Are you seeking one-on-one college counseling and/or essay support? Limited spots are now available. Click here to learn more.

How to Write a Lab Report – with Example/Template

April 11, 2024

how to write a lab report template

Perhaps you’re in the midst of your challenging AP chemistry class in high school, or perhaps college you’re enrolled in biology , chemistry , or physics at university. At some point, you will likely be asked to write a lab report. Sometimes, your teacher or professor will give you specific instructions for how to format and write your lab report, and if so, use that. In case you’re left to your own devices, here are some guidelines you might find useful. Continue reading for the main elements of a lab report, followed by a detailed description of the more writing-heavy parts (with a lab report example/lab report template). Lastly, we’ve included an outline that can help get you started.

What is a lab report?

A lab report is an overview of your experiment. Essentially, it explains what you did in the experiment and how it went. Most lab reports end up being 5-10 pages long (graphs or other images included), though the length depends on the experiment. Here are some brief explanations of the essential parts of a lab report:

Title : The title says, in the most straightforward way possible, what you did in the experiment. Often, the title looks something like, “Effects of ____ on _____.” Sometimes, a lab report also requires a title page, which includes your name (and the names of any lab partners), your instructor’s name, and the date of the experiment.

Abstract : This is a short description of key findings of the experiment so that a potential reader could get an idea of the experiment before even beginning.

Introduction : This is comprised of one or several paragraphs summarizing the purpose of the lab. The introduction usually includes the hypothesis, as well as some background information.

Lab Report Example (Continued)

Materials : Perhaps the simplest part of your lab report, this is where you list everything needed for the completion of your experiment.

Methods : This is where you describe your experimental procedure. The section provides necessary information for someone who would want to replicate your study. In paragraph form, write out your methods in chronological order, though avoid excessive detail.

Data : Here, you should document what happened in the experiment, step-by-step. This section often includes graphs and tables with data, as well as descriptions of patterns and trends. You do not need to interpret all of the data in this section, but you can describe trends or patterns, and state which findings are interesting and/or significant.

Discussion of results : This is the overview of your findings from the experiment, with an explanation of how they pertain to your hypothesis, as well as any anomalies or errors.

Conclusion : Your conclusion will sum up the results of your experiment, as well as their significance. Sometimes, conclusions also suggest future studies.

Sources : Often in APA style , you should list all texts that helped you with your experiment. Make sure to include course readings, outside sources, and other experiments that you may have used to design your own.

How to write the abstract

The abstract is the experiment stated “in a nutshell”: the procedure, results, and a few key words. The purpose of the academic abstract is to help a potential reader get an idea of the experiment so they can decide whether to read the full paper. So, make sure your abstract is as clear and direct as possible, and under 200 words (though word count varies).

When writing an abstract for a scientific lab report, we recommend covering the following points:

  • Background : Why was this experiment conducted?
  • Objectives : What problem is being addressed by this experiment?
  • Methods : How was the study designed and conducted?
  • Results : What results were found and what do they mean?
  • Conclusion : Were the results expected? Is this problem better understood now than before? If so, how?

How to write the introduction

The introduction is another summary, of sorts, so it could be easy to confuse the introduction with the abstract. While the abstract tends to be around 200 words summarizing the entire study, the introduction can be longer if necessary, covering background information on the study, what you aim to accomplish, and your hypothesis. Unlike the abstract (or the conclusion), the introduction does not need to state the results of the experiment.

Here is a possible order with which you can organize your lab report introduction:

  • Intro of the intro : Plainly state what your study is doing.
  • Background : Provide a brief overview of the topic being studied. This could include key terms and definitions. This should not be an extensive literature review, but rather, a window into the most relevant topics a reader would need to understand in order to understand your research.
  • Importance : Now, what are the gaps in existing research? Given the background you just provided, what questions do you still have that led you to conduct this experiment? Are you clarifying conflicting results? Are you undertaking a new area of research altogether?
  • Prediction: The plants placed by the window will grow faster than plants placed in the dark corner.
  • Hypothesis: Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.
  • How you test your hypothesis : This is an opportunity to briefly state how you go about your experiment, but this is not the time to get into specific details about your methods (save this for your results section). Keep this part down to one sentence, and voila! You have your introduction.

How to write a discussion section

Here, we’re skipping ahead to the next writing-heavy section, which will directly follow the numeric data of your experiment. The discussion includes any calculations and interpretations based on this data. In other words, it says, “Now that we have the data, why should we care?”  This section asks, how does this data sit in relation to the hypothesis? Does it prove your hypothesis or disprove it? The discussion is also a good place to mention any mistakes that were made during the experiment, and ways you would improve the experiment if you were to repeat it. Like the other written sections, it should be as concise as possible.

