Banner

What is a Scholarly Article: What is a scholarly article

Determineif a source is scholarly, determine if a source is scholarly, what is a scholarly source.

Scholarly sources (also referred to as academic, peer-reviewed, or refereed sources) are written by experts in a particular field and serve to keep others interested in that field up to date on the most recent research, findings, and news. These resources will provide the most substantial information for your research and papers.

What is peer-review?

When a source has been peer-reviewed, it has undergone the review and scrutiny of a review board of colleagues in the author’s field. They evaluate this source as part of the body of research for a particular discipline and make recommendations regarding its publication in a journal, revisions prior to publication, or, in some cases, reject its publication.

Why use scholarly sources?

Scholarly sources’ authority and credibility improve the quality of your own paper or research project.

How can I tell if a source is scholarly?

The following characteristics can help you differentiate scholarly sources from those that are not. Be sure to look at the criteria in each category when making your determination, rather than basing your decision on only one piece of information.

  • Are author names provided?
  • Are the authors’ credentials provided?
  • Are the credentials relevant to the information provided?
  • Who is the publisher of the information?
  • Is the publisher an academic institution, scholarly, or professional organization?
  • Is their purpose for publishing this information evident?
  • Who is the intended audience of this source?
  • Is the language geared toward those with knowledge of a specific discipline rather than the general public?
  • Why is the information being provided?
  • Are sources cited?
  • Are there charts, graphs, tables, and bibliographies included?
  • Are research claims documented?
  • Are conclusions based on evidence provided?
  • How long is the source?

Currency/Timeliness

  • Is the date of publication evident?

Additional Tips for Specific Scholarly Source Types

Each resource type below will also have unique criteria that can be applied to it to determine if it is scholarly.

  • Books published by a University Press are likely to be scholarly.
  • Professional organizations and the U.S. Government Printing Office can also be indicators that a book is scholarly.
  • Book reviews can provide clues as to if a source is scholarly and highlight the intended audience. See our  Find Reviews  guide to locate reviews on titles of interest.
  • Are the author’s professional affiliations provided?
  • Who is the publisher?
  • How frequently is the periodical published?
  • How many and what kinds of advertisements are present? For example, is the advertising clearly geared towards readers in a specific discipline or occupation?
  • For more information about different periodical types, see our  Selecting Sources  guide.
  • What is the domain of the page (for example: .gov, .edu, etc.)?
  • Who is publishing or sponsoring the page?
  • Is contact information for the author/publisher provided?
  • How recently was the page updated?
  • Is the information biased? Scholarly materials published online should not have any evidence of bias.

Is My Source Scholarly? (Accessible View)

Step 1: Source

The article is most likely scholarly if:

  • You found the article in a library database or Google Scholar
  • The journal the article appears in is peer-reviewed

Move to Step 2: Authors

Step 2: Authors

The source is most likely scholarly if:

  • The authors’ credentials are provided
  • The authors are affiliated with a university or other research institute

Move to Step 3: Content

Step 3: Content

  • The source is longer than 10 pages
  • Has a works cited or bibliography
  • It does not attempt to persuade or bias the reader
  • It attempts to persuade or bias the reader, but treats the topic objectively, the information is well-supported, and it includes a works cited or bibliography

If the article meets the criteria in Steps 1-3 it is most likely scholarly.

Common Characteristics of a Scholarly Article

Common characteristics of scholarly (research) articles.

Articles in scholarly journals may also be called research journals, peer reviewed journals, or refereed journals. These types of articles share many common features, including:

  • articles always provide the name of the author or multiple authors
  • author(s) always have academic credentials (e.g. biologist, chemist, anthropologist, lawyer)
  • articles often have a sober, serious look
  • articles may contain many graphs and charts; few glossy pages or color pictures
  • author(s) write in the language of the discipline (e.g. biology, chemistry, anthropology, law, etc.)
  • authors write for other scholars, and emerging scholars
  • authors always cite their sources in footnotes, bibliographies, notes, etc.
  • often (but not always) associated with universities or professional organizations

Types of Scholarly Articles

Peer Review in 3 Minutes

North Carolina State University (NCSU) Libraries (3:15)

  • What do peer reviewers do?  How are they similar to or different from editors?
  • Who are the primary customers of scholarly journals?
  • Do databases only include peer-reviewed articles?  How do you know?

Is my source scholarly

Steps to determine if source is scholarly

Is My Source Scholarly?: INFOGRAPHIC

This infographic is part of the Illinois Library's Determine if a source is scholarly.

"Is my source scholarly" by Illinois Library  https://www.library.illinois.edu/ugl/howdoi/scholarly/

Anatomy of a Scholarly Article: Interactive Tutorial

research article meaning

Typical Sections of a Peer-Reviewed Research Article

Typical sections of peer-reviewed research articles.

Research articles in many disciplines are organized into standard sections. Although these sections may vary by discipline, common sections include:

  • Introduction
  • Materials and Methods

It's not hard to spot these sections; just look for bold headings in the article, as shown in these illustrations:

  • Last Updated: Oct 22, 2020 11:31 AM
  • URL: https://libguides.mccd.edu/WhatisaScholarlyArticle

Last updated 10th July 2024: Online ordering is currently unavailable due to technical issues. We apologise for any delays responding to customers while we resolve this. For further updates please visit our website https://www.cambridge.org/news-and-insights/technical-incident

We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings .

Login Alert

research article meaning

  • < Back to search results
  • Open access policies
  • Read and publish agreements

Article type definitions

  • All services
  • Publishing partners
  • Researchers
  • Introduction to open access
  • Social sharing
  • Open access journals
  • Open access books
  • Open access Elements
  • Open access resources
  • Open access waivers and discounts

Article types definitions

Research article:  Research articles are the most common type of article in the journals publishing world. They contain pieces of original research that contribute directly to their field.  Research articles apply to all disciplines and subject areas. Research articles are written by experts, for experts and must adhere to the highest standards of peer review and scholarly communications.

Review article:  Review articles provide a comprehensive summary or discussion of an area of scientific research alongside a new perspective or conclusion. Review articles are a vital companion to research articles as they enable research to evolve. Typically, review articles are very highly cited and draw a high number of downloads.

Rapid communication:  Concisely-written, high-quality research reports for which rapid publication is considered desirable. Papers in this category will follow a streamlined schedule and must meet the high standards expected of all papers published by the journal, presenting fully developed primary research. They often benefit from prioritized peer review and rapid online publication. Just as with standard submissions, everything that is required for the understanding of the paper must be contained in the submission itself.

Brief report:  A short version of a research article; short being defined as substantially shorter that the subject area's standard for research articles. Contains original research findings or analysis, and situates that research within the established literature.

Case report : A case study, case report, or other description and discussion of a case based on original observations.

Article types not covered by transformative agreements:

In general, the following article types are not eligible under a transformative agreement. Please refer to the agreement page for more information on article types covered by an agreement.

  • Book reviews
  • Introductions
  • Meeting reports

Please note some journals may categorize articles types differently - refer to the journal's information pages for more details.

  • Library databases
  • Library website

Evaluating Resources: Research Articles

Research articles.

A research article is a journal article in which the authors report on the research they did. Research articles are always primary sources. Whether or not a research article is peer reviewed depends on the journal that publishes it.

Published research articles follow a predictable pattern and will contain most, if not all, of the sections listed below. However, the names for these sections may vary.

  • Title & Author(s)
  • Introduction
  • Methodology

To learn about the different parts of a research article, please view this tutorial:

Short video: How to Read Scholarly Articles

Learn some tips on how to efficiently read scholarly articles.

Video: How to Read a Scholarly Article

(4 min 16 sec) Recorded August 2019 Transcript 

More information

The Academic Skills Center and the Writing Center both have helpful resources on critical and academic reading that can further help you understand and evaluate research articles.

  • Academic Skills Center Guide: Developing Your Reading Skills
  • Academic Skills Center Webinar Archive: Savvy Strategies for Academic Reading
  • Writing Center Podcast: WriteCast Episode 5: Five Strategies for Critical Reading

If you'd like to learn how to find research articles in the Library, you can view this Quick Answer.

  • Quick Answer: How do I find research articles?
  • Previous Page: Primary & Secondary Sources
  • Office of Student Disability Services

Walden Resources

Departments.

  • Academic Residencies
  • Academic Skills
  • Career Planning and Development
  • Customer Care Team
  • Field Experience
  • Military Services
  • Student Success Advising
  • Writing Skills

Centers and Offices

  • Center for Social Change
  • Office of Academic Support and Instructional Services
  • Office of Degree Acceleration
  • Office of Research and Doctoral Services
  • Office of Student Affairs

Student Resources

  • Doctoral Writing Assessment
  • Form & Style Review
  • Quick Answers
  • ScholarWorks
  • SKIL Courses and Workshops
  • Walden Bookstore
  • Walden Catalog & Student Handbook
  • Student Safety/Title IX
  • Legal & Consumer Information
  • Website Terms and Conditions
  • Cookie Policy
  • Accessibility
  • Accreditation
  • State Authorization
  • Net Price Calculator
  • Contact Walden

Walden University is a member of Adtalem Global Education, Inc. www.adtalem.com Walden University is certified to operate by SCHEV © 2024 Walden University LLC. All rights reserved.

  • How to Cite
  • Language & Lit
  • Rhyme & Rhythm
  • The Rewrite
  • Search Glass

Definition of a Research Article

A research article reports the results of original research, assesses its contribution to the body of knowledge in a given area, and is published in a peer-reviewed scholarly journal. A given academic field will likely have dozens of peer-reviewed journals. For university professors, publishing their research plays a key role in determining whether they are granted tenure. Once, research articles had only a limited audience consisting mainly of other scholars and graduate students. Today, websites such as Google Scholar and the proliferation of electronic academic journals have broadened the potential audience for research articles.

Research articles generally consist of the following components: a title and abstract, an introduction, a methodology, results, discussion, and references. Before they are published, the editor of the journal to which the manuscript was submitted sends it to experts in the same field for review. These scholars will review the article for, among other things, the appropriateness of its methodology and its relevance to the field. They may suggest revisions. The peer review process is lengthy. It may be a year or longer between the time an article is submitted and its publication.

Title and Abstract

The title and abstract are key factors in determining whether the entire article will be read. A title should be descriptive, giving the reader an idea of the focus of the study. Because the Internet has made it possible to access so many research articles online, a title should contain enough keywords for an interested reader to find the article.

The abstract, meanwhile, serves as a mini-summary of the study. Many readers will review the abstract and, based on the findings, will decide whether to read the entire article.

Introduction

The introduction of a research article should state the problem being studied and the reason for the study. To place the research in proper context, the introduction should contain a brief summary of the previous research in the area covered by the study. This literature review should include references, which should be listed in the references section at the end of the article. By presenting an overview of the previous research, the article's author(s) can explain how the study presented in the article will contribute to and advance the body of knowledge.

This section of the research article should outline the methodology the author(s) used in conducting the study. Including information on methods used allows readers to determine whether the study used appropriate research methods for the question being investigated. It also makes it possible for other researchers to replicate the study and see if they obtain the same results.

The results section will present the data, the meat of the study. It is easy to confuse the results section with the discussion section that follows, in which the article's author interprets the results of the study. The results section should only report the results from the data analysis, regardless of whether the study is qualitative or quantitative.

The discussion section presents an interpretation of the results of the study. The authors will summarize the findings and assess them in the larger context of the existing knowledge, pointing out the ways in which their findings relate to those from prior studies. Any unusual or unexpected results will be discussed in this section as well. Finally, the authors will consider the larger theoretical implications of the study's results.

The citations (references) come at the end of the article and should list all books, articles, and other resources used and cited in the article. The references -- and the entire article -- should be written in the appropriate style (Modern Languages Association, American Psychological Association, Chicago, etc.).

  • Google Scholar-Source for Research Articles

Shane Hall is a writer and research analyst with more than 20 years of experience. His work has appeared in "Brookings Papers on Education Policy," "Population and Development" and various Texas newspapers. Hall has a Doctor of Philosophy in political economy and is a former college instructor of economics and political science.

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

research article meaning

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

19k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Finding Scholarly Articles: Home

Profile Photo

What's a Scholarly Article?

Your professor has specified that you are to use scholarly (or primary research or peer-reviewed or refereed or academic) articles only in your paper. What does that mean?

Scholarly or primary research articles are peer-reviewed , which means that they have gone through the process of being read by reviewers or referees  before being accepted for publication. When a scholar submits an article to a scholarly journal, the manuscript is sent to experts in that field to read and decide if the research is valid and the article should be published. Typically the reviewers indicate to the journal editors whether they think the article should be accepted, sent back for revisions, or rejected.

To decide whether an article is a primary research article, look for the following:

  • The author’s (or authors') credentials and academic affiliation(s) should be given;
  • There should be an abstract summarizing the research;
  • The methods and materials used should be given, often in a separate section;
  • There are citations within the text or footnotes referencing sources used;
  • Results of the research are given;
  • There should be discussion   and  conclusion ;
  • With a bibliography or list of references at the end.

Caution: even though a journal may be peer-reviewed, not all the items in it will be. For instance, there might be editorials, book reviews, news reports, etc. Check for the parts of the article to be sure.   

You can limit your search results to primary research, peer-reviewed or refereed articles in many databases. To search for scholarly articles in  HOLLIS , type your keywords in the box at the top, and select  Catalog&Articles  from the choices that appear next.   On the search results screen, look for the  Show Only section on the right and click on  Peer-reviewed articles . (Make sure to  login in with your HarvardKey to get full-text of the articles that Harvard has purchased.)

Many of the databases that Harvard offers have similar features to limit to peer-reviewed or scholarly articles.  For example in Academic Search Premier , click on the box for Scholarly (Peer Reviewed) Journals  on the search screen.

Review articles are another great way to find scholarly primary research articles.   Review articles are not considered "primary research", but they pull together primary research articles on a topic, summarize and analyze them.  In Google Scholar , click on Review Articles  at the left of the search results screen. Ask your professor whether review articles can be cited for an assignment.

