-zero emissions.

Nature-based solutions are an important element of mitigation strategies. However, uncertainties and gaps limit our understanding of their current and potential capacity to sequester and store carbon in managed and unmanaged areas (e.g., wetlands including peatlands, agricultural and forest systems, harvested wood, and coastal ecosystems). Research on the permanence of natural sequestration must take into account the impacts of future warming and changing precipitation on how ecosystems function. This includes the potential release of carbon dioxide and methane (e.g., from permafrost and soils) in response to warming, disturbances from extreme events or human activity, and hydrological changes (e.g., in wetlands and coastal areas) as well as related climate feedbacks in the Earth system that amplify climate change.

Box 5.4. Carbon dioxide removal

Carbon dioxide removal (CDR) involves removing carbon dioxide from the atmosphere and storing it durably in geological, terrestrial, or ocean reservoirs, or in products. It includes existing and potential human improvements to biological or geochemical carbon dioxide sinks and direct air carbon dioxide capture and storage (DACCS), but excludes natural carbon dioxide uptake not directly caused by human activities (see IPCC AR6 WIII Glossary ).

The need for more science on CDR is pressing because of Canada’s commitment to reaching net-zero GHG emissions by 2050, which will require CDR to offset remaining GHG emissions that prove hard to mitigate. These science needs are also underscored by the prominence of CDR in recent scenarios limiting global warming to 2°C or less as well as by announcements of large private and public funding commitments for CDR projects around the world.

In the Canadian context, science needs for CDR can be grouped into five categories covering physical, economic, and social sciences. Key CDR methods to focus on include: DACCS, bioenergy with carbon capture and storage, biochar, and nature-based solutions.

  • Risks, trade-offs, and co-benefits —Identify the major risks, trade-offs, and co-benefits from deploying CDR methods in Canada.
  • Feasibility and economic impacts —For various levels of deployment of CDR (megatonnes of carbon dioxide per year, see item 5), determine the life-cycle energy and material requirements, estimate costs (including those for the enabling infrastructure) and potential impacts on the job market, reflect the need for both direct decarbonization and CDR to reach net-zero GHG emissions, project technical and economic improvements over the coming decades, estimate the potential synergies among CDR methods, and optimize their deployment across the country and over time.
  • Governance —Assess regulatory and governance frameworks for real-world research and large-scale deployment of CDR in Canada; develop protocols for monitoring, reporting, and verification of CDR; assess implications of CDR deployment for GHG reporting and accounting; and study the social and political implications of various governance approaches for CDR.
  • Stakeholder engagement —Assess public acceptability and develop strategies to constructively engage stakeholders on the potential deployment of CDR.
  • Level of deployment —Estimate the level of deployment (megatonnes of carbon dioxide per year) Canada needs to and can achieve to contribute to net-zero GHG emission targets by 2050, for CDR as a whole and for specific CDR methods.

Research activities under these categories should assess whether existing scientific studies are directly applicable to Canada and should use the national climate change research infrastructure (e.g., federal laboratories, observation network, and high-performance computing) in moving forward.

There is an increasing need to predict, measure, and validate direct interventions to divert carbon through carbon capture, utilization, and storage, including through direct air capture technologies. Emerging opportunities in the circular bioeconomy (an economy powered by nature, emphasizing renewables and minimizing waste) and bioenergy (fuels from biomass), including low-carbon and hybrid engineering solutions for infrastructure, represent further interventions to sequester carbon, diverting or delaying carbon flows back to natural ecosystems. The impact of these interventions on ecosystem function and biodiversity is poorly understood. Nature-based and hybrid approaches to managing flood and wildfire risks, creation of greenspace and parks within and beyond urban areas, and Canada’s Nature Legacy Agenda (conserving 30% of our land and ocean by 2030) all have implications for ecosystem function and biodiversity as well as long-term carbon sequestration.

The priorities for carbon cycle science (below) include improved, process-based understanding of vegetation and soil-related carbon sources and sinks across the Canadian landscape, spanning agricultural, forest, wetland, coastal, and tundra environments.

To track how nature-based solutions affect the carbon cycle, we need a comprehensive understanding of current natural carbon stocks and fluxes (i.e., baseline conditions).

Building coordinated, national capacity for carbon cycle science in Canada is critical. This includes participating in international efforts and organizations in Earth system and carbon science and building on that knowledge to advance Canada’s interests and climate objectives. The science priorities are to:

R1 (CC). Conduct collaborative research in Earth system modelling and in understanding the carbon cycle . This priority includes developing national government and academic strategies and collaborative partnerships in (1) developing and evaluating Earth system climate models and (2) conducting research and monitoring of the carbon cycle. Research in this area should include a broad range of observational data and process studies to help develop and validate models.

Research requires a multidisciplinary, Earth system approach. In several regions of Canada, ecosystems and climate processes have substantial impacts on the global carbon cycle, yet there are uncertainties concerning associated feedbacks. These regions include boreal forests, wetlands, wildfire-prone areas, permafrost, and coastal ocean regions. Climate, soil processes, vegetation, hydrology, and the cryosphere are all linked. This has important impacts on biogeochemical cycles, including the sequestration and potential release of stored carbon (in the form of carbon dioxide, methane, or other GHGs) and nitrogen.

R2 (CC). Monitor carbon stocks to understand their responses to changing climate conditions and disturbances . Long-term monitoring of biological, chemical, and physical aspects of ecosystems will allow us to track changes in both land- and marine-based carbon stocks over time and relate them to changes in environmental conditions and disturbances, both natural and human-caused. Research is needed to understand the role of wetlands (including peatlands) and permafrost areas in climate warming. Research is also needed to understand the effect of increasing frequency and severity of natural disturbances, such as wildfires, on forest carbon. These should be considered together with the effect of forest management practices and the transfer of carbon to harvested wood products. Research should also focus on the role of lakes and rivers in storing and transporting carbon between terrestrial and marine environments, and the potential for carbon sequestration in coastal sea grasses and wetlands, salt marshes, and kelp beds, to inform coastal management and the protection of these marine ecosystems (see Chapter 4.5. Informing progress towards net-zero greenhouse gas emissions).

Research is needed to evaluate and guide observation-based methods (involving data from ground stations and satellites) to estimate emissions, and long-term field experiments to estimate regional- and national-scale carbon stocks and carbon fluxes. While both natural and human-caused carbon fluxes should be estimated, the techniques and implementation considerations differ between the two, in terms of precision, accuracy, spatial and temporal coverage, frequency, and measurement.

R3 (CC). Improve, compare, and apply ecosystem models to estimate carbon fluxes on a national scale . It is important to validate the main models used to simulate carbon emissions and removals across Canadian ecosystems against existing historical datasets. Validation ensures their accuracy and helps us better understand the uncertainty in the model simulations. There is a wide range of ecosystem models that can inform the understanding of carbon and nitrogen cycles. These models function on a number of scales, ranging from models specific to a single site to watershed, landscape, and global-scale models.

As a part of validation, a coordinated model intercomparison study could establish the strengths and weaknesses of various models. The study would also determine whether models at the landscape, watershed, regional, or global scales are consistent with finer-scale models and examine whether key functional elements of ecosystems are adequately simulated and consistent across scales. Validated ecosystem models should play a key role in analyzing mitigation strategies, involving nature-based solutions, projecting the impacts of climate change on the Canadian landscape, and monitoring and reporting emissions and removals of GHGs from the managed and unmanaged landscape.

There is one priority for knowledge synthesis and mobilization:

KM1 (CC). Undertake regular science assessments of the carbon cycle and the potential for increased carbon uptake in Canada . Regular science assessments are needed to inform integrated methods for carbon accounting and tracking over time, including long-term tracking (beyond 2050). Such assessments of carbon stores and stocks should be national (with regional resolution) and conducted regularly (approximately every five years). They should also consider interannual variability and vulnerability to future warming and extreme events.

5.3 Water–climate nexus science

Water responds to increasing temperatures throughout the Earth system, with impacts on water quantity, quality, and chemistry, as well as biodiversity and ecosystems. Warming temperatures affect the physical state of water in the atmosphere (rain, snow, ice) and on the surface, which has cascading impacts on human health, ecosystem health and services, biodiversity, community infrastructure and services, culture, and sustainability of natural resource sectors. Water is involved in substantial climate feedbacks. Climate change results in increases in hydrological variability and extreme events (such as floods and droughts), ocean warming and acidification, a changing cryosphere, and shifting species distributions. However, how aquatic, terrestrial, cryospheric, estuarine, and marine environments respond to climate change, water management, and GHG mitigation actions is not fully understood.

The effects of increased atmospheric GHGs on aquatic ecosystems are often manifested in changes in water quality in both freshwater and marine environments. Warmer water temperatures, changes in water chemistry, sea-level rise, eutrophication, salination of coastal freshwater environments, droughts, and flooding are just some examples of change that can have a negative impact on water quality and the ecologically sensitive species that inhabit these environments. Coastal and Arctic environments are particularly vulnerable during the spring, as increased precipitation and snow/ice melt can lead to greater freshwater and nutrient influx. These changes can impact the quality of water for the people and organisms that rely on it.

Risks to human and ecosystem health related to the water–climate nexus include the following:

  • effects on drinking, agricultural, and recreational water quality;
  • threats to freshwater supply through climate-driven changes to essential sources (melt water from seasonal snow and glaciers, changes to regional precipitation patterns);
  • water-borne diseases;
  • impacts on biodiversity;
  • physical injuries and mental health impacts due to extreme flooding events and their effects on local or regional infrastructure and services; and
  • impacts on water and food security.

Science on the water–climate nexus informs interventions to sustain healthy aquatic and terrestrial ecosystems. It improves confidence in tools that predict freshwater supply and improve or maintain water quality for communities and for natural resource sectors. This science also informs planning to reduce risks from hydro-climate extremes and extreme events, particularly floods, storms, wildfires, drought, and harmful algal blooms. These challenges require mobilization of Western and Indigenous science and partnerships with First Nations, Inuit, and Métis Peoples and communities, who are stewards of water in large areas of Canada.