Here is a list of points to cover in your lab report discussion:

  • Weaker statement: These findings prove that basil plants grow more quickly in the sunlight.
  • Stronger statement: These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.
  • Factors influencing results : This is also an opportunity to mention any anomalies, errors, or inconsistencies in your data. Perhaps when you tested the first round of basil plants, the days were sunnier than the others. Perhaps one of the basil pots broke mid-experiment so it needed to be replanted, which affected your results. If you were to repeat the study, how would you change it so that the results were more consistent?
  • Implications : How do your results contribute to existing research? Here, refer back to the gaps in research that you mentioned in your introduction. Do these results fill these gaps as you hoped?
  • Questions for future research : Based on this, how might your results contribute to future research? What are the next steps, or the next experiments on this topic? Make sure this does not become too broad—keep it to the scope of this project.

How to write a lab report conclusion

This is your opportunity to briefly remind the reader of your findings and finish strong. Your conclusion should be especially concise (avoid going into detail on findings or introducing new information).

Here are elements to include as you write your conclusion, in about 1-2 sentences each:

  • Restate your goals : What was the main question of your experiment? Refer back to your introduction—similar language is okay.
  • Restate your methods : In a sentence or so, how did you go about your experiment?
  • Key findings : Briefly summarize your main results, but avoid going into detail.
  • Limitations : What about your experiment was less-than-ideal, and how could you improve upon the experiment in future studies?
  • Significance and future research : Why is your research important? What are the logical next-steps for studying this topic?

Template for beginning your lab report

Here is a compiled outline from the bullet points in these sections above, with some examples based on the (overly-simplistic) basil growth experiment. Hopefully this will be useful as you begin your lab report.

1) Title (ex: Effects of Sunlight on Basil Plant Growth )

2) Abstract (approx. 200 words)

  • Background ( This experiment looks at… )
  • Objectives ( It aims to contribute to research on…)
  • Methods ( It does so through a process of…. )
  • Results (Findings supported the hypothesis that… )
  • Conclusion (These results contribute to a wider understanding about…)

3) Introduction (approx. 1-2 paragraphs)

  • Intro ( This experiment looks at… )
  • Background ( Past studies on basil plant growth and sunlight have found…)
  • Importance ( This experiment will contribute to these past studies by…)
  • Hypothesis ( Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.)
  • How you will test your hypothesis ( This hypothesis will be tested by a process of…)

4) Materials (list form) (ex: pots, soil, seeds, tables/stands, water, light source )

5) Methods (approx. 1-2 paragraphs) (ex: 10 basil plants were measured throughout a span of…)

6) Data (brief description and figures) (ex: These charts demonstrate a pattern that the basil plants placed in direct sunlight…)

7) Discussion (approx. 2-3 paragraphs)

  • Support or reject hypothesis ( These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.)
  • Factors that influenced your results ( Outside factors that could have altered the results include…)
  • Implications ( These results contribute to current research on basil plant growth and sunlight because…)
  • Questions for further research ( Next steps for this research could include…)
  • Restate your goals ( In summary, the goal of this experiment was to measure…)
  • Restate your methods ( This hypothesis was tested by…)
  • Key findings ( The findings supported the hypothesis because…)
  • Limitations ( Although, certain elements were overlooked, including…)
  • Significance and future research ( This experiment presents possibilities of future research contributions, such as…)
  • Sources (approx. 1 page, usually in APA style)

Final thoughts – Lab Report Example

Hopefully, these descriptions have helped as you write your next lab report. Remember that different instructors may have different preferences for structure and format, so make sure to double-check when you receive your assignment. All in all, make sure to keep your scientific lab report concise, focused, honest, and organized. Good luck!

For more reading on coursework success, check out the following articles:

  • How to Write the AP Lang Argument Essay (With Example)
  • How to Write the AP Lang Rhetorical Analysis Essay (With Example)
  • 49 Most Interesting Biology Research Topics
  • 50 Best Environmental Science Research Topics
  • High School Success

' src=

Sarah Mininsohn

With a BA from Wesleyan University and an MFA from the University of Illinois at Urbana-Champaign, Sarah is a writer, educator, and artist. She served as a graduate instructor at the University of Illinois, a tutor at St Peter’s School in Philadelphia, and an academic writing tutor and thesis mentor at Wesleyan’s Writing Workshop.