A note about Google searching.  A regular Google search turns up a broad variety of results, which can include scholarly articles but Google results also contain commercial and popular sources which may be misleading, outdated, etc.  Use Google Scholar  through the Harvard Library instead.

About Wikipedia .  W ikipedia is not considered scholarly, and should not be cited, but it frequently includes references to scholarly articles. Before using those references for an assignment, double check by finding them in Hollis or a more specific subject  database .

Still not sure about a source? Consult the course syllabus for guidance, contact your professor or teaching fellow, or use the Ask A Librarian service.

  • Last Updated: Oct 3, 2023 3:37 PM
  • URL: https://guides.library.harvard.edu/FindingScholarlyArticles

Harvard University Digital Accessibility Policy

  • Hirsh Health Sciences
  • Webster Veterinary

Guide to Scholarly Articles

Getting started, what makes an article scholarly, why does this matter.

  • Scholarly vs. Popular vs. Trade Articles
  • Types of Scholarly Articles
  • Anatomy of Scholarly Articles
  • Tips for Reading Scholarly Articles

Profile Photo

Scholarship is a conversation.

That conversation is often found in the form of published materials such as books, essays, and articles. Here, we will focus on scholarly articles because scholarly articles often contain the most current scholarly conversation.

After reading through this guide on scholarly articles you will be able to identify and describe different types of scholarly articles. This will allow you to navigate the scholarly conversation more effectively which in turn will make your research more productive.

The distinguishing feature of a scholarly article is not that it is without errors; rather, a scholarly article is distinguished by a few characteristics which reduce the likelihood of errors. For our purposes, those characteristics are expert authors , peer-review , and citations .

  • Expert Authors  - Authority is constructed and contextual. In other words it is built through academic credentialing and lived experience. Scholarly articles are written by experts in their respective fields rather than generalists. Expertise often comes in the form of academic credentials. For example, an article about the spread of various diseases should be written by someone with credentials and experience in immunology or public health.
  • Peer-review  - Peer-review is the process whereby scholarly articles are vetted and improved. In this process an author submits an article to a journal for publication. However, before publication, an editor of the journal will send the article to other experts in the field to solicit their informed and professional opinions of it. These reviewers (sometimes called referees) will give the editor feedback regarding the quality of the article. Based on this process, articles may be published as is, published after specific changes are made, or not published at all.
  • Citations  - One of the key differences between scholarly articles and other kinds of articles is that the former contain citations and bibliographies. These citations allow the reader to follow up on the author's sources to verify or dispute the author's claim.

There is a well-known axiom that says "Garbage in, garbage out." In the context of research this means that the quality of your research output is dependent on the information sources that go into you own research. Generally speaking, the information found in scholarly articles is more reliable than information found elsewhere. It is important to identify scholarly articles and prioritize them in your own research.

  • Next: Scholarly vs. Popular vs. Trade Articles >>
  • Last Updated: Aug 23, 2023 8:53 AM
  • URL: https://researchguides.library.tufts.edu/scholarly-articles

Brown University Homepage

Evaluating Information

  • Understanding Primary and Secondary Sources
  • Exploring and Evaluating Popular, Trade, and Scholarly Sources

Reading a Scholarly Article

Common components of original research articles, while you read, reading strategies, reading for citations, further reading, learning objectives.

This page was created to help you:

Identify the different parts of a scholarly article

Efficiently analyze and evaluate scholarly articles for usefulness

This page will focus on reading scholarly articles — published reports on original research in the social sciences, humanities, and STEM fields. Reading and understanding this type of article can be challenging. This guide will help you develop these skills, which can be learned and improved upon with practice.

We will go over:

There are many different types of articles that may be found in scholarly journals and other academic publications. For more, see:

  • Types of Information Sources
Note: Not all articles contain all components.
Title Offers clues to article’s main topic.
Author(s)

Describes who is responsible for this work. May be one person, a group, or an institution. Make note of authors and institutions you see repeatedly during your search process.

Abstract Summarizes article contents and findings; may include methodology.
Keywords

Describe the content in quick words or phrases. Help you place the work in context with other literature. Good for quick reference!

Introduction Summarizes the article’s main idea, thesis, or research question. Should answer the question, "Why this?" Includes background knowledge on the topic and provides information about research motivations, impact, or purpose. 
Literature Review

Places the research in context with prior work. Analyzes important contributions that the author(s) believe are relevant and that the article builds upon to create new knowledge. Sometimes includes a theoretical framework. A good place to look to find additional sources for your research!

Methods (or Methodology)

An explanation of how and why the authors approached the examination of their question and the collection of data. May include information about the limitations of their chosen methodology.

Discussion

An examination of meaning and implications of the research for existing and future exploration.

Figures Graphical representation of findings and other relevant information. Includes charts, graphs, maps, images, tables, etc. Look at figures during your initial scan to determine relevancy and quality.
Conclusion

A synthesis of the findings and importance of the research.

Reading a scholarly article isn’t like reading a novel, website, or newspaper article. It’s likely you won’t read and absorb it from beginning to end, all at once.

Instead, think of scholarly reading as inquiry, i.e., asking a series of questions as you do your research or read for class. Your reading should be guided by your class topic or your own research question or thesis.

For example, as you read, you might ask yourself:

  • What questions does it help to answer, or what topics does it address?
  • Are these relevant or useful to me?
  • Does the article offer a helpful framework for understanding my topic or question (theoretical framework)?
  • Do the authors use interesting or innovative methods to conduct their research that might be relevant to me?
  • Does the article contain references I might consult for further information?

In Practice

Scanning and skimming are essential when reading scholarly articles, especially at the beginning stages of your research or when you have a lot of material in front of you.

Many scholarly articles are organized to help you scan and skim efficiently. The next time you need to read an article, practice scanning the following sections (where available) and skim their contents:

  • The abstract: This summary provides a birds’ eye view of the article contents.
  • The introduction:  What is the topic(s) of the research article? What is its main idea or question?
  • The list of keywords or descriptors
  • Methods: How did the author(s) go about answering their question/collecting their data?
  • Section headings:  Stop and skim those sections you may find relevant.
  • Figures:  Offer lots of information in quick visual format.
  • The conclusion:  What are the findings and/or conclusions of this article?

Mark Up Your Text

Read with purpose.

  • Scanning and skimming with a pen in hand can help to focus your reading.
  • Use color for quick reference. Try highlighters or some sticky notes. Use different colors to represent different topics.
  • Write in the margins, putting down thoughts and questions about the content as you read.
  • Use digital markup features available in eBook platforms or third-party solutions, like Adobe Reader or Hypothes.is.

Categorize Information

Create your own informal system of organization. It doesn’t have to be complicated — start basic, and be sure it works for you.

  • Jot down a few of your own keywords for each article. These keywords may correspond with important topics being addressed in class or in your research paper.  
  • Write keywords on print copies or use the built-in note taking features in reference management tools like Zotero and EndNote.  
  • Your keywords and system of organization may grow more complex the deeper you get into your reading.

Highlight words, terms, phrases, acronyms, etc. that are unfamiliar to you. You can highlight on the text or make a list in a notetaking program.

  • Decide if the term is essential to your understanding of the article or if you can look it up later and keep scanning.

You may scan an article and discover that it isn’t what you thought it was about. Before you close the tab or delete that PDF, consider scanning the article one more time, specifically to look for citations that might be more on-target for your topic.  

You don’t need to look at every citation in the bibliography — you can look to the literature review to identify the core references that relate to your topic. Literature reviews are typically organized by subtopic within a research question or thesis. Find the paragraph or two that are closely aligned with your topic, make note of the author names, then locate those citations in the bibliography or footnote.

See the Find Articles page for what to do next:

  • Find Articles

See the Citation Searching page for more on following a citation trail:

  • Citation Searching
  • Taking notes effectively. [blog post] Raul Pacheco-Vega, PhD
  • How to read an academic paper. [video] UBCiSchool. 2013
  • How to (seriously) read a scientific paper. (2016, March 21). Science | AAAS.
  • How to read a paper. S. Keshav. 2007. SIGCOMM Comput. Commun. Rev. 37, 3 (July 2007), 83–84.

This guide was designed to help you:

  • << Previous: Exploring and Evaluating Popular, Trade, and Scholarly Sources
  • Last Updated: Feb 16, 2024 3:55 PM
  • URL: https://libguides.brown.edu/evaluate

moBUL - Mobile Brown University Library

Brown University Library  |  Providence, RI 02912  |  (401) 863-2165  |  Contact  |  Comments  |  Library Feedback  |  Site Map

Library Intranet

  • Research Guides

Reading for Research: Social Sciences

Structure of a research article.

  • Structural Read

Guide Acknowledgements

How to Read a Scholarly Article from the Howard Tilton Memorial Library at Tulane University

Strategic Reading for Research   from the Howard Tilton Memorial Library at Tulane University

Bridging the Gap between Faculty Expectation and the Student Experience: Teaching Students toAnnotate and Synthesize Sources

Librarian for Sociology, Environmental Sociology, MHS and Public Policy Studies

Profile Photo

Academic writing has features that vary only slightly across the different disciplines. Knowing these elements and the purpose of each serves help you to read and understand academic texts efficiently and effectively, and then apply what you read to your paper or project.

Social Science (and Science) original research articles generally follow IMRD: Introduction- Methods-Results-Discussion

Introduction

  • Introduces topic of article
  • Presents the "Research Gap"/Statement of Problem article will address
  • How research presented in the article will solve the problem presented in research gap.
  • Literature Review. presenting and evaluating previous scholarship on a topic.  Sometimes, this is separate section of the article. 

​Method & Results

  • How research was done, including analysis and measurements.  
  • Sometimes labeled as "Research Design"
  • What answers were found
  • Interpretation of Results (What Does It Mean? Why is it important?)
  • Implications for the Field, how the study contributes to the existing field of knowledge
  • Suggestions for further research
  • Sometimes called Conclusion

You might also see IBC: Introduction - Body - Conclusion

  • Identify the subject
  • State the thesis 
  • Describe why thesis is important to the field (this may be in the form of a literature review or general prose)

Body  

  • Presents Evidence/Counter Evidence
  • Integrate other writings (i.e. evidence) to support argument 
  • Discuss why others may disagree (counter-evidence) and why argument is still valid
  • Summary of argument
  • Evaluation of argument by pointing out its implications and/or limitations 
  • Anticipate and address possible counter-claims
  • Suggest future directions of research
  • Next: Structural Read >>
  • Last Updated: Jan 19, 2024 10:44 AM
  • URL: https://researchguides.library.vanderbilt.edu/readingforresearch

Creative Commons License

  • SpringerLink shop

Types of journal articles

It is helpful to familiarise yourself with the different types of articles published by journals. Although it may appear there are a large number of types of articles published due to the wide variety of names they are published under, most articles published are one of the following types; Original Research, Review Articles, Short reports or Letters, Case Studies, Methodologies.

Original Research:

This is the most common type of journal manuscript used to publish full reports of data from research. It may be called an  Original Article, Research Article, Research, or just  Article, depending on the journal. The Original Research format is suitable for many different fields and different types of studies. It includes full Introduction, Methods, Results, and Discussion sections.

Short reports or Letters:

These papers communicate brief reports of data from original research that editors believe will be interesting to many researchers, and that will likely stimulate further research in the field. As they are relatively short the format is useful for scientists with results that are time sensitive (for example, those in highly competitive or quickly-changing disciplines). This format often has strict length limits, so some experimental details may not be published until the authors write a full Original Research manuscript. These papers are also sometimes called Brief communications .

Review Articles:

Review Articles provide a comprehensive summary of research on a certain topic, and a perspective on the state of the field and where it is heading. They are often written by leaders in a particular discipline after invitation from the editors of a journal. Reviews are often widely read (for example, by researchers looking for a full introduction to a field) and highly cited. Reviews commonly cite approximately 100 primary research articles.

TIP: If you would like to write a Review but have not been invited by a journal, be sure to check the journal website as some journals to not consider unsolicited Reviews. If the website does not mention whether Reviews are commissioned it is wise to send a pre-submission enquiry letter to the journal editor to propose your Review manuscript before you spend time writing it.  

Case Studies:

These articles report specific instances of interesting phenomena. A goal of Case Studies is to make other researchers aware of the possibility that a specific phenomenon might occur. This type of study is often used in medicine to report the occurrence of previously unknown or emerging pathologies.

Methodologies or Methods

These articles present a new experimental method, test or procedure. The method described may either be completely new, or may offer a better version of an existing method. The article should describe a demonstrable advance on what is currently available.

Back │ Next

NFS 4021 Contemporary Topics in Nutrition: Research Articles vs Review Articles

  • Research Articles vs Review Articles
  • Citation Help

Agriculture Support Librarian

Profile Photo

Research Articles and Review Articles Defined Review

"A  research article  is a  primary source ...that is, it  reports the methods and results of an original study performed by the authors . The kind of study may vary (it could have been an experiment, survey, interview, etc.), but in all cases, raw data have been collected and analyzed by the authors, and conclusions drawn from the results of that analysis.

A  review article  is a  secondary source ...it is written about other articles, and does not report original research of its own.  Review articles are very important, as they draw upon the articles that they review to suggest new research directions, to strengthen support for existing theories and/or identify patterns among existing research studies.   For student researchers, review articles provide a great overview of the existing literature on a topic.    If you find a literature review that fits your topic, take a look at its references/works cited list for leads on other relevant articles and books!"

From  https://apus.libanswers.com/faq/2324 , "What's the difference between a research and a review article?"

  • Example of a RESEARCH Article Lin CL, Huang LC, Chang YT, Chen RY, Yang SH. Effectiveness of Health Coaching in Diabetes Control and Lifestyle Improvement: A Randomized-Controlled Trial. Nutrients. 2021 Oct 29;13(11):3878.
  • Example of a REVIEW Article Ojo O, Ojo OO, Adebowale F, Wang XH. The Effect of Dietary Glycaemic Index on Glycaemia in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2018 Mar 19;10(3):373.