Building the scientific evidence to manage water resources effectively is complex and needed to ensure that decision makers and end-users have clear and understandable information and tools to make decisions and take appropriate action. The science priorities are to:

R1 (WCN). Understand future water sustainability, including supply, demand, quality, and effects on human and ecosystem health. Transdisciplinary science efforts are required to understand freshwater sustainability in the coming decades. Sustainability means a balance of water resource use with ecosystem health, functions, and services. This understanding includes how vulnerable freshwater supply is to climate change, and whether water supply will meet the expected increase in demand by humans and ecosystems. This underpins research in the topics below and is essential to determine where, and in which seasons, future warming threatens water supply and quality. Sustainable integrated management and decision making, should address:

  • climate impacts on freshwater use and impacts on water users, such as agricultural and urban communities;
  • contaminant and nutrient pollution;
  • aquatic habitat health, including the impacts of invasive species; and
  • projected changes in extreme events (i.e., floods, droughts), their societal impacts and implications for water resource infrastructure.

Freshwater sustainability involves integrating requirements for specific communities and for public health with protection of ecosystems and their services, such as the sustainable operations of natural resource sectors (see Chapter 4.4. Sustainable natural resources). Hydroelectric power generation continues to be an integral component of renewable energy in many regions. Research is needed to understand the impact of climate-induced changes in streamflow regimes on hydroelectric power capacity and resilience. Better understanding can help inform monitoring and management of freshwater resources, at the national and regional levels.

An understanding of long-term freshwater supply and demand across Canada is needed to develop methods and models to predict the timing and severity of supply stresses in freshwater systems. These methods and models can also help meet household, agricultural, and industrial water demands, especially during extreme heat events and droughts. This research requires collaborative efforts to forecast (seasonally, on a local to regional scale) and project (long-term) freshwater carrying capacity for key watersheds. This will become particularly important as changes to snowpack and glaciers impact the timing and quantity of meltwater runoff to hydrological systems. Such forecasts and projections can inform planning for freshwater supply and infrastructure.

Scientific information that is multi-scale (e.g., local or urban, regional, ecosystem, watershed) is essential to support integrated freshwater management and stewardship.

R2 (WCN). Model water-related risks to the health of humans and ecosystems as well as burden of disease (illness and death) due to further warming. Climate-driven changes to water quality and quantity have consequences for both natural ecosystems and freshwater availability and safety for human consumption. Impacts differ by region and include warmer waters, increased sediments associated with thawing permafrost, sea-level changes, flooding, drought, changes in precipitation patterns, and greater land-based runoff. Other impacts may also disrupt the health of aquatic ecosystems and degrade their ability to provide ecosystem services, including food and water security for Canadians. Research is needed to develop new and strengthened monitoring approaches and analytical methods for detecting new or previously rare health risks. These approaches and methods can be used to develop effective measures to protect the health of humans and aquatic ecosystems. An increase in the frequency and intensity of extreme events, including wildfires, heatwaves, droughts, and floods, can result in freshwater contamination, shortages, freshwater runoff, eutrophication, and other issues. Changes in water quality and quantity may have cascading effects for the health and well-being of communities and individuals, and may exacerbate existing social inequities. Climate-driven changes to water resources may also impact health and well-being by impeding access to traditional foods, affecting agriculture and tourism, and hindering safe travel and supply lines (e.g., ice roads) in some communities (e.g., coastal, Arctic, and northern communities).

To take action on the modelled risks, research should advance source water protection and public health interventions in equitable and effective ways, through transdisciplinary science frameworks and programs to acquire needed data. These data can be used to develop mechanistic understanding, new technologies, and models to assess the burden of illness due to climate change impacts on water quality and quantity. Efforts to protect health from these impacts should be informed by an understanding of the needs of those most at risk, co-developed with communities and groups affected, where possible.

5.4 Arctic climate change science

Box 5.5. our arctic science context.

Inuit Nunangat, the Inuit homeland and settled land claim areas, reaches across the entire Canadian Arctic, which accounts for 40% of Canada’s land mass. Other Indigenous groups, including First Nations and Métis, also reside in the region on unceded territories. As a result, Canada must collaborate in global science communities on what research is conducted in the Arctic, and how Arctic science is planned, led, implemented, and reported. This includes considerations for Arctic science capacity, infrastructure, knowledge dissemination, and partnerships, including co-development and leadership of research initiatives with Indigenous communities.

Over recent decades, the temperature in the Arctic has increased at three to four times the global average, as a result of climate feedbacks that amplify climate change. The impacts of this warming are significant because of the close cultural connection that First Nations, Inuit, Métis, and other northern residents in the Arctic have with the natural environment (see Box 5.5. Our Arctic science context). Climate-induced changes to the Arctic also have global consequences. These include:

  • reduced albedo (reflection of sunlight back into space) from reduced Arctic snow and ice cover, which amplifies warming;
  • significant carbon emissions from thawing permafrost;
  • changes to the behaviour of the jet stream (driven by amplified Arctic warming and reduced sea ice); and
  • global sea-level rise associated with glacier and ice sheet melt (mainly from Arctic Canada and Greenland at this time).

These global effects also have implications for every region of Canada. Since the Arctic affects climate change and is affected by climate change, Arctic research priorities are relevant across all themes and topics in this report.The Arctic of the future will be significantly different from the Arctic of today. Climate science is essential to inform effective, evidence-based adaptation and mitigation activities across Arctic and sub-Arctic Canada.

How Arctic research is planned, conducted, and delivered in Canada is just as crucial as what Arctic science is prioritized. Governments and the research community must actively engage First Nations, Inuit, and Métis organizations as partners in addressing science and knowledge priorities across northern Canada. Community-led initiatives are needed as part of self-determination in environmental monitoring, enabled by increased northern capacity. Climate change is the key driver of Arctic environmental change, and climate research must be grounded in Indigenous knowledge systems. These knowledge systems should be more integrated in research design and monitoring of environmental conditions that affect social, cultural, and health considerations in northern communities.

Knowledge co-production, information-sharing, and evidence-based decision making are foundational principles for research and knowledge synthesis and mobilization activities in northern Canada. Current Arctic research capacity is loosely coordinated across a range of institutions, stakeholders and rights holders, and programs (e.g., federal and territorial government departments, and university-led networks such as ArcticNet and PermafrostNet). There is an opportunity to increase co-development, co-management, and coordination in these areas.

A Canadian Arctic climate science and knowledge system needs to be established to support climate information needs across northern regions and communities. A rights-based approach is required, premised on partnerships with First Nations, Inuit, and Métis representatives and respect for multiple knowledge systems.

Increased northern scientific capacity should include community-based monitoring as well as participatory scenario analysis, planning, and governance. These scientific approaches are key to resilience-based ecosystem stewardship and adaptive governance. They can also help preserve livelihoods and well-being as environmental conditions change. Northern-based training opportunities and research facilities (e.g., laboratory capacity) must continue to be developed. Communication and coordination between southern and northern science networks can be enhanced through increased capacity of community-based knowledge brokers and mediators.

The Inuit Tapiriit Kanatami (ITK) National Inuit Climate Change Strategy provides a strong foundation for establishing Arctic science priorities. The five thematic areas identified by the ITK (knowledge and capacity; health, well-being, and the environment; food systems; infrastructure; and energy) align with science priorities in this report. These priorities for Arctic climate research form part of a framework that can be revised to include additional and changing perspectives.

The first four research priorities are aligned with thematic areas identified by the ITK (R1—health, well-being and the environment; R2—food systems; R3—infrastructure; and R4—energy):

R1 (ACC). Understand climate change influences on traditional and cultural activities . Research is required to:

  • implement innovative and collaborative monitoring programs for terrestrial, cryosphere, freshwater, and marine environments;
  • understand changing Arctic Ocean and sea ice conditions; and
  • enhance Earth system modelling and weather, ice, hydrological, and oceanographic forecasting.

This work will inform the development of approaches to reduce climate change impacts on traditional practices, cultural activities, public health and safety, mobility, and food security for northern Canadians.

R2 (ACC). Conduct research to support secure and sustainable food systems, along with surveillance of the exposure of northerners to emerging food- and water-borne infectious diseases, contaminants, and parasites . Climate change is strongly influencing risk for food systems. Research priorities include improved understanding of the intersection of climate and ecosystem changes, including impacts on human health and threats to food and water security. In the North, food systems include traditional harvest of wild plants and animals and market food. Research is needed to assess the risk climate change poses to traditional and market food access. Monitoring is also needed to assess the exposure of northerners to food- and water-borne infectious diseases, contaminants, and parasites. This includes evaluating community resilience to these risks.

R3 (ACC). Conduct hazard mapping and vulnerability assessments to inform adaptation planning for built infrastructure in northern communities . Knowledge of hazards and vulnerability will inform research to determine adaptation needed for infrastructure (roads, airstrips, buildings, wharves) and transportation (vehicles, air, shipping), including improved understanding of future ice conditions and landscape disturbance from permafrost thaw and coastal erosion. The key outcomes will guide the construction of infrastructure that is climate-resilient and sustainable, while meeting cultural needs and preferences.

R4 (ACC). Design monitoring programs that integrate surface observations and satellite data (existing and planned missions) to track key climate indicators and determine risks from changes in disturbances (such as wildfires and melting sea ice) . New satellite missions are needed to address gaps in national observations (see Box 5.3. Filling the gaps in atmospheric Arctic observations). These missions will help us understand and measure cryospheric change (e.g., snow water equivalent; snow depth on sea ice; river, lake, and sea ice conditions) and landscape-scale GHG fluxes. We need a nationally coordinated approach to deploying and maintaining instruments and sustaining observation networks. This approach must be supported by enhanced scientific infrastructure (e.g., improved telecommunications capacity for affordable, near-real-time data transmission).

R5 (ACC). Advance and evaluate Earth system models to better represent the atmospheric, cryosphere, hydrological, oceanographic, ecological, and carbon cycle processes in northern regions . Improved understanding and representation of the carbon cycle is a high priority to assess future carbon fluxes (both sources and sinks) from thawing permafrost, the changing boreal forest (including increased wildfire), expanding tundra vegetation, and the warming Arctic Ocean. Understanding the changing freshwater and sea ice conditions in the Arctic Ocean will inform projections of Arctic Ocean stratification and acidification, and impacts on ecosystems, fisheries, food security, and carbon uptake. Weather-prediction capabilities need to be improved to better forecast extreme events that are common across northern Canada (e.g., fog, freezing rain, blizzards). Advances are needed in river, lake, ocean, and sea ice forecasts across operational (near-real-time), seasonal, and decadal time scales for safety, navigation, and commerce. Research is also needed to better understand:

  • climate forcing and feedbacks from changing Arctic clouds and aerosols;
  • the impact of climate change on contaminants (including black carbon deposition on snow and ice, as well as changes to mercury in terrestrial, aquatic, and marine environments);
  • the ecological impacts of ice crusts resulting from winter rain events;
  • changing Arctic Ocean conditions; and
  • implications for Arctic marine ecosystems, shipping, security, and economic development.