  • 2-Year Colleges
  • Application Strategies
  • Best Colleges by Major
  • Best Colleges by State
  • Big Picture
  • Career & Personality Assessment
  • College Essay
  • College Search/Knowledge
  • College Success
  • Costs & Financial Aid
  • Data Visualizations
  • Dental School Admissions
  • Extracurricular Activities
  • Graduate School Admissions
  • High Schools
  • Homeschool Resources
  • Law School Admissions
  • Medical School Admissions
  • Navigating the Admissions Process
  • Online Learning
  • Outdoor Adventure
  • Private High School Spotlight
  • Research Programs
  • Summer Program Spotlight
  • Summer Programs
  • Teacher Tools
  • Test Prep Provider Spotlight

College Transitions Sidebar Block Image

“Innovative and invaluable…use this book as your college lifeline.”

— Lynn O'Shaughnessy

Nationally Recognized College Expert

College Planning in Your Inbox

Join our information-packed monthly newsletter.

I am a... Student Student Parent Counselor Educator Other First Name Last Name Email Address Zip Code Area of Interest Business Computer Science Engineering Fine/Performing Arts Humanities Mathematics STEM Pre-Med Psychology Social Studies/Sciences Submit

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Academic writing
  • How to write a lab report

How To Write A Lab Report | Step-by-Step Guide & Examples

Published on May 20, 2021 by Pritha Bhandari . Revised on July 23, 2023.

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment. The main purpose of a lab report is to demonstrate your understanding of the scientific method by performing and evaluating a hands-on lab experiment. This type of assignment is usually shorter than a research paper .

Lab reports are commonly used in science, technology, engineering, and mathematics (STEM) fields. This article focuses on how to structure and write a lab report.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Structuring a lab report, introduction, other interesting articles, frequently asked questions about lab reports.

The sections of a lab report can vary between scientific fields and course requirements, but they usually contain the purpose, methods, and findings of a lab experiment .

Each section of a lab report has its own purpose.

  • Title: expresses the topic of your study
  • Abstract : summarizes your research aims, methods, results, and conclusions
  • Introduction: establishes the context needed to understand the topic
  • Method: describes the materials and procedures used in the experiment
  • Results: reports all descriptive and inferential statistical analyses
  • Discussion: interprets and evaluates results and identifies limitations
  • Conclusion: sums up the main findings of your experiment
  • References: list of all sources cited using a specific style (e.g. APA )
  • Appendices : contains lengthy materials, procedures, tables or figures

Although most lab reports contain these sections, some sections can be omitted or combined with others. For example, some lab reports contain a brief section on research aims instead of an introduction, and a separate conclusion is not always required.

If you’re not sure, it’s best to check your lab report requirements with your instructor.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Your title provides the first impression of your lab report – effective titles communicate the topic and/or the findings of your study in specific terms.

Create a title that directly conveys the main focus or purpose of your study. It doesn’t need to be creative or thought-provoking, but it should be informative.

  • The effects of varying nitrogen levels on tomato plant height.
  • Testing the universality of the McGurk effect.
  • Comparing the viscosity of common liquids found in kitchens.

An abstract condenses a lab report into a brief overview of about 150–300 words. It should provide readers with a compact version of the research aims, the methods and materials used, the main results, and the final conclusion.

Think of it as a way of giving readers a preview of your full lab report. Write the abstract last, in the past tense, after you’ve drafted all the other sections of your report, so you’ll be able to succinctly summarize each section.

To write a lab report abstract, use these guiding questions:

  • What is the wider context of your study?
  • What research question were you trying to answer?
  • How did you perform the experiment?
  • What did your results show?
  • How did you interpret your results?
  • What is the importance of your findings?

Nitrogen is a necessary nutrient for high quality plants. Tomatoes, one of the most consumed fruits worldwide, rely on nitrogen for healthy leaves and stems to grow fruit. This experiment tested whether nitrogen levels affected tomato plant height in a controlled setting. It was expected that higher levels of nitrogen fertilizer would yield taller tomato plants.

Levels of nitrogen fertilizer were varied between three groups of tomato plants. The control group did not receive any nitrogen fertilizer, while one experimental group received low levels of nitrogen fertilizer, and a second experimental group received high levels of nitrogen fertilizer. All plants were grown from seeds, and heights were measured 50 days into the experiment.