Difference between Reviews and Research Articles

Review Article: Identifies previously published research on a topic and summarizes the information (secondary source). Discusses what is already known and can be used to identify gaps in the field.  Usually no set layout. No original research is being presented. Written for a more general audience and easier to read. Both Written by a subject expert such as a scientist or researcher. Can be published in a scholarly, peer-reviewed journal. Research Article: Follows the scientific method. Usually provides a brief background on prior research (introduction) Conducts an experiment and reports the findings. Authors have NEW original research data (primary source) and discusses their results. Written at an advanced level; usually contains lots of jargon.

Research Article Break Down Review

Research articles follow a particular format.  Look for:

  • A brief  introduction  will often include a review of the existing literature on the topic studied, and explain the rationale of the author's study.
  • A  methods  section, where authors describe how they collected and analyzed data.  Statistical analysis are included.  
  • A  results  section describes the outcomes of the data analysis.  Charts and graphs illustrating the results are typically included.
  • In the  discussion , authors will explain their interpretation of their results and theorize on their importance to existing and future research.
  • References  or  works cited  are always included.  These are the articles and books that the authors drew upon to plan their study and to support their discussion.
  • << Previous: Welcome
  • Next: Databases >>
  • Last Updated: Mar 1, 2024 11:14 AM
  • URL: https://guides.lib.lsu.edu/NFS4021

Provide Website Feedback Accessibility Statement

Library Homepage

Identifying Empirical Research Articles

Identifying empirical articles.

  • Searching for Empirical Research Articles

What is Empirical Research?

An empirical research article reports the results of a study that uses data derived from actual observation or experimentation. Empirical research articles are examples of primary research. To learn more about the differences between primary and secondary research, see our related guide:

  • Primary and Secondary Sources

By the end of this guide, you will be able to:

  • Identify common elements of an empirical article
  • Use a variety of search strategies to search for empirical articles within the library collection

Look for the  IMRaD  layout in the article to help identify empirical research. Sometimes the sections will be labeled differently, but the content will be similar. 

  • I ntroduction: why the article was written, research question or questions, hypothesis, literature review
  • M ethods: the overall research design and implementation, description of sample, instruments used, how the authors measured their experiment
  • R esults: output of the author's measurements, usually includes statistics of the author's findings
  • D iscussion: the author's interpretation and conclusions about the results, limitations of study, suggestions for further research

Parts of an Empirical Research Article

Parts of an empirical article.

The screenshots below identify the basic IMRaD structure of an empirical research article. 

Introduction

The introduction contains a literature review and the study's research hypothesis.

research article meaning

The method section outlines the research design, participants, and measures used.

research article meaning

Results 

The results section contains statistical data (charts, graphs, tables, etc.) and research participant quotes.

research article meaning

The discussion section includes impacts, limitations, future considerations, and research.

research article meaning

Learn the IMRaD Layout: How to Identify an Empirical Article

This short video overviews the IMRaD method for identifying empirical research.

  • Next: Searching for Empirical Research Articles >>
  • Last Updated: Nov 16, 2023 8:24 AM

CityU Home - CityU Catalog

Creative Commons License

"How Do I?" @JWULibrary

research article meaning

Sample Question

  • JWU-Providence Library

Q. What's the difference between a research article and a review article?

  • 35 about the library
  • 29 articles & journals
  • 1 Borrowing
  • 8 citing sources
  • 17 company & industry
  • 11 computers
  • 1 copyright compliance
  • 5 countries & travel
  • 2 course registration
  • 50 databases
  • 3 education
  • 2 Interlibrary loan
  • 5 job search
  • 6 libguides
  • 9 market research
  • 25 my library account
  • 12 requests
  • 26 research basics
  • 21 research topics
  • 2 study rooms
  • 16 technology
  • 7 textbooks
  • 42 university
  • 3 video tutorial
  • 1 writing_help

Answered By: Sarah Naomi Campbell Last Updated: Sep 07, 2018     Views: 215504

Watch this short video to learn about types of scholarly articles, including research articles and literature reviews!

Not in the mood for a video? Read on!

What's the difference between a research article and a review article?

Research articles , sometimes referred to as empirical  or primary sources , report on original research. They will typically include sections such as an introduction, methods, results, and discussion.

Here is a more detailed explanation of research articles .

Review articles , sometimes called literature reviews  or secondary sources , synthesize or analyze research already conducted in primary sources. They generally summarize the current state of research on a given topic.

Here is a more detailed explanation of review articles .

The video above was created by the Virginia Commonwealth University Libraries .

The defintions, and the linked detailed explanations, are paraphrased from the Publication Manual of the American Psychological Association , 6th ed .

The linked explanations are provided by the Mohawk Valley Community College Libraries .

Links & Files

  • How do I find empirical articles in the library databases?
  • Share on Facebook

Was this helpful? Yes 63 No 19

Comments (0)

Related topics.

  • about the library
  • articles & journals
  • citing sources
  • company & industry
  • copyright compliance
  • countries & travel
  • course registration
  • Interlibrary loan
  • market research
  • my library account
  • research basics
  • research topics
  • study rooms
  • video tutorial
  • writing_help

Downcity Library:

111 Dorrance Street Providence, Rhode Island 02903

401-598-1121

Harborside Library:

321 Harborside Boulevard Providence, RI 02905

401-598-1466

  • Location and Directions
  • Off-Campus Access
  • Staff Directory
  • Student Employment
  • Pay Bills and Fines
  • Chat with a Librarian
  • Course Reserves
  • Interlibrary Loan (ILL)
  • Study Rooms
  • Research Appointment
  • Culinary Museum

Banner

  • UNO Criss Library

Social Work Research Guide

What is a research journal.

  • Find Articles
  • Find E-Books and Books

Reading an Academic Article

  • Free Online Resources
  • Reference and Writing
  • Citation Help This link opens in a new window

Anatomy of a Scholarly Article

TIP: When possible, keep your research question(s) in mind when reading scholarly articles. It will help you to focus your reading.

Title : Generally are straightforward and describe what the article is about. Titles often include relevant key words.

Abstract : A summary of the author(s)'s research findings and tells what to expect when you read the full article. It is often a good idea to read the abstract first, in order to determine if you should even bother reading the whole article.

Discussion and Conclusion : Read these after the Abstract (even though they come at the end of the article). These sections can help you see if this article will meet your research needs. If you don’t think that it will, set it aside.

Introduction : Describes the topic or problem researched. The authors will present the thesis of their argument or the goal of their research.

Literature Review : May be included in the introduction or as its own separate section. Here you see where the author(s) enter the conversation on this topic. That is to say, what related research has come before, and how do they hope to advance the discussion with their current research?

Methods : This section explains how the study worked. In this section, you often learn who and how many participated in the study and what they were asked to do. You will need to think critically about the methods and whether or not they make sense given the research question.

Results : Here you will often find numbers and tables. If you aren't an expert at statistics this section may be difficult to grasp. However you should attempt to understand if the results seem reasonable given the methods.

Works Cited (also be called References or Bibliography ): This section comprises the author(s)’s sources. Always be sure to scroll through them. Good research usually cites many different kinds of sources (books, journal articles, etc.). As you read the Works Cited page, be sure to look for sources that look like they will help you to answer your own research question.

Adapted from http://library.hunter.cuny.edu/research-toolkit/how-do-i-read-stuff/anatomy-of-a-scholarly-article

A research journal is a periodical that contains articles written by experts in a particular field of study who report the results of research in that field. The articles are intended to be read by other experts or students of the field, and they are typically much more sophisticated and advanced than the articles found in general magazines. This guide offers some tips to help distinguish scholarly journals from other periodicals.

CHARACTERISTICS OF RESEARCH JOURNALS

PURPOSE : Research journals communicate the results of research in the field of study covered by the journal. Research articles reflect a systematic and thorough study of a single topic, often involving experiments or surveys. Research journals may also publish review articles and book reviews that summarize the current state of knowledge on a topic.

APPEARANCE : Research journals lack the slick advertising, classified ads, coupons, etc., found in popular magazines. Articles are often printed one column to a page, as in books, and there are often graphs, tables, or charts referring to specific points in the articles.

AUTHORITY : Research articles are written by the person(s) who did the research being reported. When more than two authors are listed for a single article, the first author listed is often the primary researcher who coordinated or supervised the work done by the other authors. The most highly‑regarded scholarly journals are typically those sponsored by professional associations, such as the American Psychological Association or the American Chemical Society.

VALIDITY AND RELIABILITY : Articles submitted to research journals are evaluated by an editorial board and other experts before they are accepted for publication. This evaluation, called peer review, is designed to ensure that the articles published are based on solid research that meets the normal standards of the field of study covered by the journal. Professors sometimes use the term "refereed" to describe peer-reviewed journals.

WRITING STYLE : Articles in research journals usually contain an advanced vocabulary, since the authors use the technical language or jargon of their field of study. The authors assume that the reader already possesses a basic understanding of the field of study.

REFERENCES : The authors of research articles always indicate the sources of their information. These references are usually listed at the end of an article, but they may appear in the form of footnotes, endnotes, or a bibliography.

PERIODICALS THAT ARE NOT RESEARCH JOURNALS

POPULAR MAGAZINES : These are periodicals that one typically finds at grocery stores, airport newsstands, or bookstores at a shopping mall. Popular magazines are designed to appeal to a broad audience, and they usually contain relatively brief articles written in a readable, non‑technical language.

Examples include: Car and Driver , Cosmopolitan , Esquire , Essence , Gourmet , Life , People Weekly , Readers' Digest , Rolling Stone , Sports Illustrated , Vanity Fair , and Vogue .

NEWS MAGAZINES : These periodicals, which are usually issued weekly, provide information on topics of current interest, but their articles seldom have the depth or authority of scholarly articles.

Examples include: Newsweek , Time , U.S. News and World Report .

OPINION MAGAZINES : These periodicals contain articles aimed at an educated audience interested in keeping up with current events or ideas, especially those pertaining to topical issues. Very often their articles are written from a particular political, economic, or social point of view.

Examples include: Catholic World , Christianity Today , Commentary , Ms. , The Militant , Mother Jones , The Nation , National Review , The New Republic , The Progressive , and World Marxist Review .

TRADE MAGAZINES : People who need to keep up with developments in a particular industry or occupation read these magazines. Many trade magazines publish one or more special issues each year that focus on industry statistics, directory lists, or new product announcements.

Examples include: Beverage World , Progressive Grocer , Quick Frozen Foods International , Rubber World , Sales and Marketing Management , Skiing Trade News , and Stores .

Literature Reviews

  • Literature Review Guide General information on how to organize and write a literature review.
  • The Literature Review: A Few Tips On Conducting It Contains two sets of questions to help students review articles, and to review their own literature reviews.
  • << Previous: Find E-Books and Books
  • Next: Statistics >>
  • Last Updated: Jun 20, 2024 10:14 AM
  • URL: https://libguides.unomaha.edu/social_work

What is a review article?

Learn how to write a review article.

What is a review article? A review article can also be called a literature review, or a review of literature. It is a survey of previously published research on a topic. It should give an overview of current thinking on the topic. And, unlike an original research article, it will not present new experimental results.

Writing a review of literature is to provide a critical evaluation of the data available from existing studies. Review articles can identify potential research areas to explore next, and sometimes they will draw new conclusions from the existing data.

Why write a review article?

To provide a comprehensive foundation on a topic.

To explain the current state of knowledge.

To identify gaps in existing studies for potential future research.

To highlight the main methodologies and research techniques.

Did you know? 

There are some journals that only publish review articles, and others that do not accept them.

Make sure you check the  aims and scope  of the journal you’d like to publish in to find out if it’s the right place for your review article.

How to write a review article

Below are 8 key items to consider when you begin writing your review article.

Check the journal’s aims and scope

Make sure you have read the aims and scope for the journal you are submitting to and follow them closely. Different journals accept different types of articles and not all will accept review articles, so it’s important to check this before you start writing.

Define your scope

Define the scope of your review article and the research question you’ll be answering, making sure your article contributes something new to the field. 

As award-winning author Angus Crake told us, you’ll also need to “define the scope of your review so that it is manageable, not too large or small; it may be necessary to focus on recent advances if the field is well established.” 

Finding sources to evaluate

When finding sources to evaluate, Angus Crake says it’s critical that you “use multiple search engines/databases so you don’t miss any important ones.” 

For finding studies for a systematic review in medical sciences,  read advice from NCBI . 

Writing your title, abstract and keywords

Spend time writing an effective title, abstract and keywords. This will help maximize the visibility of your article online, making sure the right readers find your research. Your title and abstract should be clear, concise, accurate, and informative. 

For more information and guidance on getting these right, read our guide to writing a good abstract and title  and our  researcher’s guide to search engine optimization . 

Introduce the topic

Does a literature review need an introduction? Yes, always start with an overview of the topic and give some context, explaining why a review of the topic is necessary. Gather research to inform your introduction and make it broad enough to reach out to a large audience of non-specialists. This will help maximize its wider relevance and impact. 

Don’t make your introduction too long. Divide the review into sections of a suitable length to allow key points to be identified more easily.

Include critical discussion

Make sure you present a critical discussion, not just a descriptive summary of the topic. If there is contradictory research in your area of focus, make sure to include an element of debate and present both sides of the argument. You can also use your review paper to resolve conflict between contradictory studies.

What researchers say

Angus Crake, researcher

As part of your conclusion, include making suggestions for future research on the topic. Focus on the goal to communicate what you understood and what unknowns still remains.

Use a critical friend

Always perform a final spell and grammar check of your article before submission. 

You may want to ask a critical friend or colleague to give their feedback before you submit. If English is not your first language, think about using a language-polishing service.

Find out more about how  Taylor & Francis Editing Services can help improve your manuscript before you submit.

What is the difference between a research article and a review article?

Differences in...
Presents the viewpoint of the author Critiques the viewpoint of other authors on a particular topic
New content Assessing already published content
Depends on the word limit provided by the journal you submit to Tends to be shorter than a research article, but will still need to adhere to words limit

Before you submit your review article…

Complete this checklist before you submit your review article:

Have you checked the journal’s aims and scope?

Have you defined the scope of your article?

Did you use multiple search engines to find sources to evaluate?

Have you written a descriptive title and abstract using keywords?

Did you start with an overview of the topic?

Have you presented a critical discussion?

Have you included future suggestions for research in your conclusion?