The physical and ecosystem changes occurring across the Canadian Arctic cannot be viewed through the lens of individual disciplines. Interconnected climate and environmental changes across the Arctic create cascading impacts and risks. A holistic and transdisciplinary understanding is necessary to determine the efficacy and limits of strategies to reduce climate risks and strengthen resilience and sustainability for Arctic ecosystems and people.

The knowledge mobilization priority aligns with ITK’s knowledge and capacity theme.

KM1 (ACC). Co-develop a distributed approach to delivering climate services for northern communities to inform evidence-based decision making . This priority is to ensure that place-based climate information is available to northern communities. Climate services organizations can help better understand current climate vulnerabilities, risks, and opportunities. They can support planning and decision making to allow northerners to become more resilient to the expected impacts of future climate change.

5.5 One Health and climate change nexus science

Text description below

A Venn diagram of Human Health, Plant Health, Environmental Health, and Animal Health, all overlapping at One Health.

Climate change risks are complex and interconnected, and impacts can propagate through natural and human systems in ways that are difficult to anticipate. Investigating those interconnections through the lens of a One Health and climate change nexus supports science-based adaptation. One Health is a collaborative, multi-sectoral, and transdisciplinary approach to achieve optimal health outcomes by recognizing the interconnection among people, animals, plants, and their shared environment (including terrestrial and aquatic ecosystems; see Box 5.6. One Health). By taking a One Health approach to tackle climate change, we can:

  • better understand the impacts of climate change on health equity, and on the health of Canadians, animals, plants, and the environment;
  • find collaborative, effective, and economically advantageous approaches to adaptation and mitigation (e.g., surveillance, prevention, and risk management along with guidance to support regulatory decision making); and
  • avoid siloed adaptation and responses that have limited benefits or have negative impacts outside the targeted sector.

Box 5.6 One Health

One Health, as defined by the World Health Organization, is an integrated, unifying approach that aims to sustainably balance and optimize the health of people, animals, and ecosystems. It recognizes that the health of humans, domesticated and wild animals, plants, and the wider environment (including ecosystems) are closely linked and interdependent. The approach mobilizes multiple sectors, disciplines, and communities at varying levels of society to work together to foster well-being and tackle threats to health and ecosystems. At the same time, these sectors, disciplines, and communities can address the collective need for:

  • clean water, energy, and air;
  • safe and nutritious food; and
  • action on climate change.

Substantial knowledge gaps and issues in data accessibility, sharing, and interoperability currently limit our understanding of the interconnected impacts of climate change on health. To address those gaps, advance collaboration, and identify transdisciplinary opportunities for adaptation, the activities for research and knowledge synthesis outlined below are needed.

R1 (OHCC). Strengthen understanding of risks and drivers of change across the human, animal, plant, and environment interfaces. Climate change continues to create synergistic (also called “complex integrated”) health impacts in which many stressors combine to affect the health of Canadians, animals, plants, and their shared environment. These impacts are due to extreme events and slow-onset changes, along with unprecedented environmental degradation, societal inequities, and changes in biodiversity, land use, and demographics. These impacts may emerge unexpectedly because there is a lack of understanding of the scope and scale of ecosystem changes, how these changes may intersect, and what the impacts will be on health (with “health” defined in this section as the health of Canadians, animals, plants, and their shared environment). There is a need to better understand and detect current, emerging, and often converging trends through greater foresight, modelling, risk assessment, surveillance, and laboratory diagnostic capabilities, including:

  • examining the sensitivity to climate change of pathogens, pests, and populations of concern (e.g., invasive species, disease vectors), to determine where and when these may emerge or re-emerge in Canada;
  • predicting future shifts in ecological and species ranges (e.g., plants, wildlife, invasive species, disease vectors) due to climate change and how human interaction, exposure, and socio-economic factors may interact with these changes; and
  • understanding how health inequities and the social determinants of health influence climate change vulnerability, putting some populations at greater risk of health hazards due to climate change and creating barriers and challenges to protective adaptation measures.

R2 (OHCC). Advance transdisciplinary approaches as well as First Nations, Inuit, and Métis ways of knowing in knowledge-sharing, data braiding, and analytics . The complex and interdependent nature of health underscores the need for coordinated, collaborative, and cross-sectoral approaches. Such approaches should enable multiple and diverse disciplines to work better together to understand, assess, collect, synthesize, and analyze cross-cutting issues. The One Health approach aligns well with Indigenous science and knowledge, including a holistic view of health that links the health and well-being of humans, animals, plants, and their shared environment. First Nations, Inuit, and Métis ways of knowing in this research area will introduce novel approaches for collecting, using, sharing, and analyzing socio-economic and environmental data. These approaches will help us to better understand climate impacts, risks, and adaptation solutions. This requires:

  • integrated, multi-sectoral approaches for risk intelligence (information-gathering to identify risks) and surveillance systems for early warning, detection, and risk assessment of threats to health;
  • development of First Nations, Inuit, and Métis partners’ capacity and bringing together Indigenous science and ways of knowing and Western knowledge to conduct research and monitoring projects on climate change and various health risks, specifically, zoonotic infections and food safety and security;
  • innovations in assessing cumulative effects and cross-sectoral risk management capacity, equipping Canada to better protect the health of individuals and communities, ecosystems, and plant and animals; and
  • evaluation of existing climate One Health interfaces and frameworks, integrated these in the Canadian context.

The priority for knowledge mobilization is the following:

KM1 (OHCC). Develop decision support and visualization tools that are transdisciplinary and interactive, supporting decision making and ecosystem management . One Health provides an opportunity to integrate data streams that have not traditionally intersected. To ensure that researchers and data users can access the information they need for transdisciplinary research, they will need:

  • data infrastructure, including high-performance computing (see Chapter 6. Moving the climate change science agenda forward);
  • integrated community-based surveillance; and
  • appropriate, accessible, and interoperable data streams.

Public health surveillance, artificial intelligence, and big data will be essential to advance progress on the science and knowledge gaps. To mobilize information and enhance collaboration and external partnerships, there is a need for networks, venues, or forums that include First Nations, Inuit, and Métis communities.

Advancing these science priorities will enable:

  • One Health objectives;
  • a multi-sectoral, transdisciplinary, “systems thinking” approach; and
  • integration of First Nations, Inuit, and Métis ways of knowing.

The key outcomes will be better surveillance, prediction, and communication to protect people, economies, food supply, and natural systems against current and future climate risks.

5.6 Net-zero pathway science

This convergence research involves decarbonization pathways, in line with Canada’s commitment to reach net-zero GHG emissions by 2050. Pathway science explores the inter-related biophysical, technological, and socio-economic processes involved in decarbonization. The priorities for this topic seek to inform social, institutional, and political considerations, including opportunities for and barriers to successful decarbonization. This theme also embraces multiple approaches, models, and methods. It reflects diverse streams of knowledge and values in order to understand—and ultimately guide—transformational change. The science priorities are based on user needs and open science principles to support decision making, consistent with the Canadian Net-Zero Emissions Accountability Act .

Net-zero pathways are far more than lines on a graph. As the UN Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Reports make clear, net-zero pathways necessitate systemic transformations to all parts of society to drive down emissions and to secure outcomes for resilience, adaptation, and, more broadly, sustainable development. This effort charts a course for the future of Canada in a carbon-constrained world, including underlying shifts in technology, infrastructure, policy, institutions, business models, markets, behaviours, labour, culture, and beliefs, along with many other factors. To understand the scope of this change, pathway analysis must integrate social and behavioural shifts, as well as distributional effects and principles of equity and justice.

Net-zero pathway science relies on efforts from multiple disciplines and embraces diverse streams of knowledge, ways of knowing, and values that inform societal responses to climate change.

The conceptual framework for net-zero pathway science—reflecting iterative knowledge development, evaluation, and monitoring processes—is shown in Figure 5.1. Engineering and natural science can contribute understanding of the biophysical and techno-economic dimensions, spanning carbon sinks and cycles as well as technological and nature-based climate solutions. The social sciences and humanities can make critical contributions to socio-political and policy dimensions needed to inform this research and deliver practical results. Transition, innovation, and historical science and technology studies offer insights about the way major systems, such as electricity, transport, and agri-food, have shifted over time. These efforts must also engage with the arts and humanities to envision alternative futures, promote usability, and support learning and attitudinal shifts.

Figure 5.1. Conceptual framework for net-zero pathway science, reflecting iterative knowledge development, evaluation, and monitoring processes .

Text description below

The graphic demonstrates the conceptual framework for net-zero pathway science.

The cycle consists of four iterative steps:

  • Decision-driven, open-source, and community-based
  • Indicators, strategies, targets, and outcomes
  • Monitoring and evaluation
  • Iterative and adaptive learning

The Venn diagram within the cycle consists of the following:

  • Generating data and scenarios for long-term pathways, including emissions and socio-economic baseline and futures in Canada
  • Building integrated assessment modelling, convergent research, and other transdisciplinary approaches
  • Enabling transformation at all levels, including legislation, rights, equity, and shifting attitudes ad behavioural change

The research priorities are the following:

R1 (NZP). Build foundational knowledge, including societal and economic considerations, to inform net-zero scenarios for transformational change in Canada.

  • Identify trends and socio-economic changes that will drive emissions reductions, through methods such as foresight analysis, futures research, and scenario development (e.g., urbanization, electrification, digitization).
  • Conduct economic and integrated assessment modelling that reflects the complexity of the technological, economic, and social spheres, including alternative economic paradigms.
  • Analyze and compare pathways through model intercomparison projects (for example, those organized by the World Climate Research Programme or Energy Modelling Forum) and science assessments. In these comparisons, consider environmental objectives unrelated to climate as well as sustainable development.
  • Integrate Canadian pathways with regional and global pathways, to understand external influences on Canada’s net-zero pathways.

R2 (NZP). Understand socio-political, attitudinal, and behavioural processes in net-zero pathways and improve how these are integrated in modelling and analysis.