The effects of nitrogen levels on plant height were tested between groups using an ANOVA. The plants with the highest level of nitrogen fertilizer were the tallest, while the plants with low levels of nitrogen exceeded the control group plants in height. In line with expectations and previous findings, the effects of nitrogen levels on plant height were statistically significant. This study strengthens the importance of nitrogen for tomato plants.

Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure:

  • Start with the broad, general research topic
  • Narrow your topic down your specific study focus
  • End with a clear research question

Begin by providing background information on your research topic and explaining why it’s important in a broad real-world or theoretical context. Describe relevant previous research on your topic and note how your study may confirm it or expand it, or fill a gap in the research field.

This lab experiment builds on previous research from Haque, Paul, and Sarker (2011), who demonstrated that tomato plant yield increased at higher levels of nitrogen. However, the present research focuses on plant height as a growth indicator and uses a lab-controlled setting instead.

Next, go into detail on the theoretical basis for your study and describe any directly relevant laws or equations that you’ll be using. State your main research aims and expectations by outlining your hypotheses .

Based on the importance of nitrogen for tomato plants, the primary hypothesis was that the plants with the high levels of nitrogen would grow the tallest. The secondary hypothesis was that plants with low levels of nitrogen would grow taller than plants with no nitrogen.

Your introduction doesn’t need to be long, but you may need to organize it into a few paragraphs or with subheadings such as “Research Context” or “Research Aims.”

Check for common mistakes

Use the best grammar checker available to check for common mistakes in your text.

Fix mistakes for free

A lab report Method section details the steps you took to gather and analyze data. Give enough detail so that others can follow or evaluate your procedures. Write this section in the past tense. If you need to include any long lists of procedural steps or materials, place them in the Appendices section but refer to them in the text here.

You should describe your experimental design, your subjects, materials, and specific procedures used for data collection and analysis.

Experimental design

Briefly note whether your experiment is a within-subjects  or between-subjects design, and describe how your sample units were assigned to conditions if relevant.

A between-subjects design with three groups of tomato plants was used. The control group did not receive any nitrogen fertilizer. The first experimental group received a low level of nitrogen fertilizer, while the second experimental group received a high level of nitrogen fertilizer.

Describe human subjects in terms of demographic characteristics, and animal or plant subjects in terms of genetic background. Note the total number of subjects as well as the number of subjects per condition or per group. You should also state how you recruited subjects for your study.

List the equipment or materials you used to gather data and state the model names for any specialized equipment.

List of materials

35 Tomato seeds

15 plant pots (15 cm tall)

Light lamps (50,000 lux)

Nitrogen fertilizer

Measuring tape

Describe your experimental settings and conditions in detail. You can provide labelled diagrams or images of the exact set-up necessary for experimental equipment. State how extraneous variables were controlled through restriction or by fixing them at a certain level (e.g., keeping the lab at room temperature).

Light levels were fixed throughout the experiment, and the plants were exposed to 12 hours of light a day. Temperature was restricted to between 23 and 25℃. The pH and carbon levels of the soil were also held constant throughout the experiment as these variables could influence plant height. The plants were grown in rooms free of insects or other pests, and they were spaced out adequately.

Your experimental procedure should describe the exact steps you took to gather data in chronological order. You’ll need to provide enough information so that someone else can replicate your procedure, but you should also be concise. Place detailed information in the appendices where appropriate.

In a lab experiment, you’ll often closely follow a lab manual to gather data. Some instructors will allow you to simply reference the manual and state whether you changed any steps based on practical considerations. Other instructors may want you to rewrite the lab manual procedures as complete sentences in coherent paragraphs, while noting any changes to the steps that you applied in practice.

If you’re performing extensive data analysis, be sure to state your planned analysis methods as well. This includes the types of tests you’ll perform and any programs or software you’ll use for calculations (if relevant).

First, tomato seeds were sown in wooden flats containing soil about 2 cm below the surface. Each seed was kept 3-5 cm apart. The flats were covered to keep the soil moist until germination. The seedlings were removed and transplanted to pots 8 days later, with a maximum of 2 plants to a pot. Each pot was watered once a day to keep the soil moist.

The nitrogen fertilizer treatment was applied to the plant pots 12 days after transplantation. The control group received no treatment, while the first experimental group received a low concentration, and the second experimental group received a high concentration. There were 5 pots in each group, and each plant pot was labelled to indicate the group the plants belonged to.

50 days after the start of the experiment, plant height was measured for all plants. A measuring tape was used to record the length of the plant from ground level to the top of the tallest leaf.