Have you asked a friend to do a final spell and grammar check?

research article meaning

Expert help for your manuscript

research article meaning

Taylor & Francis Editing Services  offers a full range of pre-submission manuscript preparation services to help you improve the quality of your manuscript and submit with confidence.

Related resources

How to edit your paper

Writing a scientific literature review

research article meaning

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.25(3); 2014 Oct

Logo of ejifcc

Peer Review in Scientific Publications: Benefits, Critiques, & A Survival Guide

Jacalyn kelly.

1 Clinical Biochemistry, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

Tara Sadeghieh

Khosrow adeli.

2 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada

3 Chair, Communications and Publications Division (CPD), International Federation for Sick Clinical Chemistry (IFCC), Milan, Italy

The authors declare no conflicts of interest regarding publication of this article.

Peer review has been defined as a process of subjecting an author’s scholarly work, research or ideas to the scrutiny of others who are experts in the same field. It functions to encourage authors to meet the accepted high standards of their discipline and to control the dissemination of research data to ensure that unwarranted claims, unacceptable interpretations or personal views are not published without prior expert review. Despite its wide-spread use by most journals, the peer review process has also been widely criticised due to the slowness of the process to publish new findings and due to perceived bias by the editors and/or reviewers. Within the scientific community, peer review has become an essential component of the academic writing process. It helps ensure that papers published in scientific journals answer meaningful research questions and draw accurate conclusions based on professionally executed experimentation. Submission of low quality manuscripts has become increasingly prevalent, and peer review acts as a filter to prevent this work from reaching the scientific community. The major advantage of a peer review process is that peer-reviewed articles provide a trusted form of scientific communication. Since scientific knowledge is cumulative and builds on itself, this trust is particularly important. Despite the positive impacts of peer review, critics argue that the peer review process stifles innovation in experimentation, and acts as a poor screen against plagiarism. Despite its downfalls, there has not yet been a foolproof system developed to take the place of peer review, however, researchers have been looking into electronic means of improving the peer review process. Unfortunately, the recent explosion in online only/electronic journals has led to mass publication of a large number of scientific articles with little or no peer review. This poses significant risk to advances in scientific knowledge and its future potential. The current article summarizes the peer review process, highlights the pros and cons associated with different types of peer review, and describes new methods for improving peer review.

WHAT IS PEER REVIEW AND WHAT IS ITS PURPOSE?

Peer Review is defined as “a process of subjecting an author’s scholarly work, research or ideas to the scrutiny of others who are experts in the same field” ( 1 ). Peer review is intended to serve two primary purposes. Firstly, it acts as a filter to ensure that only high quality research is published, especially in reputable journals, by determining the validity, significance and originality of the study. Secondly, peer review is intended to improve the quality of manuscripts that are deemed suitable for publication. Peer reviewers provide suggestions to authors on how to improve the quality of their manuscripts, and also identify any errors that need correcting before publication.

HISTORY OF PEER REVIEW

The concept of peer review was developed long before the scholarly journal. In fact, the peer review process is thought to have been used as a method of evaluating written work since ancient Greece ( 2 ). The peer review process was first described by a physician named Ishaq bin Ali al-Rahwi of Syria, who lived from 854-931 CE, in his book Ethics of the Physician ( 2 ). There, he stated that physicians must take notes describing the state of their patients’ medical conditions upon each visit. Following treatment, the notes were scrutinized by a local medical council to determine whether the physician had met the required standards of medical care. If the medical council deemed that the appropriate standards were not met, the physician in question could receive a lawsuit from the maltreated patient ( 2 ).

The invention of the printing press in 1453 allowed written documents to be distributed to the general public ( 3 ). At this time, it became more important to regulate the quality of the written material that became publicly available, and editing by peers increased in prevalence. In 1620, Francis Bacon wrote the work Novum Organum, where he described what eventually became known as the first universal method for generating and assessing new science ( 3 ). His work was instrumental in shaping the Scientific Method ( 3 ). In 1665, the French Journal des sçavans and the English Philosophical Transactions of the Royal Society were the first scientific journals to systematically publish research results ( 4 ). Philosophical Transactions of the Royal Society is thought to be the first journal to formalize the peer review process in 1665 ( 5 ), however, it is important to note that peer review was initially introduced to help editors decide which manuscripts to publish in their journals, and at that time it did not serve to ensure the validity of the research ( 6 ). It did not take long for the peer review process to evolve, and shortly thereafter papers were distributed to reviewers with the intent of authenticating the integrity of the research study before publication. The Royal Society of Edinburgh adhered to the following peer review process, published in their Medical Essays and Observations in 1731: “Memoirs sent by correspondence are distributed according to the subject matter to those members who are most versed in these matters. The report of their identity is not known to the author.” ( 7 ). The Royal Society of London adopted this review procedure in 1752 and developed the “Committee on Papers” to review manuscripts before they were published in Philosophical Transactions ( 6 ).

Peer review in the systematized and institutionalized form has developed immensely since the Second World War, at least partly due to the large increase in scientific research during this period ( 7 ). It is now used not only to ensure that a scientific manuscript is experimentally and ethically sound, but also to determine which papers sufficiently meet the journal’s standards of quality and originality before publication. Peer review is now standard practice by most credible scientific journals, and is an essential part of determining the credibility and quality of work submitted.

IMPACT OF THE PEER REVIEW PROCESS

Peer review has become the foundation of the scholarly publication system because it effectively subjects an author’s work to the scrutiny of other experts in the field. Thus, it encourages authors to strive to produce high quality research that will advance the field. Peer review also supports and maintains integrity and authenticity in the advancement of science. A scientific hypothesis or statement is generally not accepted by the academic community unless it has been published in a peer-reviewed journal ( 8 ). The Institute for Scientific Information ( ISI ) only considers journals that are peer-reviewed as candidates to receive Impact Factors. Peer review is a well-established process which has been a formal part of scientific communication for over 300 years.

OVERVIEW OF THE PEER REVIEW PROCESS

The peer review process begins when a scientist completes a research study and writes a manuscript that describes the purpose, experimental design, results, and conclusions of the study. The scientist then submits this paper to a suitable journal that specializes in a relevant research field, a step referred to as pre-submission. The editors of the journal will review the paper to ensure that the subject matter is in line with that of the journal, and that it fits with the editorial platform. Very few papers pass this initial evaluation. If the journal editors feel the paper sufficiently meets these requirements and is written by a credible source, they will send the paper to accomplished researchers in the field for a formal peer review. Peer reviewers are also known as referees (this process is summarized in Figure 1 ). The role of the editor is to select the most appropriate manuscripts for the journal, and to implement and monitor the peer review process. Editors must ensure that peer reviews are conducted fairly, and in an effective and timely manner. They must also ensure that there are no conflicts of interest involved in the peer review process.

An external file that holds a picture, illustration, etc.
Object name is ejifcc-25-227-g001.jpg

Overview of the review process

When a reviewer is provided with a paper, he or she reads it carefully and scrutinizes it to evaluate the validity of the science, the quality of the experimental design, and the appropriateness of the methods used. The reviewer also assesses the significance of the research, and judges whether the work will contribute to advancement in the field by evaluating the importance of the findings, and determining the originality of the research. Additionally, reviewers identify any scientific errors and references that are missing or incorrect. Peer reviewers give recommendations to the editor regarding whether the paper should be accepted, rejected, or improved before publication in the journal. The editor will mediate author-referee discussion in order to clarify the priority of certain referee requests, suggest areas that can be strengthened, and overrule reviewer recommendations that are beyond the study’s scope ( 9 ). If the paper is accepted, as per suggestion by the peer reviewer, the paper goes into the production stage, where it is tweaked and formatted by the editors, and finally published in the scientific journal. An overview of the review process is presented in Figure 1 .

WHO CONDUCTS REVIEWS?

Peer reviews are conducted by scientific experts with specialized knowledge on the content of the manuscript, as well as by scientists with a more general knowledge base. Peer reviewers can be anyone who has competence and expertise in the subject areas that the journal covers. Reviewers can range from young and up-and-coming researchers to old masters in the field. Often, the young reviewers are the most responsive and deliver the best quality reviews, though this is not always the case. On average, a reviewer will conduct approximately eight reviews per year, according to a study on peer review by the Publishing Research Consortium (PRC) ( 7 ). Journals will often have a pool of reviewers with diverse backgrounds to allow for many different perspectives. They will also keep a rather large reviewer bank, so that reviewers do not get burnt out, overwhelmed or time constrained from reviewing multiple articles simultaneously.

WHY DO REVIEWERS REVIEW?

Referees are typically not paid to conduct peer reviews and the process takes considerable effort, so the question is raised as to what incentive referees have to review at all. Some feel an academic duty to perform reviews, and are of the mentality that if their peers are expected to review their papers, then they should review the work of their peers as well. Reviewers may also have personal contacts with editors, and may want to assist as much as possible. Others review to keep up-to-date with the latest developments in their field, and reading new scientific papers is an effective way to do so. Some scientists use peer review as an opportunity to advance their own research as it stimulates new ideas and allows them to read about new experimental techniques. Other reviewers are keen on building associations with prestigious journals and editors and becoming part of their community, as sometimes reviewers who show dedication to the journal are later hired as editors. Some scientists see peer review as a chance to become aware of the latest research before their peers, and thus be first to develop new insights from the material. Finally, in terms of career development, peer reviewing can be desirable as it is often noted on one’s resume or CV. Many institutions consider a researcher’s involvement in peer review when assessing their performance for promotions ( 11 ). Peer reviewing can also be an effective way for a scientist to show their superiors that they are committed to their scientific field ( 5 ).

ARE REVIEWERS KEEN TO REVIEW?

A 2009 international survey of 4000 peer reviewers conducted by the charity Sense About Science at the British Science Festival at the University of Surrey, found that 90% of reviewers were keen to peer review ( 12 ). One third of respondents to the survey said they were happy to review up to five papers per year, and an additional one third of respondents were happy to review up to ten.

HOW LONG DOES IT TAKE TO REVIEW ONE PAPER?

On average, it takes approximately six hours to review one paper ( 12 ), however, this number may vary greatly depending on the content of the paper and the nature of the peer reviewer. One in every 100 participants in the “Sense About Science” survey claims to have taken more than 100 hours to review their last paper ( 12 ).

HOW TO DETERMINE IF A JOURNAL IS PEER REVIEWED

Ulrichsweb is a directory that provides information on over 300,000 periodicals, including information regarding which journals are peer reviewed ( 13 ). After logging into the system using an institutional login (eg. from the University of Toronto), search terms, journal titles or ISSN numbers can be entered into the search bar. The database provides the title, publisher, and country of origin of the journal, and indicates whether the journal is still actively publishing. The black book symbol (labelled ‘refereed’) reveals that the journal is peer reviewed.

THE EVALUATION CRITERIA FOR PEER REVIEW OF SCIENTIFIC PAPERS

As previously mentioned, when a reviewer receives a scientific manuscript, he/she will first determine if the subject matter is well suited for the content of the journal. The reviewer will then consider whether the research question is important and original, a process which may be aided by a literature scan of review articles.

Scientific papers submitted for peer review usually follow a specific structure that begins with the title, followed by the abstract, introduction, methodology, results, discussion, conclusions, and references. The title must be descriptive and include the concept and organism investigated, and potentially the variable manipulated and the systems used in the study. The peer reviewer evaluates if the title is descriptive enough, and ensures that it is clear and concise. A study by the National Association of Realtors (NAR) published by the Oxford University Press in 2006 indicated that the title of a manuscript plays a significant role in determining reader interest, as 72% of respondents said they could usually judge whether an article will be of interest to them based on the title and the author, while 13% of respondents claimed to always be able to do so ( 14 ).

The abstract is a summary of the paper, which briefly mentions the background or purpose, methods, key results, and major conclusions of the study. The peer reviewer assesses whether the abstract is sufficiently informative and if the content of the abstract is consistent with the rest of the paper. The NAR study indicated that 40% of respondents could determine whether an article would be of interest to them based on the abstract alone 60-80% of the time, while 32% could judge an article based on the abstract 80-100% of the time ( 14 ). This demonstrates that the abstract alone is often used to assess the value of an article.

The introduction of a scientific paper presents the research question in the context of what is already known about the topic, in order to identify why the question being studied is of interest to the scientific community, and what gap in knowledge the study aims to fill ( 15 ). The introduction identifies the study’s purpose and scope, briefly describes the general methods of investigation, and outlines the hypothesis and predictions ( 15 ). The peer reviewer determines whether the introduction provides sufficient background information on the research topic, and ensures that the research question and hypothesis are clearly identifiable.

The methods section describes the experimental procedures, and explains why each experiment was conducted. The methods section also includes the equipment and reagents used in the investigation. The methods section should be detailed enough that it can be used it to repeat the experiment ( 15 ). Methods are written in the past tense and in the active voice. The peer reviewer assesses whether the appropriate methods were used to answer the research question, and if they were written with sufficient detail. If information is missing from the methods section, it is the peer reviewer’s job to identify what details need to be added.

The results section is where the outcomes of the experiment and trends in the data are explained without judgement, bias or interpretation ( 15 ). This section can include statistical tests performed on the data, as well as figures and tables in addition to the text. The peer reviewer ensures that the results are described with sufficient detail, and determines their credibility. Reviewers also confirm that the text is consistent with the information presented in tables and figures, and that all figures and tables included are important and relevant ( 15 ). The peer reviewer will also make sure that table and figure captions are appropriate both contextually and in length, and that tables and figures present the data accurately.

The discussion section is where the data is analyzed. Here, the results are interpreted and related to past studies ( 15 ). The discussion describes the meaning and significance of the results in terms of the research question and hypothesis, and states whether the hypothesis was supported or rejected. This section may also provide possible explanations for unusual results and suggestions for future research ( 15 ). The discussion should end with a conclusions section that summarizes the major findings of the investigation. The peer reviewer determines whether the discussion is clear and focused, and whether the conclusions are an appropriate interpretation of the results. Reviewers also ensure that the discussion addresses the limitations of the study, any anomalies in the results, the relationship of the study to previous research, and the theoretical implications and practical applications of the study.