  • Use attitudinal and behavioural knowledge to understand how Canadians can be empowered to make informed decisions and adopt new practices, for example, through capacity-building and information-sharing.
  • Bridge social science knowledge with economic, energy, and technology considerations to explore the linkages between regulations and policy, economic incentives, social marketing campaigns, grassroots change, and co-benefits of climate action, to understand their influence on net-zero action.
  • Understand the effectiveness of climate policy, incentives, regulations, and jurisdictional governance and responsibilities in order to better tailor net-zero programs so that they resonate with audiences to motivate progress.
  • Incorporate diverse forms of knowledge creation and emerging perspectives. These forms include prioritizing new voices that can expand the usability of these approaches as well as Indigenous science and perspectives. Perspectives of youth, gender, and race, and historically and currently marginalized voices are all needed to expand the knowledge base and frames of reference for net-zero futures. This can be achieved through co-producing proposals for changes to the existing systems.

R3 (NZP). Develop a national strategy for modelling net-zero pathways to inform transformational change in Canada.

  • Build a community of scientists to work on net-zero pathway models in an open-source, decision-driven research environment. This effort would include integrated assessment modelling and allow transparent model development and intercomparison of models and results, leveraging international examples and modelling tools, where possible.
  • Advance understanding of the potential of concurrent solutions that achieve adaptation, resilience, and sustainable development.
  • Better represent socio-economic factors, through systems-based approaches and “futures” research (the study of social and technological advances). As multiple modelling approaches continue to evolve, models should have less uncertainty and respond better to diverse information needs, to inform net-zero planning in various regions and sectors.
  • Develop models capable of analyzing net-zero pathways beyond “business as usual” or incremental change as required, in order to reflect the transformative processes for achieving and sustaining net-zero. Current models were designed for a given purpose in a specific context; they must be further developed to explore new scenarios involving radical changes (step changes in technologies but also crises and unexpected developments).

Pathway science capacity in Canada is expanding rapidly, with centres of expertise emerging across society. But greater coordination is needed to make usable and salient information available to guide net-zero pathways. As well, advancing these science priorities requires a vast expansion in systems-based and transdisciplinary approaches. This convergence research topic emphasizes the importance of opening up the pathway development process to multiple disciplinary perspectives and approaches. Pathway development must incorporate open-source data and transparent assumptions, and reflect the range of social, economic, technological, and future climate considerations needed to move Canada rapidly toward its net-zero objective. These approaches will help to establish pathway science capacity in Canada, to build knowledge about the key features of pathways, including technology adoption, uncertainty, norms, culture, politics, equity, and justice. To advance pathway science, the knowledge and capacity in Canada’s think tanks; private sector; academic institutions; civil society; arts organizations; First Nations, Inuit, and Métis Peoples and organizations; and governments are all needed. This science will position Canada to envision and move toward a net-zero, resilient future.

5.7 Climate change research and sustainable development

The Working Group III contribution to the IPCC Sixth Assessment Report finds, with high confidence, that accelerated and equitable climate action is critical to sustainable development, given the strong links among sustainable development, vulnerability, and climate risks. Climate change research and climate action are essential to sustainable development in Canada (see Box 5.7. Sustainable development). Equitable and meaningful participation of all relevant actors in decision making for mitigation and adaptation is necessary to facilitate the shift toward sustainability.

In Canada, the Federal Sustainable Development Act establishes support for sustainable development, with a view to improving the quality of life of Canadians and taking action on climate change. This legislation identifies principles for sustainable development, namely, that it is based on an efficient use of natural, social, and economic resources, and that the Government of Canada needs to integrate environmental, economic, and social factors in making all of its decisions.

Research should focus on understanding how climate action, including mitigation and adaptation, can impact sustainable development. This includes supporting the United Nations sustainable development goals (SDGs), strengthening the science–policy interface, and sharing best practices and experiences in sustainable development.

Box 5.7. Sustainable development

The meaning of sustainable development continues to evolve. In the 1987 Brundtland Report, Our Common Future , it was defined as “development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” It has been conceptualized as “three pillars” or “nested dependencies,” with social, economic, and environmental dimensions. Other concepts of sustainable development also involve substituting technology and skills for benefits traditionally provided by nature or ecosystems.

Among the elements of sustainable development, the relationships among social, economic, and environmental elements are integral. Achieving goals in only one dimension is insufficient. Instead, SDGs must be pursued and achieved concurrently. This is why the SDGs are described as integrated and indivisible .

A trade-off refers to an outcome where action on one dimension of sustainable development is observed to hinder or regress progress toward another dimension of sustainable development.

A synergy refers to an outcome where action substantially supports simultaneous progress on multiple dimensions of sustainable development.

A co-benefit refers to the positive effects that a policy or measure aimed at one objective might have on other objectives, regardless of its net effect on overall social welfare. Co-benefits (or  ancillary  benefits) are often subject to uncertainty and depend on local circumstances and implementation practices, among other factors.

Despite advances in climate change science and sustainable development, there is a gap in research on how climate actions implemented in Canada either advance or hinder sustainable development, including its social, economic, and environmental dimensions.

The research priority is:

R1 (CCRSD). Examine the relationships between climate action and sustainable development. Research should be specific to the Canadian context and support the SDGs. This includes research to understand how climate action implemented in Canada affects sustainable development, developing equity-based models and analytical frameworks to predict or evaluate the impacts of climate action on sustainable development, and understanding how climate action interacts with socio-economic elements of sustainable development. Gender-based and intersectional (the ways in which systems of inequality intersect) analyses of sustainable development, as well as consideration of interactions between distinctions-based Indigenous science and worldviews are needed to support this research.

5.8 Climate change and security

Climate change substantially alters human security, political stability, and security infrastructure (which protects critical systems from threats to their operation). This includes increased frequency of extreme events, impacts on food, water and energy availability, impacts on livelihoods and well-being, increased competition for natural resources, and increased displacement and migration.

Addressing the range of climate change’s implications for security is urgent. Without urgent and substantial mitigation and adaptation efforts, climate change will generate increasingly severe, pervasive, and widespread risks for most aspects of natural and human well-being, as well as livelihoods, public safety, and economic performance and resilience. Many climate change impacts have profound implications for safety, vulnerability, and security, as well as for national defence, conflict, and social and geopolitical instability (see Box 5.8. Canada’s defence operations and climate change). Climate solutions to address security considerations need to integrate strategies, policies, and actions to reduce GHG emissions (mitigation). Such solutions should be carried out in tandem with reducing exposure to climate hazards, environmental conservation and protection, and securing well-being for all. Footnote 14 Research should inform solutions that are well-timed and align with other economic and environmental policy goals, to avoid exacerbating existing inequities and to favour solutions that enhance equity and justice. Transdisciplinary research is essential to an integrated understanding of the multiple factors that could guide orderly transitions to net-zero and adaptation planning, and sustainable development, while avoiding worsening vulnerabilities.

Box 5.8. Canada’s defence operations and climate change

The growing impacts of a changing climate pose direct and indirect threats to human and national security worldwide. Canada’s defence policy, Strong, Secure, Engaged (SSE), recognizes climate change as a security challenge both at home and abroad. In Canada, the effects of climate change are transforming the physical and security landscape, leading to an evolving set of challenges. For example, severe effects such as floods and wildfires are increasingly impacting communities and threatening critical infrastructure.

The Department of National Defence and the Canadian Armed Forces provide critical services for Canada’s security, both internationally and nationally. The department plans to better understand demands for military aid during extreme events, such as floods and wildfires, domestically and internationally.

In June 2022, the North Atlantic Treaty Organization (NATO) announced it plans to establish a Climate Change and Security Centre of Excellence (CCASCOE) in Canada, to work cohesively across member nations to develop and promote solutions to climate security challenges by creating new opportunities for collaboration. These solutions include the member countries’ shared objectives of mitigating GHG emissions from security activities, as well as adapting and building resilience to climate change.

The science priorities for this nexus topic respond to the top risks identified on a global scale and their impacts in a Canadian context. Footnote 15 Research is needed to inform risk assessments on daily to seasonal and decadal scales across Canada, including urgent attention to the more rapidly warming Arctic. Conceptual models, such as those that reflect the risk-multiplier framing, the direct impacts of further climate change in Canada, and the feasibility and effectiveness of mitigation and adaptation actions are needed. This research should enable understanding of security implications as well as collective and co-operative action through analysis of intersecting stressors, related and unrelated to climate. This would include analyses of environmental risks (extreme weather events, biodiversity loss, infectious diseases, and human-caused environmental damage) and social impacts (social cohesion, livelihood crises and coping, natural resource management, food security, energy supply and transition, debt crises, economic and just transition, and gender equity).

Applying a climate change and security lens to climate change research could improve our understanding of how climate change affects future development choices, their distributional aspects, and solutions. Such a lens draws on the breadth of environmental, socio-economic, and health data and knowledge that inform Canadian solutions. This research framework can include perspectives outside of Canada’s domestic context, to help understand the implications of global responses to climate change for Canada, and inform Canada’s contributions to international initiatives (e.g., climate mitigation and adaptation activities, finance, disaster risk management, and foreign aid). Footnote 16 This research includes identifying immediate security issues and those anticipated under various future climate scenarios. It involves looking at how these security issues can affect existing geopolitical tensions and the dynamics of violence, conflict, and co-operation. It can also include understanding how safety, health, and humanitarian needs will be identified and met, and how the impacts of climate change can be managed through disaster preparedness and long-term support for sustainable development (for example, in developing countries). There is also a need to assess long-term political, economic, and financial transformations in domestic and global contexts as part of future climate scenarios.

There is limited and fragmented capacity to pursue this research in Canada. Specific science priorities for Canada in this area include the following:

R1 (CCS). Evaluate climate change policy pathways and their security implications . These pathways span multiple future contexts, including those that would result from meeting emissions targets, currently stated Nationally Determined Contributions, or other global emission pathways (see Chapter 5.6. Net-zero pathway science). Evaluating their security implications can better inform decision makers, including implications for geopolitical risks, risks to financial and energy supply systems, humanitarian responses, and Canadian foreign policy. The near-term and longer-term impacts of these pathways on adaptive capacity, ongoing adaptation actions, and resulting resilience need to be understood.

R2 (CCS). Identify the risks and threat-multipliers of climate change for the operations of security institutions and for emergency preparedness and response . Climate change intensifies resource scarcity and worsens existing social, economic, and environmental factors. Research is needed to understand the climate-related impacts on, risks to, and vulnerabilities of the operations of Canada’s security institutions and emergency preparedness and response.