In your results section, you should report the results of any statistical analysis procedures that you undertook. You should clearly state how the results of statistical tests support or refute your initial hypotheses.

The main results to report include:

  • any descriptive statistics
  • statistical test results
  • the significance of the test results
  • estimates of standard error or confidence intervals

The mean heights of the plants in the control group, low nitrogen group, and high nitrogen groups were 20.3, 25.1, and 29.6 cm respectively. A one-way ANOVA was applied to calculate the effect of nitrogen fertilizer level on plant height. The results demonstrated statistically significant ( p = .03) height differences between groups.

Next, post-hoc tests were performed to assess the primary and secondary hypotheses. In support of the primary hypothesis, the high nitrogen group plants were significantly taller than the low nitrogen group and the control group plants. Similarly, the results supported the secondary hypothesis: the low nitrogen plants were taller than the control group plants.

These results can be reported in the text or in tables and figures. Use text for highlighting a few key results, but present large sets of numbers in tables, or show relationships between variables with graphs.

You should also include sample calculations in the Results section for complex experiments. For each sample calculation, provide a brief description of what it does and use clear symbols. Present your raw data in the Appendices section and refer to it to highlight any outliers or trends.

The Discussion section will help demonstrate your understanding of the experimental process and your critical thinking skills.

In this section, you can:

  • Interpret your results
  • Compare your findings with your expectations
  • Identify any sources of experimental error
  • Explain any unexpected results
  • Suggest possible improvements for further studies

Interpreting your results involves clarifying how your results help you answer your main research question. Report whether your results support your hypotheses.

  • Did you measure what you sought out to measure?
  • Were your analysis procedures appropriate for this type of data?

Compare your findings with other research and explain any key differences in findings.

  • Are your results in line with those from previous studies or your classmates’ results? Why or why not?

An effective Discussion section will also highlight the strengths and limitations of a study.

  • Did you have high internal validity or reliability?
  • How did you establish these aspects of your study?

When describing limitations, use specific examples. For example, if random error contributed substantially to the measurements in your study, state the particular sources of error (e.g., imprecise apparatus) and explain ways to improve them.

The results support the hypothesis that nitrogen levels affect plant height, with increasing levels producing taller plants. These statistically significant results are taken together with previous research to support the importance of nitrogen as a nutrient for tomato plant growth.

However, unlike previous studies, this study focused on plant height as an indicator of plant growth in the present experiment. Importantly, plant height may not always reflect plant health or fruit yield, so measuring other indicators would have strengthened the study findings.

Another limitation of the study is the plant height measurement technique, as the measuring tape was not suitable for plants with extreme curvature. Future studies may focus on measuring plant height in different ways.

The main strengths of this study were the controls for extraneous variables, such as pH and carbon levels of the soil. All other factors that could affect plant height were tightly controlled to isolate the effects of nitrogen levels, resulting in high internal validity for this study.

Your conclusion should be the final section of your lab report. Here, you’ll summarize the findings of your experiment, with a brief overview of the strengths and limitations, and implications of your study for further research.

Some lab reports may omit a Conclusion section because it overlaps with the Discussion section, but you should check with your instructor before doing so.

If you want to know more about AI for academic writing, AI tools, or fallacies make sure to check out some of our other articles with explanations and examples or go directly to our tools!

  • Ad hominem fallacy
  • Post hoc fallacy
  • Appeal to authority fallacy
  • False cause fallacy
  • Sunk cost fallacy
  • Deep learning
  • Generative AI
  • Machine learning
  • Reinforcement learning
  • Supervised vs. unsupervised learning

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment . Lab reports are commonly assigned in science, technology, engineering, and mathematics (STEM) fields.

The purpose of a lab report is to demonstrate your understanding of the scientific method with a hands-on lab experiment. Course instructors will often provide you with an experimental design and procedure. Your task is to write up how you actually performed the experiment and evaluate the outcome.

In contrast, a research paper requires you to independently develop an original argument. It involves more in-depth research and interpretation of sources and data.

A lab report is usually shorter than a research paper.

The sections of a lab report can vary between scientific fields and course requirements, but it usually contains the following:

  • Abstract: summarizes your research aims, methods, results, and conclusions
  • References: list of all sources cited using a specific style (e.g. APA)
  • Appendices: contains lengthy materials, procedures, tables or figures

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, July 23). How To Write A Lab Report | Step-by-Step Guide & Examples. Scribbr. Retrieved June 24, 2024, from https://www.scribbr.com/academic-writing/lab-report/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, how to write an apa methods section, how to write an apa results section, what is your plagiarism score.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 24 June 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Lab Report Format: Step-by-Step Guide & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In psychology, a lab report outlines a study’s objectives, methods, results, discussion, and conclusions, ensuring clarity and adherence to APA (or relevant) formatting guidelines.