The references are found at the end of the paper, and list all of the information sources cited in the text to describe the background, methods, and/or interpret results. Depending on the citation method used, the references are listed in alphabetical order according to author last name, or numbered according to the order in which they appear in the paper. The peer reviewer ensures that references are used appropriately, cited accurately, formatted correctly, and that none are missing.

Finally, the peer reviewer determines whether the paper is clearly written and if the content seems logical. After thoroughly reading through the entire manuscript, they determine whether it meets the journal’s standards for publication,

and whether it falls within the top 25% of papers in its field ( 16 ) to determine priority for publication. An overview of what a peer reviewer looks for when evaluating a manuscript, in order of importance, is presented in Figure 2 .

An external file that holds a picture, illustration, etc.
Object name is ejifcc-25-227-g002.jpg

How a peer review evaluates a manuscript

To increase the chance of success in the peer review process, the author must ensure that the paper fully complies with the journal guidelines before submission. The author must also be open to criticism and suggested revisions, and learn from mistakes made in previous submissions.

ADVANTAGES AND DISADVANTAGES OF THE DIFFERENT TYPES OF PEER REVIEW

The peer review process is generally conducted in one of three ways: open review, single-blind review, or double-blind review. In an open review, both the author of the paper and the peer reviewer know one another’s identity. Alternatively, in single-blind review, the reviewer’s identity is kept private, but the author’s identity is revealed to the reviewer. In double-blind review, the identities of both the reviewer and author are kept anonymous. Open peer review is advantageous in that it prevents the reviewer from leaving malicious comments, being careless, or procrastinating completion of the review ( 2 ). It encourages reviewers to be open and honest without being disrespectful. Open reviewing also discourages plagiarism amongst authors ( 2 ). On the other hand, open peer review can also prevent reviewers from being honest for fear of developing bad rapport with the author. The reviewer may withhold or tone down their criticisms in order to be polite ( 2 ). This is especially true when younger reviewers are given a more esteemed author’s work, in which case the reviewer may be hesitant to provide criticism for fear that it will damper their relationship with a superior ( 2 ). According to the Sense About Science survey, editors find that completely open reviewing decreases the number of people willing to participate, and leads to reviews of little value ( 12 ). In the aforementioned study by the PRC, only 23% of authors surveyed had experience with open peer review ( 7 ).

Single-blind peer review is by far the most common. In the PRC study, 85% of authors surveyed had experience with single-blind peer review ( 7 ). This method is advantageous as the reviewer is more likely to provide honest feedback when their identity is concealed ( 2 ). This allows the reviewer to make independent decisions without the influence of the author ( 2 ). The main disadvantage of reviewer anonymity, however, is that reviewers who receive manuscripts on subjects similar to their own research may be tempted to delay completing the review in order to publish their own data first ( 2 ).

Double-blind peer review is advantageous as it prevents the reviewer from being biased against the author based on their country of origin or previous work ( 2 ). This allows the paper to be judged based on the quality of the content, rather than the reputation of the author. The Sense About Science survey indicates that 76% of researchers think double-blind peer review is a good idea ( 12 ), and the PRC survey indicates that 45% of authors have had experience with double-blind peer review ( 7 ). The disadvantage of double-blind peer review is that, especially in niche areas of research, it can sometimes be easy for the reviewer to determine the identity of the author based on writing style, subject matter or self-citation, and thus, impart bias ( 2 ).

Masking the author’s identity from peer reviewers, as is the case in double-blind review, is generally thought to minimize bias and maintain review quality. A study by Justice et al. in 1998 investigated whether masking author identity affected the quality of the review ( 17 ). One hundred and eighteen manuscripts were randomized; 26 were peer reviewed as normal, and 92 were moved into the ‘intervention’ arm, where editor quality assessments were completed for 77 manuscripts and author quality assessments were completed for 40 manuscripts ( 17 ). There was no perceived difference in quality between the masked and unmasked reviews. Additionally, the masking itself was often unsuccessful, especially with well-known authors ( 17 ). However, a previous study conducted by McNutt et al. had different results ( 18 ). In this case, blinding was successful 73% of the time, and they found that when author identity was masked, the quality of review was slightly higher ( 18 ). Although Justice et al. argued that this difference was too small to be consequential, their study targeted only biomedical journals, and the results cannot be generalized to journals of a different subject matter ( 17 ). Additionally, there were problems masking the identities of well-known authors, introducing a flaw in the methods. Regardless, Justice et al. concluded that masking author identity from reviewers may not improve review quality ( 17 ).

In addition to open, single-blind and double-blind peer review, there are two experimental forms of peer review. In some cases, following publication, papers may be subjected to post-publication peer review. As many papers are now published online, the scientific community has the opportunity to comment on these papers, engage in online discussions and post a formal review. For example, online publishers PLOS and BioMed Central have enabled scientists to post comments on published papers if they are registered users of the site ( 10 ). Philica is another journal launched with this experimental form of peer review. Only 8% of authors surveyed in the PRC study had experience with post-publication review ( 7 ). Another experimental form of peer review called Dynamic Peer Review has also emerged. Dynamic peer review is conducted on websites such as Naboj, which allow scientists to conduct peer reviews on articles in the preprint media ( 19 ). The peer review is conducted on repositories and is a continuous process, which allows the public to see both the article and the reviews as the article is being developed ( 19 ). Dynamic peer review helps prevent plagiarism as the scientific community will already be familiar with the work before the peer reviewed version appears in print ( 19 ). Dynamic review also reduces the time lag between manuscript submission and publishing. An example of a preprint server is the ‘arXiv’ developed by Paul Ginsparg in 1991, which is used primarily by physicists ( 19 ). These alternative forms of peer review are still un-established and experimental. Traditional peer review is time-tested and still highly utilized. All methods of peer review have their advantages and deficiencies, and all are prone to error.

PEER REVIEW OF OPEN ACCESS JOURNALS

Open access (OA) journals are becoming increasingly popular as they allow the potential for widespread distribution of publications in a timely manner ( 20 ). Nevertheless, there can be issues regarding the peer review process of open access journals. In a study published in Science in 2013, John Bohannon submitted 304 slightly different versions of a fictional scientific paper (written by a fake author, working out of a non-existent institution) to a selected group of OA journals. This study was performed in order to determine whether papers submitted to OA journals are properly reviewed before publication in comparison to subscription-based journals. The journals in this study were selected from the Directory of Open Access Journals (DOAJ) and Biall’s List, a list of journals which are potentially predatory, and all required a fee for publishing ( 21 ). Of the 304 journals, 157 accepted a fake paper, suggesting that acceptance was based on financial interest rather than the quality of article itself, while 98 journals promptly rejected the fakes ( 21 ). Although this study highlights useful information on the problems associated with lower quality publishers that do not have an effective peer review system in place, the article also generalizes the study results to all OA journals, which can be detrimental to the general perception of OA journals. There were two limitations of the study that made it impossible to accurately determine the relationship between peer review and OA journals: 1) there was no control group (subscription-based journals), and 2) the fake papers were sent to a non-randomized selection of journals, resulting in bias.

JOURNAL ACCEPTANCE RATES

Based on a recent survey, the average acceptance rate for papers submitted to scientific journals is about 50% ( 7 ). Twenty percent of the submitted manuscripts that are not accepted are rejected prior to review, and 30% are rejected following review ( 7 ). Of the 50% accepted, 41% are accepted with the condition of revision, while only 9% are accepted without the request for revision ( 7 ).

SATISFACTION WITH THE PEER REVIEW SYSTEM

Based on a recent survey by the PRC, 64% of academics are satisfied with the current system of peer review, and only 12% claimed to be ‘dissatisfied’ ( 7 ). The large majority, 85%, agreed with the statement that ‘scientific communication is greatly helped by peer review’ ( 7 ). There was a similarly high level of support (83%) for the idea that peer review ‘provides control in scientific communication’ ( 7 ).

HOW TO PEER REVIEW EFFECTIVELY

The following are ten tips on how to be an effective peer reviewer as indicated by Brian Lucey, an expert on the subject ( 22 ):

1) Be professional

Peer review is a mutual responsibility among fellow scientists, and scientists are expected, as part of the academic community, to take part in peer review. If one is to expect others to review their work, they should commit to reviewing the work of others as well, and put effort into it.

2) Be pleasant

If the paper is of low quality, suggest that it be rejected, but do not leave ad hominem comments. There is no benefit to being ruthless.

3) Read the invite

When emailing a scientist to ask them to conduct a peer review, the majority of journals will provide a link to either accept or reject. Do not respond to the email, respond to the link.

4) Be helpful

Suggest how the authors can overcome the shortcomings in their paper. A review should guide the author on what is good and what needs work from the reviewer’s perspective.

5) Be scientific

The peer reviewer plays the role of a scientific peer, not an editor for proofreading or decision-making. Don’t fill a review with comments on editorial and typographic issues. Instead, focus on adding value with scientific knowledge and commenting on the credibility of the research conducted and conclusions drawn. If the paper has a lot of typographical errors, suggest that it be professionally proof edited as part of the review.

6) Be timely

Stick to the timeline given when conducting a peer review. Editors track who is reviewing what and when and will know if someone is late on completing a review. It is important to be timely both out of respect for the journal and the author, as well as to not develop a reputation of being late for review deadlines.

7) Be realistic

The peer reviewer must be realistic about the work presented, the changes they suggest and their role. Peer reviewers may set the bar too high for the paper they are editing by proposing changes that are too ambitious and editors must override them.

8) Be empathetic

Ensure that the review is scientific, helpful and courteous. Be sensitive and respectful with word choice and tone in a review.

Remember that both specialists and generalists can provide valuable insight when peer reviewing. Editors will try to get both specialised and general reviewers for any particular paper to allow for different perspectives. If someone is asked to review, the editor has determined they have a valid and useful role to play, even if the paper is not in their area of expertise.

10) Be organised

A review requires structure and logical flow. A reviewer should proofread their review before submitting it for structural, grammatical and spelling errors as well as for clarity. Most publishers provide short guides on structuring a peer review on their website. Begin with an overview of the proposed improvements; then provide feedback on the paper structure, the quality of data sources and methods of investigation used, the logical flow of argument, and the validity of conclusions drawn. Then provide feedback on style, voice and lexical concerns, with suggestions on how to improve.

In addition, the American Physiology Society (APS) recommends in its Peer Review 101 Handout that peer reviewers should put themselves in both the editor’s and author’s shoes to ensure that they provide what both the editor and the author need and expect ( 11 ). To please the editor, the reviewer should ensure that the peer review is completed on time, and that it provides clear explanations to back up recommendations. To be helpful to the author, the reviewer must ensure that their feedback is constructive. It is suggested that the reviewer take time to think about the paper; they should read it once, wait at least a day, and then re-read it before writing the review ( 11 ). The APS also suggests that Graduate students and researchers pay attention to how peer reviewers edit their work, as well as to what edits they find helpful, in order to learn how to peer review effectively ( 11 ). Additionally, it is suggested that Graduate students practice reviewing by editing their peers’ papers and asking a faculty member for feedback on their efforts. It is recommended that young scientists offer to peer review as often as possible in order to become skilled at the process ( 11 ). The majority of students, fellows and trainees do not get formal training in peer review, but rather learn by observing their mentors. According to the APS, one acquires experience through networking and referrals, and should therefore try to strengthen relationships with journal editors by offering to review manuscripts ( 11 ). The APS also suggests that experienced reviewers provide constructive feedback to students and junior colleagues on their peer review efforts, and encourages them to peer review to demonstrate the importance of this process in improving science ( 11 ).

The peer reviewer should only comment on areas of the manuscript that they are knowledgeable about ( 23 ). If there is any section of the manuscript they feel they are not qualified to review, they should mention this in their comments and not provide further feedback on that section. The peer reviewer is not permitted to share any part of the manuscript with a colleague (even if they may be more knowledgeable in the subject matter) without first obtaining permission from the editor ( 23 ). If a peer reviewer comes across something they are unsure of in the paper, they can consult the literature to try and gain insight. It is important for scientists to remember that if a paper can be improved by the expertise of one of their colleagues, the journal must be informed of the colleague’s help, and approval must be obtained for their colleague to read the protected document. Additionally, the colleague must be identified in the confidential comments to the editor, in order to ensure that he/she is appropriately credited for any contributions ( 23 ). It is the job of the reviewer to make sure that the colleague assisting is aware of the confidentiality of the peer review process ( 23 ). Once the review is complete, the manuscript must be destroyed and cannot be saved electronically by the reviewers ( 23 ).

COMMON ERRORS IN SCIENTIFIC PAPERS

When performing a peer review, there are some common scientific errors to look out for. Most of these errors are violations of logic and common sense: these may include contradicting statements, unwarranted conclusions, suggestion of causation when there is only support for correlation, inappropriate extrapolation, circular reasoning, or pursuit of a trivial question ( 24 ). It is also common for authors to suggest that two variables are different because the effects of one variable are statistically significant while the effects of the other variable are not, rather than directly comparing the two variables ( 24 ). Authors sometimes oversee a confounding variable and do not control for it, or forget to include important details on how their experiments were controlled or the physical state of the organisms studied ( 24 ). Another common fault is the author’s failure to define terms or use words with precision, as these practices can mislead readers ( 24 ). Jargon and/or misused terms can be a serious problem in papers. Inaccurate statements about specific citations are also a common occurrence ( 24 ). Additionally, many studies produce knowledge that can be applied to areas of science outside the scope of the original study, therefore it is better for reviewers to look at the novelty of the idea, conclusions, data, and methodology, rather than scrutinize whether or not the paper answered the specific question at hand ( 24 ). Although it is important to recognize these points, when performing a review it is generally better practice for the peer reviewer to not focus on a checklist of things that could be wrong, but rather carefully identify the problems specific to each paper and continuously ask themselves if anything is missing ( 24 ). An extremely detailed description of how to conduct peer review effectively is presented in the paper How I Review an Original Scientific Article written by Frederic G. Hoppin, Jr. It can be accessed through the American Physiological Society website under the Peer Review Resources section.