R3 (CCS). Develop a suite of security responses to climate change, across relevant contexts and scales . This would include developing collaborative strategies for climate change security that consider interactions between socio-economic factors (e.g., social inequities), and potential alignment with other economic and environmental policy goals.

R4 (CCS). Develop a “system of systems” response to climate change, reflecting the interconnections and cascading responses across social and economic sectors and communities . This includes identifying where climate risks to security may be underestimated (“blind spots”) or where impacts may be indirect or difficult to predict. Research needs to consider the Canadian security context as well as broader international considerations to better understand security impacts and inform solutions.

5.9 Social science and climate change

To make a difference, research results must be used—by other researchers, by decision makers involved in setting policies, by practitioners in the public and private sectors, and by members of the public. Behavioural and social science can help identify and study these different audiences and their needs to inform the development of targeted tools, products, and assessments to better communicate and translate climate change science in a way that connects with each group and facilitates climate action.

Social science research results can also inform climate policies, such as regulations, tax measures (disincentives such as carbon pricing and incentives such as tax credits), rebates and similar financial incentives, public health measures, municipal bylaws, and information and promotion programs.

Social science informs effective knowledge mobilization and communication which are critical to bringing research results to decision makers, practitioners, and members of the public. Plans for synthesizing and mobilizing the results of research should be built into every research project, rather than being an afterthought.

To mobilize knowledge, there is a growing role for climate change communication. Best practices, toolkits, and playbooks are emerging to make such communication more effective. Communication strategies draw on social science, particularly behavioural science, to contribute to shifts in attitudes and behaviours across various Canadian audience segments (see Box 5.9. Program of Applied Research on Climate Action in Canada (PARCA Canada)). Footnote 17

However, public opinion research and the UN Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) demonstrate that there is still a need to:

  • increase climate literacy;
  • address a lack of trust in government and experts;
  • respond to misinformation and disinformation; and
  • bridge the knowledge gaps between understanding climate impacts and the need for action, in parallel with efforts to motivate that action.

Experts and practitioners have highlighted knowledge gaps in understanding:

  • the attitudes and beliefs of Canadian audiences;
  • how to reach those audiences effectively; and
  • how to evaluate the impact of communication products and delivery on Canadian audiences’ attitudes and behaviours toward climate action.

Communication efforts have a higher chance of success if they are based on the latest scientific knowledge and delivered through clear and coherent communication products. Developing the right message through evidence-based methods, finding appropriate messengers, and choosing the right delivery tool for audience segments are all essential elements of communication strategies.

To mobilize knowledge, climate change communication can draw on social and behavioural science to influence Canadian attitudes and behaviour. Research is still needed to understand Canadian audience segments and develop communication products targeted to them. To build trust with each audience segment, communicators can develop narratives about climate change impacts and action that relate to people’s lived experiences and perspectives. Narratives and visuals (illustrations, videos) can help bring complex climate change issues home to Canadians. Misinformation, disinformation, and malinformation about climate change must be countered with a flow of credible information (see Box 5.10. Terms used in climate change information). Trusted messengers—who may be community members beyond the traditional sources of information—are critical in getting messages out.

Box 5.10. Terms used in climate change information

Misinformation : Information that is false but is created or spread by someone who thinks it is true, without the intention of causing harm (e.g., someone posting an article containing out-of-date information but not realizing it).

Disinformation : Information that is false and deliberately created to deceive or harm (e.g., purposely posting false data with an intent to discredit).

Malinformation : Information based on real information and used to inflict harm on a person, organization, group, or country (e.g., someone using information that is picked selectively and represented out of context to ignite controversy or hatred; or someone responding negatively to a particular ideology, program, or policy).

Science capital : Science-related qualifications, understanding, knowledge (about science and “how it works”), interest, and social contacts (e.g., knowing someone who works in a science-related job).

Audience segmentation : The process of finding strategic subgroups of your target audience, based on shared behaviour, interests, or attributes that indicate how they may respond to marketing.

The “ movable middle ”: Those whose demand for climate action is much lower than their stated concern, representing an overall lack of support for individual and/or collective action.

Knowledge synthesis provides up-to-date research that policy makers can use to inform evidence-based decisions and make progress towards mitigation and adaptation goals. In fact, scientific evidence can motivate action by illustrating the impacts of climate change and therefore the urgent need for climate action.

Knowledge synthesis includes periodic assessments of the state of knowledge, every five to 10 years, with more frequent updates and targeted products as needed. There are existing assessments on a variety of topics, including climate change science, climate change and health, and national and regional climate change impacts and adaptation. New assessments are needed on topics such as carbon cycle science and motivating climate change action. Translation of science is also needed to develop tools, products, and services that are relevant for policy and decision making.

To date, knowledge synthesis has mainly taken the form of reports assessing and summarizing the current science results. These include the federal government’s report series  Canada in a Changing Climate: Advancing our Knowledge for Action , including Canada’s Changing Climate Report , National Issues Report , Health of Canadians in a Changing Climate , and reports on regional, national, northern, and Indigenous issues. Many non-governmental organizations (David Suzuki Foundation, Clean Prosperity for Canadians, Pembina Institute, among others) also include research results in their reports, often as the evidence base for their recommendations.

Research priorities for social science, as it relates to climate change, are the following:

R1. (SSCC). Understand Canadian audience segments and develop communication products that target these audiences. Research is needed to understand audience segments in Canada, including attitudes, beliefs, values, and biases in various demographic, regional, socio-economic, and sectoral groups. Segments can be identified from research and statistical analyses of demographic, socio-cultural, contextual, or situational factors. Understanding audience segmentation will help develop communications that target various audiences. It will also inform which communication channels (web sites, traditional news media, social media) and types of media (reports, social media posts, illustrations or infographics, videos) should be used.

To build trust, communicators must also understand what constitutes credible evidence for each audience type. Sectors more affected by government policy and regulation are particularly important to reach, to achieve high levels of policy and regulatory compliance.

R2. (SSCC). Develop narratives about climate change impacts and action to empower Canadians, inspire hope, and accelerate societal transformation. Communicators must develop narratives about climate change impacts and action that empower and inspire the Canadian audience segments identified. Participatory research Footnote 18 methods, which involve a systematic inquiry conducted in collaboration with those affected by an issue, can help inform this communication. These approaches—among others—can build a connection between people and their experience of climate change, to understand and inform action (See Box 5.11. Lessons from public health for effective climate change communication and Box 5.12. The Monitoring and Evaluating Climate Communication and Education (MECCE) Project).

Narratives Footnote 19 or storylines contextualize scientific information so that it relates to people’s lived experiences and perspectives. This communication approach is grounded in engagement with target audiences. Narratives can help Canadians make sense of the data on climate variability and change, GHG emissions, and other topics, in terms of current impacts, risks, and future scenarios.

Box 5.11. Lessons from public health for effective climate change communication

The public health community has decades of experience in communicating health risks to Canadians in order to shape behaviour. Climate change communication can draw from this rich experience. A dedicated effort to learn from advances in health and pandemic-related knowledge is needed to translate this experience and its impact on human behaviour to climate action. The health research community mobilized rapidly and worked directly with health policy decision-makers and practitioners in response to COVID-19, for example, which has immediate lessons for climate communication.

Box 5.12. The Monitoring and Evaluating Climate Communication and Education (MECCE) Project

The MECCE Project's goal is to advance global climate literacy and action by improving the quality and quantity of climate change education, training, and public awareness. It is a Canadian-led academic international research partnership of over 80 leading scholars and agencies, based at the University of Saskatchewan. The MECCE Project is supporting transformation through intersecting areas of research and mobilization of action on climate change communication and education, in alignment with the United Nations Framework Convention on Climate Change (UNFCCC) Action for Climate Empowerment commitments.

R3. (SSCC). Understand public trust and information flow to support the communication of credible information, while limiting the spread of incorrect or misleading climate information. Trust is a key factor in how people consume and act on information. The critical role of messengers matters as much as the message itself. Research on effective framing and other approaches from social and psychological sciences would be beneficial to identify a diverse pool of messengers with whom to co-develop climate action narratives. Different audience segments may also require different communication approaches. For some audiences, emphasizing knowledge systems and responding to existing social issues affecting them helps build trust. For many Canadians, visual features, such as illustrations and videos, helps them make sense of complex information.

Supporting the flow of credible information is key. Understanding how information spreads; how messengers are perceived as credible; and who spreads misinformation, disinformation, and malinformation is central to understanding information flows. This understanding could also contribute to mitigating the harmful effects of false or misleading information and to co-developing accurate, objective, and empowering climate narratives with trusted members of communities.

Thus, knowledge mobilization is not the final step in research but an ongoing effort involving co-development with the intended audiences. It provides a crucial link between science and climate action by contributing to the shifts in attitudes and behaviours needed to reduce GHG emissions and take adaptation action. In this way, knowledge mobilization makes an important contribution to achieving the United Nations Framework Convention on Climate Change (UNFCCC) Action for Climate Empowerment goal to empower all members of society to engage in climate action. Footnote 20

The knowledge synthesis and mobilization priority is to:

KM1. (SSCC). Conduct regular, substantive science and knowledge assessments (on a five- to 10-year cycle), complemented by shorter, more frequent updates and targeted products. Experts emphasized the importance of updating such reports regularly (such as every five to 10 years), as well as more frequent and shorter updates (see Chapter 4.1. Healthy and resilient Canadians and Chapter 5.2. Carbon cycle science on the importance of such assessments for health and for carbon cycle science, respectively). The assessments discussed included both existing assessments on climate change science and on climate change and health, as well as new assessments on the carbon cycle and motivating climate action.

Experts also stressed the need to conduct science and knowledge assessments of Canada’s regions as well as for the country as a whole. Past reports have targeted specific regions of Canada or have included a regional breakdown, as regional assessments are useful to provincial, territorial, and municipal governments, as well as to Indigenous communities. Such regional assessments should consider social, cultural, ecological, and environmental outcomes, as well as climate change impacts on health, food security, and the environment. The Northern Canada chapter of the Canada in a Changing Climate: Regional Perspectives Report was released in 2022. Continuing assessments for northern Canada are critical because of the faster rate of warming in the region and the dependence of northern communities on land, oceans, and ice for food, transportation, and culture.

These assessments can also help efforts to build climate literacy among members of the public and climate competencies among professionals and practitioners in many fields who must integrate climate considerations into their work.