CRITICISM OF PEER REVIEW

A major criticism of peer review is that there is little evidence that the process actually works, that it is actually an effective screen for good quality scientific work, and that it actually improves the quality of scientific literature. As a 2002 study published in the Journal of the American Medical Association concluded, ‘Editorial peer review, although widely used, is largely untested and its effects are uncertain’ ( 25 ). Critics also argue that peer review is not effective at detecting errors. Highlighting this point, an experiment by Godlee et al. published in the British Medical Journal (BMJ) inserted eight deliberate errors into a paper that was nearly ready for publication, and then sent the paper to 420 potential reviewers ( 7 ). Of the 420 reviewers that received the paper, 221 (53%) responded, the average number of errors spotted by reviewers was two, no reviewer spotted more than five errors, and 35 reviewers (16%) did not spot any.

Another criticism of peer review is that the process is not conducted thoroughly by scientific conferences with the goal of obtaining large numbers of submitted papers. Such conferences often accept any paper sent in, regardless of its credibility or the prevalence of errors, because the more papers they accept, the more money they can make from author registration fees ( 26 ). This misconduct was exposed in 2014 by three MIT graduate students by the names of Jeremy Stribling, Dan Aguayo and Maxwell Krohn, who developed a simple computer program called SCIgen that generates nonsense papers and presents them as scientific papers ( 26 ). Subsequently, a nonsense SCIgen paper submitted to a conference was promptly accepted. Nature recently reported that French researcher Cyril Labbé discovered that sixteen SCIgen nonsense papers had been used by the German academic publisher Springer ( 26 ). Over 100 nonsense papers generated by SCIgen were published by the US Institute of Electrical and Electronic Engineers (IEEE) ( 26 ). Both organisations have been working to remove the papers. Labbé developed a program to detect SCIgen papers and has made it freely available to ensure publishers and conference organizers do not accept nonsense work in the future. It is available at this link: http://scigendetect.on.imag.fr/main.php ( 26 ).

Additionally, peer review is often criticized for being unable to accurately detect plagiarism. However, many believe that detecting plagiarism cannot practically be included as a component of peer review. As explained by Alice Tuff, development manager at Sense About Science, ‘The vast majority of authors and reviewers think peer review should detect plagiarism (81%) but only a minority (38%) think it is capable. The academic time involved in detecting plagiarism through peer review would cause the system to grind to a halt’ ( 27 ). Publishing house Elsevier began developing electronic plagiarism tools with the help of journal editors in 2009 to help improve this issue ( 27 ).

It has also been argued that peer review has lowered research quality by limiting creativity amongst researchers. Proponents of this view claim that peer review has repressed scientists from pursuing innovative research ideas and bold research questions that have the potential to make major advances and paradigm shifts in the field, as they believe that this work will likely be rejected by their peers upon review ( 28 ). Indeed, in some cases peer review may result in rejection of innovative research, as some studies may not seem particularly strong initially, yet may be capable of yielding very interesting and useful developments when examined under different circumstances, or in the light of new information ( 28 ). Scientists that do not believe in peer review argue that the process stifles the development of ingenious ideas, and thus the release of fresh knowledge and new developments into the scientific community.

Another issue that peer review is criticized for, is that there are a limited number of people that are competent to conduct peer review compared to the vast number of papers that need reviewing. An enormous number of papers published (1.3 million papers in 23,750 journals in 2006), but the number of competent peer reviewers available could not have reviewed them all ( 29 ). Thus, people who lack the required expertise to analyze the quality of a research paper are conducting reviews, and weak papers are being accepted as a result. It is now possible to publish any paper in an obscure journal that claims to be peer-reviewed, though the paper or journal itself could be substandard ( 29 ). On a similar note, the US National Library of Medicine indexes 39 journals that specialize in alternative medicine, and though they all identify themselves as “peer-reviewed”, they rarely publish any high quality research ( 29 ). This highlights the fact that peer review of more controversial or specialized work is typically performed by people who are interested and hold similar views or opinions as the author, which can cause bias in their review. For instance, a paper on homeopathy is likely to be reviewed by fellow practicing homeopaths, and thus is likely to be accepted as credible, though other scientists may find the paper to be nonsense ( 29 ). In some cases, papers are initially published, but their credibility is challenged at a later date and they are subsequently retracted. Retraction Watch is a website dedicated to revealing papers that have been retracted after publishing, potentially due to improper peer review ( 30 ).

Additionally, despite its many positive outcomes, peer review is also criticized for being a delay to the dissemination of new knowledge into the scientific community, and as an unpaid-activity that takes scientists’ time away from activities that they would otherwise prioritize, such as research and teaching, for which they are paid ( 31 ). As described by Eva Amsen, Outreach Director for F1000Research, peer review was originally developed as a means of helping editors choose which papers to publish when journals had to limit the number of papers they could print in one issue ( 32 ). However, nowadays most journals are available online, either exclusively or in addition to print, and many journals have very limited printing runs ( 32 ). Since there are no longer page limits to journals, any good work can and should be published. Consequently, being selective for the purpose of saving space in a journal is no longer a valid excuse that peer reviewers can use to reject a paper ( 32 ). However, some reviewers have used this excuse when they have personal ulterior motives, such as getting their own research published first.

RECENT INITIATIVES TOWARDS IMPROVING PEER REVIEW

F1000Research was launched in January 2013 by Faculty of 1000 as an open access journal that immediately publishes papers (after an initial check to ensure that the paper is in fact produced by a scientist and has not been plagiarised), and then conducts transparent post-publication peer review ( 32 ). F1000Research aims to prevent delays in new science reaching the academic community that are caused by prolonged publication times ( 32 ). It also aims to make peer reviewing more fair by eliminating any anonymity, which prevents reviewers from delaying the completion of a review so they can publish their own similar work first ( 32 ). F1000Research offers completely open peer review, where everything is published, including the name of the reviewers, their review reports, and the editorial decision letters ( 32 ).

PeerJ was founded by Jason Hoyt and Peter Binfield in June 2012 as an open access, peer reviewed scholarly journal for the Biological and Medical Sciences ( 33 ). PeerJ selects articles to publish based only on scientific and methodological soundness, not on subjective determinants of ‘impact ’, ‘novelty’ or ‘interest’ ( 34 ). It works on a “lifetime publishing plan” model which charges scientists for publishing plans that give them lifetime rights to publish with PeerJ, rather than charging them per publication ( 34 ). PeerJ also encourages open peer review, and authors are given the option to post the full peer review history of their submission with their published article ( 34 ). PeerJ also offers a pre-print review service called PeerJ Pre-prints, in which paper drafts are reviewed before being sent to PeerJ to publish ( 34 ).

Rubriq is an independent peer review service designed by Shashi Mudunuri and Keith Collier to improve the peer review system ( 35 ). Rubriq is intended to decrease redundancy in the peer review process so that the time lost in redundant reviewing can be put back into research ( 35 ). According to Keith Collier, over 15 million hours are lost each year to redundant peer review, as papers get rejected from one journal and are subsequently submitted to a less prestigious journal where they are reviewed again ( 35 ). Authors often have to submit their manuscript to multiple journals, and are often rejected multiple times before they find the right match. This process could take months or even years ( 35 ). Rubriq makes peer review portable in order to help authors choose the journal that is best suited for their manuscript from the beginning, thus reducing the time before their paper is published ( 35 ). Rubriq operates under an author-pay model, in which the author pays a fee and their manuscript undergoes double-blind peer review by three expert academic reviewers using a standardized scorecard ( 35 ). The majority of the author’s fee goes towards a reviewer honorarium ( 35 ). The papers are also screened for plagiarism using iThenticate ( 35 ). Once the manuscript has been reviewed by the three experts, the most appropriate journal for submission is determined based on the topic and quality of the paper ( 35 ). The paper is returned to the author in 1-2 weeks with the Rubriq Report ( 35 ). The author can then submit their paper to the suggested journal with the Rubriq Report attached. The Rubriq Report will give the journal editors a much stronger incentive to consider the paper as it shows that three experts have recommended the paper to them ( 35 ). Rubriq also has its benefits for reviewers; the Rubriq scorecard gives structure to the peer review process, and thus makes it consistent and efficient, which decreases time and stress for the reviewer. Reviewers also receive feedback on their reviews and most significantly, they are compensated for their time ( 35 ). Journals also benefit, as they receive pre-screened papers, reducing the number of papers sent to their own reviewers, which often end up rejected ( 35 ). This can reduce reviewer fatigue, and allow only higher-quality articles to be sent to their peer reviewers ( 35 ).

According to Eva Amsen, peer review and scientific publishing are moving in a new direction, in which all papers will be posted online, and a post-publication peer review will take place that is independent of specific journal criteria and solely focused on improving paper quality ( 32 ). Journals will then choose papers that they find relevant based on the peer reviews and publish those papers as a collection ( 32 ). In this process, peer review and individual journals are uncoupled ( 32 ). In Keith Collier’s opinion, post-publication peer review is likely to become more prevalent as a complement to pre-publication peer review, but not as a replacement ( 35 ). Post-publication peer review will not serve to identify errors and fraud but will provide an additional measurement of impact ( 35 ). Collier also believes that as journals and publishers consolidate into larger systems, there will be stronger potential for “cascading” and shared peer review ( 35 ).

CONCLUDING REMARKS

Peer review has become fundamental in assisting editors in selecting credible, high quality, novel and interesting research papers to publish in scientific journals and to ensure the correction of any errors or issues present in submitted papers. Though the peer review process still has some flaws and deficiencies, a more suitable screening method for scientific papers has not yet been proposed or developed. Researchers have begun and must continue to look for means of addressing the current issues with peer review to ensure that it is a full-proof system that ensures only quality research papers are released into the scientific community.

Logo

  • Turnitin Guides
  • Administrator hub
  • Release notes and known issues
  • Welcome to Turnitin Guides

Welcome to Turnitin’s new website for guidance!

In 2024, we migrated our comprehensive library of guidance from https://help.turnitin.com to this site, guides.turnitin.com. During this process we have taken the opportunity to take a holistic look at our content and how we structure our guides.

This page is here to help you orientate yourself with these changes and update your resources

What's new?

We have restructured the content to help you navigate it more efficiently.

We are consolidating numerous pages to make our individual guides more valuable as well as removing duplicated content.

For example, our Similarity Report guidance on help.turnitin is repeated in numerous places to cater for each individual integration and license type. On guides.turnitin this content will exist in a single place to allow for users of all integrations and licenses to find it easily. We have made slight modifications to these guides to help you understand which guides are pertinent to you and your institution.

Our guidance search has greatly improved

As a result of our content restructure, the search functionality for guides.turnitin has improved. Use the search bar at the top of any page to locate the guidance you’re searching for.

Dedicated student and administrator guidance hubs

Visit the Student hub area to locate student guidance. For students who access Turnitin via an LMS or VLE, check out the subsection Submitting to Turnitin .

Visiting the Administrator hub area to locate administrator guidance and release notes. 

iThenticate and Crossref Similarity Check guidance is now located on a separate site

To improve the experience for our iThenticate and Crossref Similiarity Check customers we have move their help content onto a separate help site, guides.ithenticate.com . This will improve the search for all users.

We have also created an orientation page for this site to help users become acclimatised.

Some guidance is no longer grouped within the LMS umbrella

Some guidance which was previously provided under each LMS has been moved to sections that reflect those workflows’ outcomes. Use the table below as a cheatsheet to quickly locate guidance.

Student guidance
LMS guidance for administrators and instructors
Similarity Report and AI Writing guidance
Creating PeerMark assignments guidance
Creating and managing QuickMarks, rubrics and grading PeerMark assignments guidance
User profile guidance for administrators and instructors

Administrator account settings and migration help
Release notes and known issues

Articles in this section

  • Turnitin release notes
  • Integrations release notes
  • Integrations Known issues

A bunch of drink soda cans are displayed from the top down, in a birds eye view.

Cheeky diet soft drink getting you through the work day? Here’s what that may mean for your health

research article meaning

Professor of Community Health and Wellbeing, The University of Queensland

research article meaning

Accredited Practising Dietitian and Lecturer, Southern Cross University

Disclosure statement

Lauren Ball works for The University of Queensland and receives funding from the National Health and Medical Research Council, Queensland Health and Mater Misericordia. She is a Director of Dietitians Australia, a Director of the Darling Downs and West Moreton Primary Health Network and an Associate Member of the Australian Academy of Health and Medical Sciences.

Emily Burch does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Southern Cross University and University of Queensland provide funding as members of The Conversation AU.

View all partners

Many people are drinking less sugary soft drink than in the past. This is a great win for public health, given the recognised risks of diets high in sugar-sweetened drinks.

But over time, intake of diet soft drinks has grown . In fact, it’s so high that these products are now regularly detected in wastewater .

So what does the research say about how your health is affected in the long term if you drink them often?

A dark bubbly liquid is poured into a cup filled with ice.

What makes diet soft drinks sweet?

The World Health Organization (WHO) advises people “reduce their daily intake of free sugars to less than 10% of their total energy intake. A further reduction to below 5% or roughly 25 grams (six teaspoons) per day would provide additional health benefits.”

But most regular soft drinks contain a lot of sugar . A regular 335 millilitre can of original Coca-Cola contains at least seven teaspoons of added sugar.

Diet soft drinks are designed to taste similar to regular soft drinks but without the sugar. Instead of sugar, diet soft drinks contain artificial or natural sweeteners. The artificial sweeteners include aspartame, saccharin and sucralose. The natural sweeteners include stevia and monk fruit extract, which come from plant sources.

Many artificial sweeteners are much sweeter than sugar so less is needed to provide the same burst of sweetness.

Diet soft drinks are marketed as healthier alternatives to regular soft drinks, particularly for people who want to reduce their sugar intake or manage their weight.

But while surveys of Australian adults and adolescents show most people understand the benefits of reducing their sugar intake, they often aren’t as aware about how diet drinks may affect health more broadly.

What does the research say about aspartame?

The artificial sweeteners in soft drinks are considered safe for consumption by food authorities, including in the US and Australia . However, some researchers have raised concern about the long-term risks of consumption.

People who drink diet soft drinks regularly and often are more likely to develop certain metabolic conditions (such as diabetes and heart disease) than those who don’t drink diet soft drinks.

The link was found even after accounting for other dietary and lifestyle factors (such as physical activity).

In 2023, the WHO announced reports had found aspartame – the main sweetener used in diet soft drinks – was “ possibly carcinogenic to humans ” (carcinogenic means cancer-causing).

Importantly though, the report noted there is not enough current scientific evidence to be truly confident aspartame may increase the risk of cancer and emphasised it’s safe to consume occasionally.

Will diet soft drinks help manage weight?

Despite the word “diet” in the name, diet soft drinks are not strongly linked with weight management.

In 2022, the WHO conducted a systematic review (where researchers look at all available evidence on a topic) on whether the use of artificial sweeteners is beneficial for weight management.

Overall, the randomised controlled trials they looked at suggested slightly more weight loss in people who used artificial sweeteners.

But the observational studies (where no intervention occurs and participants are monitored over time) found people who consume high amounts of artificial sweeteners tended to have an increased risk of higher body mass index and a 76% increased likelihood of having obesity.

In other words, artificial sweeteners may not directly help manage weight over the long term. This resulted in the WHO advising artificial sweeteners should not be used to manage weight.

Studies in animals have suggested consuming high levels of artificial sweeteners can signal to the brain it is being starved of fuel, which can lead to more eating. However, the evidence for this happening in humans is still unproven.

research article meaning

What about inflammation and dental issues?

There is some early evidence artificial sweeteners may irritate the lining of the digestive system, causing inflammation and increasing the likelihood of diarrhoea, constipation, bloating and other symptoms often associated with irritable bowel syndrome. However, this study noted more research is needed.

High amounts of diet soft drinks have also been linked with liver disease, which is based on inflammation.

The consumption of diet soft drinks is also associated with dental erosion.

Many soft drinks contain phosphoric and citric acid, which can damage your tooth enamel and contribute to dental erosion.

Moderation is key

As with many aspects of nutrition, moderation is key with diet soft drinks.

Drinking diet soft drinks occasionally is unlikely to harm your health, but frequent or excessive intake may increase health risks in the longer term.

Plain water, infused water, sparkling water, herbal teas or milks remain the best options for hydration.

  • Soft drinks
  • Artificial sweeteners
  • Artificial sweeteners and cancer

research article meaning

Professor and Head of School, School of Communication and Arts

research article meaning

Scholarships Officer (FBE, EDUCN, MLS)

research article meaning

Apply for State Library of Queensland's next round of research opportunities

research article meaning

Associate Professor, Psychology

research article meaning

Management Information Systems & Analytics – Limited Term Contract

The Secret Meaning of Prime Day

A day of reflection on the delight and absurdity of the online-shopping age

Photo-illustration of an Amazon box, open, with fireworks coming out of it

This year marks the tenth Prime Day, the shopping holiday that Amazon invented for itself in 2015, in honor of the company’s 20th anniversary. The marketing effort was so successful, according to Amazon , that sales exceeded those from the previous year’s record-breaking Black Friday. Early Prime Day success was also measured in Instant Pot 7-in-1 multifunctional pressure cookers: 24,000 were purchased on the first Prime Day; on the second, 215,000.

The event has only grown since then, and not just in revenues but in meaning. Black Friday celebrates (and laments) the commercialization of holiday gifts—things people want, and that people want to give. Prime Day, as a ritual observance, has a different focus: not the desirable, but the ordinary. It celebrates the stuff you buy for boring reasons, or for no particular reason at all. This looseness is the point: Laptop computers are on sale, but also batteries; you can find a deal on ceramic cookery, or microfiber cleaning cloths. Yet what was once essentially a colossal summer tag sale, created for the sole purpose of enriching one of the world’s largest companies, has somehow managed to take on certain trappings of an actual holiday. I hate to admit it, but Prime Day has attained the status of tradition.

When I say, “It’s Prime Day,” you know what I mean. In that respect, it reminds me of other holidays, in the way that other holidays suggest a time of year, a thing to do, and a memory of how they’ve been before. Easter, Purim, and Día de Muertos are repeating events that work like keyframes in our lives. Their rituals used to be grounded in cultural systems such as religion, but everything is fair game now. Today is Prime Day; but it’s also corn-fritters day . A couple of weeks ago I somehow missed National Ian Day . Arbitrary, invented celebrations have become so numerous that they descend into parody. To make every day a holiday is to undermine the very idea of allocating a day on the calendar to mark something notable.

Read: I got lumberrolled

But Amazon has, I must confess, earned such a marker. Although the company was not the first to sell goods via the internet, it did become the world’s symbol for doing so. For two decades it expanded and perfected that craft, and then for 10 years more it marked the fact with Prime Day. I have spent nearly 30 years buying things on Amazon, and over those years I have earned degrees, moved cities, had children who themselves grew up, started hobbies and abandoned them, grayed and wizened. The dumb certainty of Amazon’s made-up holiday accompanied me, and now I can recall previous Prime Days like prior Halloweens.

I lost my first Amazon account, from 1997, but my current one still stretches back 20 years. Looking back across my purchase history, I find a surprisingly touching summary of my life through commerce. At the start, mostly media: the third Lord of the Rings movie on DVD, Angelina Ballerina for my then-2-year-old daughter, esoteric books for my scholarly research. By 2005, the lure of the everything store had taken hold, inspiring my purchase of a little Le Creuset demi kettle whose loud whistle and tiny capacity I forgot I remembered. I bought not one but two CDs by the French dance-pop artist Alizée—a fact I can’t believe I’m admitting in a national magazine. I would rip and listen to those tracks, beside others, on my iPod Nano on the international flights I took to give lectures using the Kensington wireless laser pointer I also bought from Amazon. I bought microwavable noodles, a red pocket camera as a Valentine’s Day gift for my wife, a 1080p HD television when such a resolution would have been impressive, a 52-piece socket set I still own and use regularly, the unreasonably high-end Italian ice-cream maker that runs my gelato hobby .

Read: Amazon returns have gone to hell

I am embarrassed to have felt feelings while browsing my Amazon purchase history, but Amazon—like any brand that manages to infuse itself into American life (Coca-Cola, McDonald’s, Apple)—has had a role in my actions, and therefore my accomplishments, memories, accidents, and errors. Prime Day makes me think back to all the purchases I made before the holiday existed, when the mere act of buying something from a website felt miraculous. My first-ever purchase on Amazon.com, when the site still sold only books, was of three copies of the philosopher Gilles Deleuze’s book about his contemporary Michel Foucault for a (very 1990s) reading group. The existence of the site allowed me to realize my interests and identity at the time, in a way that was distinctively Amazonian. Now the goods I buy (and sometimes try to return ) reflect the person I’ve become: a guy who needs foam paintbrushes, bags of roasted coffee beans, weatherproof outdoor-outlet enclosures, M6-size machine screws; a guy who would sooner read the instruction manual for his neighbor’s drill than revisit French philosophy from the 1980s.

Amazon wants you to celebrate Prime Day by buying things. But you can mark the event in other ways. Maybe think of buying things for others. Prime Day strips Black Friday of its gift-giving aspects, but these might be worth reclaiming—perhaps with an eye toward everyday necessities: a gift of diapers, or a ream of paper towels with a ribbon, or a package of the deodorant your partner likes. Another option is to use the day to avoid all online purchases—or even as an excuse to cancel your Prime membership . Or else just look back at all the stuff you’ve bought this year. In reviewing my own order history today, I wondered whether I might like to share past orders with my friends and family, as a kind of retail reminiscence.

Read: The rise of the micro-holiday

Amazon itself seems more or less indifferent to the meaning that Prime Day has accrued, as a moment for reflection on the delight and absurdity of the online shopping age. The company has tried only to supersize its holiday, extending what was once an actual Prime “Day” to 30 hours of discounted prices in 2017, then 36 hours in 2018, before landing, in 2019, on the excessive conclusion that it should be a two-day event. Amazon “celebrates”—if that’s the word for what this $2 trillion company is doing—Prime Day the way it always has, by moving goods and collecting dollars. Today it’s hawking Amazon Echo devices, prebiotic sodas, dietary-supplement powders, electric toothbrushes, and pickleball paddles, among a zillion other products. There is no logic to this sale. The ritual is randomness.

Prime Day’s holiday spirit is simple: It doesn’t matter what I buy, so long as I buy something. But Amazon’s accomplishment, and the cultural gravity of its annual event, comes from having done the opposite. It has given me a way to find what matters in the things I buy. Through itself or the copycats and competitors it inspired, Amazon popularized a way of life, and one that we’ve been living for 30 years now. Like the summer solstice, that’s notable enough to be observed.

About the Author

research article meaning

More Stories

Do Navigation Apps Think We’re Stupid?

How the ‘Owner’s Guide’ Became a Rare Book

  • Jul 16 2024

Olivia Yinger: 2024-25 University Research Professor Q&A

Olivia Yinger, Ph.D., joined UK in 2012 and has been honored as a 2024-25 University Research Professor.

Olivia Yinger, the Lucille Caudill Little Professor and chair of music therapy in the  University of Kentucky College of Fine Arts , has been honored as a 2024-25 University Research Professor.

Yinger is a board-certified music therapist with nearly 20 years of clinical experience in healthcare, educational and community settings. Their research focuses on improving health and well-being for children and families through music therapy and music education. Specifically, they study how music therapy can help children and parents cope with medical procedures, trauma-informed music therapy for those with adverse childhood experiences and family-centered music therapy in the neonatal intensive care unit (NICU). This background work led to their current research on perspectives of lesbian, gay, bisexual, transgender, queer and other sexual and gender minority (LGBTQ+) families of infants in the NICU.

Olivia Yinger spoke with UKNow about their latest honor as a University Research Professor in this Q&A.

UKNow: What does it mean to you to be recognized as a University Research Professor?

Yinger:  I am incredibly honored to be recognized as a University Research Professor. I am excited to have the opportunity to share my research with other members of the UK community and inspired to take bold steps in moving my research forward.

UKNow: How will the professorships program advance your research?

Yinger:   The University Research Professorship program will allow me to focus on the next phase of the Neonatal Intensive Care for Queer (NICQu) Families study, in which my collaborators and I plan to provide resources for LGBTQ+ parents of infants and healthcare providers in the NICU seeking to offer affirming family-centered care to LGBTQ+ parents. The program will also allow me to further my research on family-centered music therapy in the NICU through a new community-engaged research project I am developing.

UKNow: How does your research address challenges facing Kentucky?

Yinger:  In 2022, 1 in 9 babies in Kentucky were born preterm, and many preterm infants spend time in the NICU. My research is helping center the voices of parents whose infants have been in the NICU to find out what providers can do to decrease stress during this critical time so that parents and their infants can have the best outcomes possible.

UKNow: What impact will your research have on Kentucky?

Yinger:   I am hopeful that LGBTQ+ parents and their infants, in Kentucky and beyond, will have better health outcomes because of my research, and that healthcare providers, including music therapists working in the NICU, will have a better understanding of ways they can support all parents in the NICU.

About the University Research Professors Each year, the University of Kentucky Board of Trustees approves a cohort of faculty as  University Research Professors . The distinction recognizes excellence in work that addresses scientific, social, cultural and economic challenges in Kentucky and the world. College leadership developed criteria for excellence within their area of expertise and then nominated faculty who excelled at these criteria. Each University Research Professor receives a one-year award of $10,000 and participates in other events planned around the program.

Words: Erin Wickey (Research Communications) Photo: Jeremy Blackburn (Research Communications)

  • Art & Music

You may also like...

research article meaning

  • Jul 19 2024

research article meaning

What are penny stocks?

  • Potential rewards
  • How to find penny stocks 

Penny Stocks: High-Risk, High-Reward Investments

Paid non-client promotion: Affiliate links for the products on this page are from partners that compensate us (see our advertiser disclosure with our list of partners for more details). However, our opinions are our own. See how we rate investing products to write unbiased product reviews.

  • Penny stocks are securities that trade at less than $5 per share, often in unsupervised over-the-counter (OTC) markets.
  • Penny stocks are considered lucrative but high-risk investments: volatile, illiquid, and often subject to scams.
  • Investors interested in penny stocks should deal with those listed on larger exchanges and sold by established brokers.

Penny stocks have become more popular than ever, tempting investors with a low cost of entry and the prospect of significant financial gains. Stories of shares making gains of over 4,000% in just months add to their appeal, and new trading technology makes it easier than ever to enter the market.

But while they can be lucrative, penny stocks come with significant risk. Potential investors should be careful to understand what they're getting into.

Definition 

Penny stocks refer to company stocks that cost, if not merely a penny, a pretty low amount. FINRA describes them as "typically stocks issued by very small companies that trade at less than $5 per share." Because they're often sold "over the counter" (OTC), rather than through centralized stock exchanges, they are also sometimes called OTC stocks. 

Depending on the issuing company's market capitalization — the total dollar value of its outstanding shares — penny stocks can be referred to as small-cap, micro-cap, or nano-cap stocks.

Characteristics 

Penny stocks have a short list of common characteristics. Being familiar with these is crucial if you want to know how to invest in penny stocks. 

Here are some penny stock characteristics you should know: 

Low market capitalization - Companies whose shares are considered penny stocks frequently have a low market capitalization (market cap). 

Limited financial resources — Penny stocks often represent ownership rights in companies that have limited cash and financial resources. Since they are small and unproven, they may have a hard time getting access to credit that other larger, more established companies can use. 

Low trading volume — Many penny stocks have rather light trading volume. This can have several adverse consequences, including low liquidity and sharp volatility. 

The low liquidity may prevent investors from selling penny stocks at the prices they want, and this can have a significant impact on their returns. 

Low trading volume can also create a significant difference between bids (what buyers want to pay to buy) and asks (what sellers want to sell). 

High volatility — One of the major risks of penny stock investing is the volatility involved. There isn't a huge market for these particular securities, meaning there may not be many buyers and sellers, and this can result in penny stocks suffering sharp price movements. 

Securities with lower trading volume are also more susceptible to experiencing sharp fluctuations as a result of trades made by "whales" or large players. 

The risks of investing in penny stocks 

Volatility .