There is also a need to create climate data and information products tailored to specific economic and industrial sectors (e.g., health, infrastructure, natural resources), so that the data can be readily accessed and applied to inform policy and decision-making. As well, information streams and products that target urban, rural, coastal, remote, and Indigenous communities can help in local decision making. These should be available on geographic scales and time scales that are relevant to policy and decision making and should cover aspects of climate useful to communities, such as extreme events, health, and water resources.

Chapter 6 Moving the climate change science agenda forward

Several overarching considerations were raised during engagements for the development of this report.

Data infrastructure is an important prerequisite to climate change science. Hubs, platforms, and supercomputers are needed for storage, processing, and analysis of large volumes of data. Rapidly advancing technology in this area will help scientists collect more information at greater resolution. This technology includes cloud-based systems that permit secure sharing of large data sets, artificial intelligence, and “big data” technologies. Datasets should cover not only climate, ecosystem, and biodiversity data but also human indicators such as socio-economic and health data. Data platforms should apply international standards, allowing Canadian scientists to contribute to and gain access to international datasets.

“Open science” involves making the whole process of science openly available to all. In this regard, climate change datasets should meet the FAIR principles (findable, accessible, interoperable, and reusable). The Government of Canada has committed to open science for its scientific operations, and specifically for information on the impacts of climate change. However, open science must be balanced with ethical considerations, protecting private data about people and respecting data sovereignty and intellectual property rights. Collection and analysis of data involving First Nations people must follow the First Nations OCAP (ownership, control, access, and possession) principles, and data involving Inuit communities must follow the National Inuit Strategy on Research.

Science in Canada, and climate change science in particular, lacks national coordination. The current fragmented system is difficult to navigate, creates roadblocks to collaboration, and fails to bridge science results with policy making. Science networks have been an effective way to enable transdisciplinary collaborative research in specific areas. Focused efforts to convene and encourage further collaborative research are required.

Canada has benefited from participation in international efforts to understand climate change. Canadian data and knowledge must meet rigorous quality and accuracy standards to be included in these efforts. Among the many international efforts Canada is involved in are global and regional science assessments, global monitoring programs, emissions information initiatives, and transdisciplinary research programs.

The priority science activities that this report recommends will increase the creation, dissemination, and use of climate-related information across Canada. The objective is to advance the tools, services, policies, and programs essential to meeting the challenges ahead in creating a resilient, net-zero Canada.

This report has focused on the priorities for Canadian climate change science most relevant to informing climate action and evaluating progress. All of the priorities identified can help Canada reach its objectives for net-zero GHG emissions and climate change adaptation. While research and development and technological innovations are outside the scope of this report, the science priorities overlap with R&D objectives for clean technology and emissions reductions in various sectors.

The experts who contributed to this report were unanimous in emphasizing the urgency of climate action. They noted that there is already a substantial knowledge base to guide GHG emissions reductions and strengthen adaptation efforts. Continuing scientific research will help climate action to evolve by better characterizing risk, evaluating the effectiveness of mitigation and adaptation approaches, measuring progress, and identifying new opportunities for action.

To advance the agenda set in this report, several overarching issues relevant to many priorities need to be addressed. These issues were raised repeatedly during engagements and underpin the priorities:

  • data infrastructure
  • open science
  • national coordination
  • international engagement

6.1 Data infrastructure

Data infrastructure, including hubs, platforms, and supercomputing resources, enables the  storage, processing, and analysis of the large volumes of data produced by climate change science activities. This data is then used to inform further research and modelling efforts, as well as customized information products for activities such as climate services. While governments and other organizations currently operate many data hubs and platforms, rapid technological advances in monitoring approaches (surface, ocean, and space-based), data collection, and analytics present opportunities to collect more information, with greater spatial and temporal resolution.

Fundamental to climate and Earth system modelling is supercomputing infrastructure. Such infrastructure should be collaboration-oriented, including cloud-based systems that permit secure sharing of large datasets. Artificial intelligence and “big data” technologies for automated management of large datasets and integration and validation of models should be prioritized.

Once data has been gathered and analyzed, access to relevant data and to supercomputing infrastructure remains an obstacle for the research community. Datasets also need to be interoperable, so that data from multiple datasets can be analyzed to discover relationships and trends. This is especially important to enable transdisciplinary research, which may use climate data in conjunction with environmental, socio-economic, and health data. Sophisticated data platforms are needed to facilitate contributions from a diverse range of public and private sector sources and observation systems. Analytics must enable access to data from different sources, in various formats. “Data catalogues” should be developed so that users can find integrated and interoperable data.

The data infrastructure science priority is to:

R1. (Data) Create, maintain, and strengthen accessible and interoperable platforms for data on climate, greenhouse gases (GHGs), ecosystems and biodiversity, and related socio-economic, and health indicators . Platforms on climate data (terrestrial, hydrological, ocean, and atmospheric) must provide this data at multiple scales to support research and reporting on regional to national scales. This must include:

  • necessary digital space for the platforms, data, and data analytics tools;
  • awareness-building and training so that the platforms can be used by all those involved in climate change science; and
  • national governance to enable coordination and to support contributions across relevant platforms (federal, provincial, academic, private sector); to sustain and manage contributions; to implement and sustain the technical infrastructure; and to develop user protocols respecting needs of contributors and science users.

The data platforms must represent a scientific and authoritative source of climate change data. They should include integrated tools for analytics and reporting to better inform research and decision making for both the public and private sectors. The platforms, datasets, and analytics should then be used by climate services to provide operational, near-real-time applications, as well as longer-term reporting (see also Chapter 6.2. Open Science).

Federal government leadership, as well as contributions from Indigenous, provincial, territorial, academic, non-governmental, and private sector organizations, can build on current efforts, such as the following:

  • the Fifth National Action Plan on Open Government—Climate Change and Sustainable Growth Commitment : the Government of Canada plans to enhance access to timely climate and environmental science, information, and data, working in partnership with other levels of governments, businesses, Indigenous Peoples, and citizens;
  • the Canadian Centre for Climate Services and regional climate services organizations;
  • a climate data strategy to support access to the range of climate change data holdings of the federal government;
  • the Statistics Canada Census of Environment ; and
  • the emerging Digital Earth Canada platform for a networked system based on Earth observations.

Data platforms should apply existing international standards, so that Canadian scientists can contribute and gain access to international datasets. Such standards also ensure that science outcomes are comparable across countries and can be used in international policy making.

6.2 Open science

Open science involves making science openly available to all—scientists, policy makers, and the public—from design through methods and results. Open science is critical to public dialogue about climate science, helping to improve understanding and public confidence.

A critical component of open science is open-access datasets that uphold the FAIR principles; such datasets should be integral to all aspects of climate change science. Open, interoperable data platforms are particularly important to collaborative and multidisciplinary research that combines datasets from multiple fields (see 6.1. Data infrastructure).

Canada’s commitment to open science was reflected in Canada’s 2018–2020 National Action Plan on Open Government , which committed to developing an open science roadmap for the Government of Canada. The resulting Roadmap for Open Science , published in 2020, provides overarching principles and recommendations to guide these activities in Canada. The recommendations are intended for science and research funded by federal government departments and agencies.

In response to the roadmap, federal departments and agencies have designated Chief Scientific Data Officers and published open science action plans. The three federal granting bodies (the Natural Sciences and Engineering Research Council, the Social Sciences and Humanities Research Council, and the Canadian Institutes of Health Research) have policies on open access and research data management intended to improve access to research findings and data funded by these bodies, and to disseminate research results.

The updated 2022–2024 National Action Plan on Open Government went a step further by including a commitment to give people access to the information and tools they need to better understand the impacts of climate change. During consultations on the action plan, Canadians said the Government of Canada needs to better communicate and engage with citizens on its decisions and on its progress on combatting climate change and ensuring sustainable growth. With this in mind, the Government of Canada has committed to enhancing access to timely climate and environmental science, information, and data. The federal government will also help other levels of governments, businesses, Indigenous communities and organizations, and citizens better understand climate change and its impacts on ecosystems.

Open science must be balanced with ethical considerations, mainly involving protection of data. Data platforms must reflect user protocols for appropriate use—preserving anonymity and privacy for data about people, as well as respecting data sovereignty and intellectual property rights.

In this regard, the governance and stewardship of First Nations, Inuit, and Métis knowledge systems must be respected, as required under the United Nations Declaration on the Rights of Indigenous Peoples (PDF). Data collection and analysis must be informed by specific protocols and rights regimes, such as the First Nations principles of OCAP® (ownership, control, access, and possession). The National Inuit Strategy on Research  (PDF) also prioritizes Inuit access, ownership, and control over data and information. Data priorities must align with best practices identified by the First Nations Information Governance Centre and the National Inuit Strategy on Research (PDF). These principles and practices provide inclusive, respectful mechanisms for the co-development of knowledge with Indigenous Peoples.

6.3 National coordination

Figure 6.1. Schema showing role of organizations and priorities in climate change science .

Text description below

A circular figure with four layers to demonstrate the science and policy communities participating in climate change science.

The innermost layer is of the Federal Science and Knowledge Program, with a Venn diagram of National coordination, Science outcomes, and Science-policy interface.

The second layer is the National Priorities for Climate Change Science and Knowledge: Research and Knowledge Synthesis Priorities.

The third layer consists of Indigenous Organizations, Academia, the Private Sector, Science NGOs and Foundations, and Governments.

The outermost later is of the Granting Councils.

Coordination of science, including climate change science, remains largely ad hoc in Canada. Science activities are often carried out in a distributed or fragmented way; as a result, these activities may not be strategic or integrated on a national scale.

National coordination is challenging, because Canada has a broad range of people and organizations participating in climate change science, from government to non-government organizations, universities, Indigenous organizations, communities, and the private sector (Figure 6.1). The current system is difficult to navigate for individuals or organizations looking to collaborate within or across disciplines (multi-, inter-, and transdisciplinary research), or across sectors. The priorities identified in this report will be more successful if they are accompanied by stronger national science coordination as well as stronger relationships between the science community and policy makers.