Volatile price fluctuations can help deliver huge gains to investors. But they can also deliver massive losses. Those 20% to 100% price moves aren't always in an upward direction. Many have warned that those who purchase penny stocks should be ready for the possibility that they could lose their entire investment. 

Penny stocks can be highly volatile because their markets are smaller than their larger counterparts, making them more susceptible to severe price fluctuations. 

Lack of liquidity 

Penny stocks can suffer from lackluster liquidity. Because the markets for these securities are thinly traded, investors may encounter difficulty buying or selling these stocks at their desired price. 

Further, they may face a hard time selling penny stocks when they want to. 

The low liquidity also makes these stocks vulnerable to sharp price fluctuations. 

Limited information

Investors may find it more difficult to conduct thorough due diligence on penny stocks than on shares of larger companies as a result of several different factors. 

Companies offering their shares in this manner don't have the same disclosure requirements as businesses selling their shares through more established marketplaces. 

Businesses whose shares trade on the large, centralized exchanges file their financial reports to the Securities and Exchange Commission (SEC), and the reports are available to investors for free. Until September 2020, these reports were not required of companies issuing penny stocks.

The SEC has recently issued new rules to increase information and improve investor protections. Brokers are now prohibited from quoting a price for a penny stock unless the issuing company has publicly released its current financials. 

Further, companies offering penny stocks may have limited historical data since they are frequently unproven businesses that have not spent much time in the market. 

Susceptibility to fraud 

The lack of information and transparency is one reason that fraud is so common in the penny stock market. 

One common scheme is called the "pump and dump." Scammers purchase huge quantities of a stock and then share misleading information to make it attractive to other investors. In some cases, individuals even create fake shell companies that do not actually do any business or have any assets. 

Believing that the stock is a good investment, investors buy shares, causing the price to rise. The scammers then sell off their shares, earning huge profits and causing the share price to collapse. Investors are then left holding worthless stocks. 

The potential rewards of penny stocks 

High growth potential .

Penny stocks can potentially provide some very compelling returns, if the companies they represent experience significant growth. Every big company had to start somewhere, and it is entirely possible that any little acorn can grow to be a big oak tree. 

It is also possible that while certain shares may start out as penny shares, they may be available through major exchanges, like the Nasdaq or NYSE, later on. 

Affordable entry point 

The low price of penny stocks may make them more accessible to investors with smaller budgets. You would have to spend thousands of dollars to get a lot of shares of Microsoft or Apple — if you were buying full shares and not fractional shares — but you can spend a lot less to get in on the penny stock market. The idea of buying shares of a solid startup at $0.20 and cashing out at $1 — or even much more — is tempting to many investors.

Another perfectly valid consideration is that penny stocks can give you the opportunity to get involved in a ground-floor opportunity. 

It's every investor's dream: Catch an unknown star before it gets discovered, and ride it when it starts to soar. Strange as it sounds, Amazon ( AMZN ) was one such business at one point. Back in 1997, you could buy Amazon shares for $1.68; as late as 1998, you could get them for $5. Amazon is currently trading for a lot more than that now .

How to find penny stocks 

Otc markets .

There are many specific OTC markets where investors can buy and sell penny stocks. One example of such a market is OTCQB , which is specifically tailored to startup companies and other businesses that are just getting started. 

To list shares on this exchange, shares must have a bid price of no less than $0.01. Also, the companies these penny stocks represent must meet certain regulatory and reporting requirements. 

Another marketplace where you can buy and sell penny stocks is the Pink Market , which enables a variety of companies, including those unwilling to disclose financial information, to list their shares. Investors should keep in mind that businesses offering penny stocks through the Pink Market, or Pink Sheets, do not need to meet the same stringent listing requirements as major exchanges. 

Brokerage platforms 

Some online brokers allow investors to purchase penny stocks. Investors should keep in mind that the brokerages that offer these low-price securities can run the gamut in terms of quality. 

Fortunately, there are some major financial institutions that let their customers buy and sell penny stocks. Investors should be sure to conduct thorough due diligence on any broker they are thinking about using. 

Stock screeners 

By using a stock screener, you can save yourself a lot of time and energy when searching for penny stocks worthy of your investment. Leveraging one of these tools, you can scan the markets for penny stocks that meet specific criteria. 

Keep in mind that not all stock screeners allow you to search for penny stocks, so make sure you use one that does. 

Tips for investing in penny stocks 

Do your research .

One of the best penny stock tips is to do your research. Evaluate any potential investment thoroughly. Don't trust unsolicited emails, chatrooms, or cold calls. Instead, contact your state securities regulator or the SEC to get accurate information about any company you are considering as a potential investment. 

Invest only what you can afford to lose 

Penny stocks are extremely volatile, meaning they can produce compelling returns or cause you to lose all your money. You may want to avoid choosing penny stocks unless you are willing to lose your entire investment. 

Diversify your portfolio 

One of the best ways to manage the downside risk (risk of losing your investment) that comes with penny stocks is creating a diversified portfolio . For example, you could combine your high-risk penny stocks with lower-risk shares of more-established companies that will probably experience lower volatility. 

Set a stop-loss order 

Another way you can manage risk (by managing potential losses) is setting up stop-loss orders. These are orders that automatically fulfill if the share in question reaches a certain price, for example if one of your penny stocks falls to a specific price. 

By setting one of these up, you can protect your investment by reducing your potential losses. 

Penny stock FAQs

As a general rule of thumb, penny stocks are not a good investment for beginners. They are highly risky, and many of them represent unproven companies. Past that, the companies that offer them may have very lax standards when offering shares. 

There are many ways to avoid penny stock scams. For starters, do your own research. Conduct thorough due diligence on any penny stock you are considering. Past that, confine your purchases that have transparent finances and a proven track record of success. 

Penny stocks are less expensive stocks that frequently represent less-established companies that may have not yet established themselves. They might not have much historical data for you to analyze, and they might be listed without meeting many requirements. 

research article meaning

  • Main content

IMAGES

  1. Typical Research Article Structure

    research article meaning

  2. How to Write a Research Article

    research article meaning

  3. The Anatomy of a Research Article

    research article meaning

  4. Types of Scientific Articles

    research article meaning

  5. Click on: TYPES OF ARTICLES

    research article meaning

  6. (PDF) How to Write an Original Research Article: A Guide for

    research article meaning

VIDEO

  1. First Article, Meaning 4

  2. Second Article, Meaning 2

  3. Third Article, Meaning 2

  4. Research Meaning

  5. What is research

  6. Articles क्या होता है ?

COMMENTS

  1. Research Article

    Research articles represent the ultimate, final product of a scientific study. You should assume that your published work will be indefinitely available for anyone to access. • Research articles always consist of a title, abstract, introduction, materials and methods, results, discussion, and references sections, and many include a supplemental materials section. There are strategies for ...

  2. What is a Scholarly Article: What is a scholarly article

    Step 1: Source. The article is most likely scholarly if: You found the article in a library database or Google Scholar. The journal the article appears in is peer-reviewed. Move to Step 2: Authors. Step 2: Authors. The source is most likely scholarly if: The authors' credentials are provided. The authors are affiliated with a university or ...

  3. Article type definitions

    Article types definitions. Research article: Research articles are the most common type of article in the journals publishing world. They contain pieces of original research that contribute directly to their field. Research articles apply to all disciplines and subject areas. Research articles are written by experts, for experts and must adhere ...

  4. Academic Guides: Evaluating Resources: Research Articles

    Research articles. A research article is a journal article in which the authors report on the research they did. Research articles are always primary sources. Whether or not a research article is peer reviewed depends on the journal that publishes it. Published research articles follow a predictable pattern and will contain most, if not all, of ...

  5. Definition of a Research Article

    A research article reports the results of original research, assesses its contribution to the body of knowledge in a given area, and is published in a peer-reviewed scholarly journal. A given academic field will likely have dozens of peer-reviewed journals. For university professors, publishing their research plays a key role in determining ...

  6. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  7. Research Guides: Finding Scholarly Articles: Home

    What does that mean? Scholarly or primary research articles are peer-reviewed, which means that they have gone through the process of being read by reviewers or referees before being accepted for publication. When a scholar submits an article to a scholarly journal, the manuscript is sent to experts in that field to read and decide if the ...

  8. What is a Scholarly Article?

    Getting Started. Scholarship is a conversation. That conversation is often found in the form of published materials such as books, essays, and articles. Here, we will focus on scholarly articles because scholarly articles often contain the most current scholarly conversation. After reading through this guide on scholarly articles you will be ...

  9. Structure of a Scholarly Article

    A scholarly article, also known as a research or original article, is one of the main ways new knowledge and discoveries are communicated to a scientific or academic community. It is a full-length document on original research. A scholarly article generally consists of the background of a research topic, its study design and methodology, the ...

  10. How to Read a Scholarly Article

    Identify the different parts of a scholarly article. Efficiently analyze and evaluate scholarly articles for usefulness. This page will focus on reading scholarly articles — published reports on original research in the social sciences, humanities, and STEM fields. Reading and understanding this type of article can be challenging.

  11. Types of research article

    Letters or short reports. Method article. Posters and slides. Registered report. Research article. Review article. Software tool articles. In scholarly literature, there are many different kinds of articles published every year. Original research articles are often the first thing you think of when you hear the words 'journal article'.

  12. Structure of a Research Article

    Knowing these elements and the purpose of each serves help you to read and understand academic texts efficiently and effectively, and then apply what you read to your paper or project. Social Science (and Science) original research articles generally follow IMRD: Introduction- Methods-Results-Discussion. Introduction. Introduces topic of article.

  13. Types of journal articles

    Original Research: This is the most common type of journal manuscript used to publish full reports of data from research. It may be called an Original Article, Research Article, Research, or just Article, depending on the journal. The Original Research format is suitable for many different fields and different types of studies.

  14. How to write a review article?

    The fundamental rationale of writing a review article is to make a readable synthesis of the best literature sources on an important research inquiry or a topic. This simple definition of a review article contains the following key elements: The question (s) to be dealt with.

  15. Research Articles vs Review Articles

    Research articles follow a particular format. Look for: A brief introduction will often include a review of the existing literature on the topic studied, and explain the rationale of the author's study.; A methods section, where authors describe how they collected and analyzed data.Statistical analysis are included. A results section describes the outcomes of the data analysis.

  16. Identifying Empirical Articles

    Identifying Empirical Research Articles. Look for the IMRaD layout in the article to help identify empirical research.Sometimes the sections will be labeled differently, but the content will be similar. Introduction: why the article was written, research question or questions, hypothesis, literature review; Methods: the overall research design and implementation, description of sample ...

  17. What's the difference between a research article and a review article

    Review articles, sometimes called literature reviews or secondary sources, synthesize or analyze research already conducted in primary sources. They generally summarize the current state of research on a given topic. Here is a more detailed explanation of review articles. The video above was created by the Virginia Commonwealth University ...

  18. (PDF) What is research? A conceptual understanding

    Research is a systematic endeavor to acquire understanding, broaden knowledge, or find answers to unanswered questions. It is a methodical and structured undertaking to investigate the natural and ...

  19. What is a Research Journal?

    A research journal is a periodical that contains articles written by experts in a particular field of study who report the results of research in that field. The articles are intended to be read by other experts or students of the field, and they are typically much more sophisticated and advanced than the articles found in general magazines.

  20. What is a review article?

    A review article can also be called a literature review, or a review of literature. It is a survey of previously published research on a topic. It should give an overview of current thinking on the topic. And, unlike an original research article, it will not present new experimental results. Writing a review of literature is to provide a ...

  21. What is Qualitative in Qualitative Research

    What is qualitative research? If we look for a precise definition of qualitative research, and specifically for one that addresses its distinctive feature of being "qualitative," the literature is meager. In this article we systematically search, identify and analyze a sample of 89 sources using or attempting to define the term ...

  22. Peer Review in Scientific Publications: Benefits, Critiques, & A

    Peer Review is defined as "a process of subjecting an author's scholarly work, research or ideas to the scrutiny of others who are experts in the same field" ( 1 ). Peer review is intended to serve two primary purposes. Firstly, it acts as a filter to ensure that only high quality research is published, especially in reputable journals ...

  23. Writing an Article Critique

    An article critique requires you to critically read a piece of research and identify and evaluate the strengths and weaknesses of the article. How is a critique different from a summary? A summary of a research article requires you to share the key points of the article so your reader can get a clear picture of what the article is about.

  24. Welcome to Turnitin Guides

    Welcome to Turnitin's new website for guidance! In 2024, we migrated our comprehensive library of guidance from https://help.turnitin.com to this site, guides.turnitin.com. During this process we have taken the opportunity to take a holistic look at our content and how we structure our guides.

  25. EAP offering 'Seven Principles' marriage course

    Become a "master couple" and create a lifetime of love built on deep friendship, healthy conflict and shared meaning at the Seven Principles Workshop. The class is being held 9 a.m. to 3 p.m. Dec. 2 at Nebraska Union. ... Based on the internationally acclaimed research of John Gottman, the Seven Principles program is designed to strengthen ...

  26. What Project 2025 would mean for the fight against climate change

    Project 2025, a controversial conservative roadmap that aims to guide the next Republican administration, calls for the elimination of multiple energy- and environment-related offices and…

  27. Cheeky diet soft drink getting you through the work day? Here's what

    Emily Burch does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond ...

  28. The Secret Meaning of Prime Day

    At the start, mostly media: the third Lord of the Rings movie on DVD, Angelina Ballerina for my then-2-year-old daughter, esoteric books for my scholarly research. By 2005, the lure of the ...

  29. Olivia Yinger: 2024-25 University Research Professor Q&A

    Olivia Yinger, the Lucille Caudill Little Professor and chair of music therapy in the University of Kentucky College of Fine Arts, has been honored as a 2024-25 University Research Professor.. Yinger is a board-certified music therapist with nearly 20 years of clinical experience in healthcare, educational and community settings.

  30. Penny Stocks: What They Are, Risks, Rewards and How to Invest

    Definition Penny stocks refer to company stocks that cost, if not merely a penny, a pretty low amount. FINRA describes them as "typically stocks issued by very small companies that trade at less ...