The engagement to develop this report highlighted some examples of areas important for national coordination:

  • Net-zero pathway science : Collaborative networks or centres of excellence among government, universities, and think tanks are needed to build knowledge, as well as to engage effectively in, and to draw from, rapidly growing international activity in data and modelling (see Chapter 5.6 Net-zero pathway science).
  • Earth system climate and carbon cycle science : Although Earth system research in Canada is respected internationally, increased coordination and a more strategic approach across institutions could improve national capacity further. As emphasized in the 2019 Canadian Carbon Cycle Research Workshop (PDF), an integrated national network approach to carbon cycle research is essential to improve the understanding of Canadian carbon sources and sinks (see Chapter 5.2 Carbon cycle science).
  • Climate change communications and motivating action : A community of practice on communications strategies and behavioural change is needed. Such a community could organize forums and conferences to allow communicators from diverse knowledge systems, including Indigenous knowledge and traditional science and knowledge, to contribute to climate change narratives (see Chapter 5.9 Social science and climate change).
  • inform prioritization of science activities;
  • facilitate collaborative research partnerships and funding; and
  • serve as a conduit for science outcomes to inform national climate action.

Development of mechanisms and structures to improve national coordination is the next step. Funding opportunities are needed to enable multi-partner, transdisciplinary research frameworks, including private sector and foundation funding, diverse actors, and multiple knowledge systems.

Science networks can enable transdisciplinary collaborative research, as well as knowledge synthesis and mobilization, across the diversity of science communities. Networks, such as ArcticNet, Marine Environmental Observation, Prediction and Response (MEOPAR) Network, and PermafrostNet, have been effective in advancing climate change science in Canada.

Box 6.1 summarizes some of the considerations in developing national coordination capacity.

Box 6.1. Creating national coordination capacity

National coordination of climate change science is challenging but increasingly needed. Convening science communities helps build collaborative research partnerships and plan scientific activities strategically.

There are various models for science coordination; one model discussed during the engagement was a secretariat-type organization for Canadian climate change science. Such an organization would facilitate strategic planning and relationship-building, and advise on how to achieve policy outcomes.

Among its objectives, a coordination organization should include the following:

  • Science policy dialogue between experts and decision makers at all levels;
  • National, multidisciplinary climate change science priorities;
  • Interdisciplinary science networks and collaboration among governments, academia, non-government organizations, the private sector, Indigenous partners, communities, and international partners; and
  • Science assessments, knowledge products, and science advice.

It could fulfil the following functions:

  • Coordinate the national community to provide standards for measurements, data, and modelling;
  • Convene networking opportunities, so that researchers can find partners within and across disciplines;
  • Identify grand science challenges that require interdisciplinary approaches;
  • Communicate authoritative science and knowledge on climate change; combat disinformation; and
  • Enable collaboration through interdisciplinary, intersectional, and interjurisdictional research.

6.4 International engagement

Climate change is a global issue; Canada’s changing climate and opportunities for climate action contribute to larger international science efforts to understand climate change. Canadian science benefits from participation in international science programs. To participate, Canadian data and knowledge must meet rigorous scientific standards for quality and accuracy.

Canadian scientists have taken leadership roles—and Canadian science results have been included—in global and regional science assessments produced by the Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services . As well, Canadian researchers contribute to the assessments and reports of the Arctic Council , which provide a critical pan-Arctic perspective on climate change, biodiversity, health, and sustainable development, among other topics.

Canadian participation in global monitoring programs enables our scientists to access the breadth of monitoring technologies, platforms, and databases. This is particularly important in Earth system climate science, where global surface, ocean, and space-based observations are essential to understand Earth systems. Canada is a member of the international Group on Earth Observations (GEO) network, which supports United Nations programs for the environment, climate, ocean, sustainable development, and disaster risk reduction. Canada participates in several Earth system global observing networks, including the Global Atmosphere Watch Programme , the Integrated Global Greenhouse Gas Information System (IG3IS) , and the Global Ocean Observing System . The European Union’s Copernicus Earth Observation Programme agreed in 2022 to share data reciprocally with the Canadian Space Agency; further cooperation with Copernicus would benefit multiple science priorities.

Because Canada’s emissions information is used as input to Earth system climate modelling, Canada provides data consistent with the contributions of other countries. Consistency and comparability in global information allow Canada to evaluate progress toward net-zero and assess future climate risks. Canada’s data contribution strengthens Canada’s position at the UNFCCC and other environmental policy tables. Canadians have been involved in international emissions initiatives, including the IPCC Task Force on National Greenhouse Gas Inventories, the International Methane Emissions Observatory , and the Global Fire Emissions Database .

Canada’s current engagement in international research organizations and consortia provides opportunities for Canadians to contribute to leading-edge international science. These include many disciplinary and transdisciplinary research programs and strategic planning exercises, such as the World Climate Research Programme ; the United Nations’ Global Alliance for Buildings and Construction (GlobalABC) ; the International Council for Research and Innovation in Building and Construction’s New Task Group on Nature-based solutions for climate-resilient buildings and communities ; the Integrated Assessment Modeling Consortium; the Food and Agriculture Organization’s Global Soil Partnership ; and the Global Research Alliance on Agricultural Greenhouse Gases .

6.5 Conclusion

Canadians are already seeing climate-related changes and extreme events across the country. These changes and events have significantly affected people, businesses, communities, and the environment, and they will continue to do so. To address these impacts, decision making needs to incorporate climate change science and knowledge considerations, more urgently than ever before.

This report is part of a broader effort to enable urgent climate action and strengthen the resilience of natural and human systems to the impacts of climate change. It emphasizes monitoring, data, modelling, research, and analysis as the evidence base for action. The report recommends priority science activities across several themes that will increase the creation, dissemination, and use of climate-related information across Canada. The report’s ultimate objective is to advance the tools, services, policies, and programs essential for GHG emissions mitigation and climate change adaptation.

The urgency of climate mitigation and adaptation action requires effective deployment of national science resources. Everyone in the climate change science and knowledge community will have a part to play in ensuring that climate action is based on the best available science. This report aims to guide climate change science and enable greater coordination of the science for delivery of results over the next five to ten years. The next step is for those across the Canadian climate change science community to use this report to guide science investments, coordinate and plan research activities, and mobilize the necessary knowledge to support and inform a more resilient, net-zero future for Canada.

Annex – Climate change science priorities

The following are the science activities identified as important areas for research and knowledge mobilization .

  • Research priority – R
  • Knowledge mobilization priority – KM
  • Indigenous science and knowledge – ISK

Page details

Types of Fat

Avocado with nuts

Unsaturated fats

Unsaturated fats, which are liquid at room temperature, are considered beneficial fats because they can improve blood cholesterol levels, ease inflammation, stabilize heart rhythms, and play a number of other beneficial roles. Unsaturated fats are predominantly found in foods from plants, such as vegetable oils, nuts, and seeds.

There are two types of “good” unsaturated fats:

1. Monounsaturated fats are found in high concentrations in:

  • Olive, peanut, and canola oils
  • Nuts such as almonds, hazelnuts, and pecans
  • Seeds such as pumpkin and sesame seeds

2. Polyunsaturated fats are found in high concentrations in

  • Sunflower, corn, soybean, and flaxseed oils
  • Canola oil – though higher in monounsaturated fat, it’s also a good source of polyunsaturated fat.

Omega-3 fats are an important  type of polyunsaturated fat. The body can’t make these, so they must come from food.

  • An excellent way to get omega-3 fats is by eating fish 2-3 times a week.
  • Good plant sources of omega-3 fats include flax seeds, walnuts, and canola or soybean oil.
  • Higher blood omega-3 fats are associated with lower risk of premature death among older adults, according to a study by HSPH faculty.
  • Read more about omega-3 fats in our Ask the Expert with Dr. Frank Sacks.

Most people don’t eat enough healthful unsaturated fats. The American Heart Association suggests that 8-10 percent of daily calories should come from polyunsaturated fats, and there is evidence that eating more polyunsaturated fat—up to 15 percent of daily calories—in place of saturated fat can lower heart disease risk. ( 7 )

  • Dutch researchers conducted an analysis of 60 trials that examined the effects of carbohydrates and various fats on blood lipid levels. In trials in which polyunsaturated and monounsaturated fats were eaten in place of carbohydrates, these good fats decreased levels of harmful LDL and increased protective HDL. ( 8 )
  • More recently, a randomized trial known as the Optimal Macronutrient Intake Trial for Heart Health (OmniHeart) showed that replacing a carbohydrate-rich diet with one rich in unsaturated fat, predominantly monounsaturated fats, lowers blood pressure, improves lipid levels, and reduces the estimated cardiovascular risk. ( 9 )

Finding Foods with Healthy Fats   is a handy visual guide to help you determine which fats are beneficial, and which are harmful.

Saturated Fats

All foods containing fat have a mix of specific types of fats. Even healthy foods like chicken and nuts have small amounts of saturated fat, though much less than the amounts found in beef, cheese, and ice cream. Saturated fat is mainly found in animal foods, but a few plant foods are also high in saturated fats, such as coconut, coconut oil , palm oil, and palm kernel oil.

  • The Dietary Guidelines for Americans recommends getting less than 10 percent of calories each day from saturated fat. ( 10 )
  • The American Heart Association goes even further, recommending limiting saturated fat to no more than 7 percent of calories. ( 11 )
  • Cutting back on saturated fat will likely have no benefit, however, if people replace saturated fat with refined carbohydrates. Eating refined carbohydrates in place of saturated fat does lower “bad” LDL cholesterol, but it also lowers the “good” HDL cholesterol and increases triglycerides. The net effect is as bad for the heart as eating too much saturated fat.

In the United States, the biggest sources of saturated fat ( 12 ) in the diet are

  • Pizza and cheese
  • Whole and reduced fat milk, butter and dairy desserts
  • Meat products (sausage, bacon, beef, hamburgers)
  • Cookies and other grain-based desserts
  • A variety of mixed fast food dishes

Though decades of dietary advice ( 13 , 14 ) suggested saturated fat was harmful, in recent years that idea has begun to evolve. Several studies suggest that eating diets high in saturated fat do not raise the risk of heart disease, with one report analyzing the findings of 21 studies that followed 350,000 people for up to 23 years.

  • Investigators looked at the relationship between saturated fat intake and coronary heart disease (CHD), stroke, and cardiovascular disease (CVD). Their controversial conclusion: “There is insufficient evidence from prospective epidemiologic studies to conclude that dietary saturated fat is associated with an increased risk of CHD, stroke, or CVD.”( 13 )
  • A well-publicized 2014 study questioned the link between saturated fat and heart disease, but HSPH nutrition experts determined the paper to be seriously misleading . In order to set the record straight, Harvard School of Public Health convened a panel of nutrition experts and held a teach-in, “ Saturated or not: Does type of fat matter? “

The overarching message is that cutting back on saturated fat can be good for health if people replace saturated fat with good fats , especially, polyunsaturated fats. ( 1 , 15 , 22 ) Eating good fats in place of saturated fat lowers the “bad” LDL cholesterol, and it improves the ratio of total cholesterol to “good” HDL cholesterol, lowering the risk of heart disease.

Eating good fats in place of saturated fat can also help prevent insulin resistance, a precursor to diabetes. ( 16 ) So while saturated fat may not be as harmful as once thought, evidence clearly shows that unsaturated fat remains the healthiest type of fat.

*Values expressed as percent of total fat; data are from analyses at Harvard School of Public Health Lipid Laboratory and U.S.D.A. publications.

Trans fatty acids, more commonly called trans fats, are made by heating liquid vegetable oils in the presence of hydrogen gas and a catalyst, a process called hydrogenation.

  • Partially hydrogenating vegetable oils makes them more stable and less likely to become rancid. This process also converts the oil into a solid, which makes them function as margarine or shortening.
  • Partially hydrogenated oils can withstand repeated heating without breaking down, making them ideal for frying fast foods.
  • For these reasons, partially hydrogenated oils became a mainstay in restaurants and the food industry – for frying, baked goods, and processed snack foods and margarine.

Partially hydrogenated oil is not the only source of trans fats in our diets. Trans fats are also naturally found in beef fat and dairy fat in small amounts.

Trans fats are the worst type of fat for the heart, blood vessels, and rest of the body because they:

  • Raise bad LDL and lower good HDL
  • Create inflammation, ( 18 ) – a reaction related to immunity – which has been implicated in heart disease, stroke, diabetes, and other chronic conditions
  • Contribute to insulin resistance ( 16 )
  • Can have harmful health effects even in small amounts – for each additional 2 percent of calories from trans fat consumed daily, the risk of coronary heart disease increases by 23 percent.

Image of a nutrition facts label with trans fat circled noting 0 grams

The long road to phasing-out artificial trans fats

7. Mozaffarian, D., R. Micha, and S. Wallace, Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med , 2010. 7(3): p. e1000252.

8. Mensink, R.P., et al., Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr , 2003. 77(5): p. 1146-55.

9. Appel, L.J., et al., Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA , 2005. 294(19): p. 2455-64.

10. U.S. Department of Agriculture, U.S.D.o.H.a.H.S., Washington, D.C.: U.S. Government Printing Office. Dietary Guidelines for Americans, 2010, 2010.

11. Lichtenstein, A.H., et al., Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation , 2006. 114(1): p. 82-96.

12. Institute, N.C., Risk Factor Monitoring and Methods: Table 1. Top Food Sources of Saturated Fat among U.S. Population, 2005–2006. NHANES.

13. Siri-Tarino, P.W., et al., Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr , 2010. 91(3): p. 535-46.

14. Micha, R. and D. Mozaffarian, Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids , 2010. 45(10): p. 893-905.

15. Astrup, A., et al., The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010? Am J Clin Nutr , 2011. 93(4): p. 684-8.

16. Riserus, U., W.C. Willett, and F.B. Hu, Dietary fats and prevention of type 2 diabetes. Prog Lipid Res , 2009. 48(1): p. 44-51.

18. Mozaffarian, D., et al., Dietary intake of trans fatty acids and systemic inflammation in women. Am J Clin Nutr, 2004. 79(4): p. 606-12.

22. Farvid MS, Ding M, Pan A, Sun Q, Chiuve SE, Steffen LM, Willett WC, Hu FB. Dietary Linoleic Acid and Risk of Coronary Heart Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Circulation, 2014.

Terms of Use

The contents of this website are for educational purposes and are not intended to offer personal medical advice. You should seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read on this website. The Nutrition Source does not recommend or endorse any products.

IMAGES

  1. Report Presentation

    3 types of research report

  2. Types of Research Report (2022)

    3 types of research report

  3. Types of Research Report

    3 types of research report

  4. Types of reports

    3 types of research report

  5. 3. types of research study

    3 types of research report

  6. Types of Research Report Writing

    3 types of research report

VIDEO

  1. Types of Research Articles

  2. Types of Research with examples

  3. 1-3- Types of Clinical Research

  4. Research Report || Steps of Research Report || Types of Research Report

  5. 3.Three type of main Research in education

  6. Types of Research

COMMENTS

  1. Research Report

    Types of Research Report are as follows: Thesis. Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a ...

  2. Research Report: Definition, Types + [Writing Guide]

    A research report is a well-crafted document that outlines the processes, data, and findings of a systematic investigation. It is an important document that serves as a first-hand account of the research process, and it is typically considered an objective and accurate source of information.

  3. 12 Types of Research Reports in Research Report Writing

    Comprehensive reports with in-depth analysis and information. 100-page research report on the effects of a new drug on a medical condition. Analytical. Focus on data analysis and provide insights or recommendations. Market research report analyzing consumer behavior trends and recommending marketing strategies.

  4. Research Reports: Definition and How to Write Them

    Research reports are recorded data prepared by researchers or statisticians after analyzing the information gathered by conducting organized research, typically in the form of surveys or qualitative methods. A research report is a reliable source to recount details about a conducted research. It is most often considered to be a true testimony ...

  5. PDF Writing a Research Report

    Use the section headings (outlined above) to assist with your rough plan. Write a thesis statement that clarifies the overall purpose of your report. Jot down anything you already know about the topic in the relevant sections. 3 Do the Research. Steps 1 and 2 will guide your research for this report.

  6. What are the different types of research papers?

    Experimental research paper. This type of research paper basically describes a particular experiment in detail. It is common in fields like: biology. chemistry. physics. Experiments are aimed to explain a certain outcome or phenomenon with certain actions. You need to describe your experiment with supporting data and then analyze it sufficiently.

  7. Writing a Research Report

    There are five MAJOR parts of a Research Report: 1. Introduction 2. Review of Literature 3. Methods 4. Results 5. Discussion. As a general guide, the Introduction, Review of Literature, and Methods should be about 1/3 of your paper, Discussion 1/3, then Results 1/3. Section 1: Cover Sheet (APA format cover sheet) optional, if required.

  8. PDF How to Write an Effective Research REport

    Abstract. This guide for writers of research reports consists of practical suggestions for writing a report that is clear, concise, readable, and understandable. It includes suggestions for terminology and notation and for writing each section of the report—introduction, method, results, and discussion. Much of the guide consists of ...

  9. Chapter 13 Writing a Research Report: Organisation and presentation

    When reporting the methods used in a sample -based study, the usual convention is to. discuss the following topics in the order shown: Chapter 13 Writing a Research Report 8. • Sample (number in ...

  10. Writing up a Research Report

    A research report is one big argument about how and why you came up with your conclusions. To make it a convincing argument, a typical guiding structure has developed. ... The research aim states the desired intellectual contribution of your research. (see Sect. 2.3 for types of intellectual contribution). The conclusion you like to draw at the ...

  11. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  12. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  13. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  14. Research Guides: Organizing Your Social Sciences Research Paper: Types

    Before beginning your paper, you need to decide how you plan to design the study.. The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection ...

  15. What Is a Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Other interesting articles.

  16. Types of Research

    Types of Research. Research is about using established methods to investigate a problem or question in detail with the aim of generating new knowledge about it. It is a vital tool for scientific advancement because it allows researchers to prove or refute hypotheses based on clearly defined parameters, environments and assumptions.

  17. What Is Research Report? Definition, Contents, Significance, Qualities

    A research report is an end product of research. As earlier said that report writing provides useful information in arriving at rational decisions that may reform the business and society. The findings, conclusions, suggestions and recommendations are useful to academicians, scholars and policymakers.

  18. 4.1: Common Types of Research Reports and Documents

    Lab reports, recommendation reports, proposals, and white papers are just some of the professional documents that rely on research. These are the kinds of documents that can help organizations make decisions, solicit new clients and contracts, and communicate with the public. For more information on these common types of professional ...

  19. What is Research Methodology? Definition, Types, and Examples

    Definition, Types, and Examples. Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of ...

  20. (PDF) Research Methodology WRITING A RESEARCH REPORT

    A research report should normally be written in the third person and aoid use of pronouns like, 'I', 'Me', 'My' etc. 5. The report should facilitate the reader with systematic ...

  21. Chapter 6: Components of a Research Report

    What are the implications of the findings? The research report contains four main areas: Introduction - What is the issue? What is known? What is not known? What are you trying to find out? This sections ends with the purpose and specific aims of the study. Methods - The recipe for the study. If someone wanted to perform the same study ...

  22. 14 Types of Reports

    10. Vertical & Lateral Reports. Next, in our rundown of types of reports, we have vertical and lateral reports. This reporting type refers to the direction in which a report travels. A vertical report is meant to go upward or downward the hierarchy, for example, a management report.

  23. Climate Science 2050: National Priorities for Climate Change Science

    Chapter 3 of the report Health of Canadians in a Changing Climate ... for CDR as a whole and for specific CDR methods. Research activities under these categories should assess whether existing scientific studies are directly applicable to Canada and should use the national climate change research infrastructure (e.g., federal laboratories ...

  24. Types of Fat

    For years, only true diet detectives knew whether a particular food contained trans fat. This phantom fat was found in thousands of foods, but only those familiar with the "code words" partially hydrogenated oil and vegetable shortening knew when it was present.Fortunately, after a large body of research in the 1990s sounded the alarm on its deleterious health effects, a series of policy ...

  25. B2B Content Marketing Trends 2024 [Research]

    Effective content types and formats. Which formats are most effective? Fifty-three percent say case studies/customer stories and videos deliver some of their best results. Almost as many (51%) names thought leadership e-books or white papers, 47% short articles, and 43% research reports. Click the image to enlarge. Popular content distribution ...

  26. Integrating Tribal Law into the Legal Research and Writing ...

    Abstract. In the United States, the Constitution recognizes three types of sovereigns: federal, state, and tribal. Each of these sovereign entities possesses the inherent powers of self-government and has the authority to address the social, economic, safety, and cultural needs of their citizens.

  27. Applied Sciences

    BlenderBot 2.0 represents a significant advancement in open-domain chatbots by incorporating real-time information and retaining user information across multiple sessions through an internet search module. Despite its innovations, there are still areas for improvement. This paper examines BlenderBot 2.0's limitations and errors from three perspectives: model, data, and user interaction.