A typical lab report would include the following sections: title, abstract, introduction, method, results, and discussion.

The title page, abstract, references, and appendices are started on separate pages (subsections from the main body of the report are not). Use double-line spacing of text, font size 12, and include page numbers.

The report should have a thread of arguments linking the prediction in the introduction to the content of the discussion.

This must indicate what the study is about. It must include the variables under investigation. It should not be written as a question.

Title pages should be formatted in APA style .

The abstract provides a concise and comprehensive summary of a research report. Your style should be brief but not use note form. Look at examples in journal articles . It should aim to explain very briefly (about 150 words) the following:

  • Start with a one/two sentence summary, providing the aim and rationale for the study.
  • Describe participants and setting: who, when, where, how many, and what groups?
  • Describe the method: what design, what experimental treatment, what questionnaires, surveys, or tests were used.
  • Describe the major findings, including a mention of the statistics used and the significance levels, or simply one sentence summing up the outcome.
  • The final sentence(s) outline the study’s “contribution to knowledge” within the literature. What does it all mean? Mention the implications of your findings if appropriate.

The abstract comes at the beginning of your report but is written at the end (as it summarises information from all the other sections of the report).

Introduction

The purpose of the introduction is to explain where your hypothesis comes from (i.e., it should provide a rationale for your research study).

Ideally, the introduction should have a funnel structure: Start broad and then become more specific. The aims should not appear out of thin air; the preceding review of psychological literature should lead logically into the aims and hypotheses.

The funnel structure of the introducion to a lab report

  • Start with general theory, briefly introducing the topic. Define the important key terms.
  • Explain the theoretical framework.
  • Summarise and synthesize previous studies – What was the purpose? Who were the participants? What did they do? What did they find? What do these results mean? How do the results relate to the theoretical framework?
  • Rationale: How does the current study address a gap in the literature? Perhaps it overcomes a limitation of previous research.
  • Aims and hypothesis. Write a paragraph explaining what you plan to investigate and make a clear and concise prediction regarding the results you expect to find.

There should be a logical progression of ideas that aids the flow of the report. This means the studies outlined should lead logically to your aims and hypotheses.

Do be concise and selective, and avoid the temptation to include anything in case it is relevant (i.e., don’t write a shopping list of studies).

USE THE FOLLOWING SUBHEADINGS:

Participants

  • How many participants were recruited?
  • Say how you obtained your sample (e.g., opportunity sample).
  • Give relevant demographic details (e.g., gender, ethnicity, age range, mean age, and standard deviation).
  • State the experimental design .
  • What were the independent and dependent variables ? Make sure the independent variable is labeled and name the different conditions/levels.
  • For example, if gender is the independent variable label, then male and female are the levels/conditions/groups.
  • How were the IV and DV operationalized?
  • Identify any controls used, e.g., counterbalancing and control of extraneous variables.
  • List all the materials and measures (e.g., what was the title of the questionnaire? Was it adapted from a study?).
  • You do not need to include wholesale replication of materials – instead, include a ‘sensible’ (illustrate) level of detail. For example, give examples of questionnaire items.
  • Include the reliability (e.g., alpha values) for the measure(s).
  • Describe the precise procedure you followed when conducting your research, i.e., exactly what you did.
  • Describe in sufficient detail to allow for replication of findings.
  • Be concise in your description and omit extraneous/trivial details, e.g., you don’t need to include details regarding instructions, debrief, record sheets, etc.
  • Assume the reader has no knowledge of what you did and ensure that he/she can replicate (i.e., copy) your study exactly by what you write in this section.
  • Write in the past tense.
  • Don’t justify or explain in the Method (e.g., why you chose a particular sampling method); just report what you did.
  • Only give enough detail for someone to replicate the experiment – be concise in your writing.
  • The results section of a paper usually presents descriptive statistics followed by inferential statistics.
  • Report the means, standard deviations, and 95% confidence intervals (CIs) for each IV level. If you have four to 20 numbers to present, a well-presented table is best, APA style.
  • Name the statistical test being used.
  • Report appropriate statistics (e.g., t-scores, p values ).
  • Report the magnitude (e.g., are the results significant or not?) as well as the direction of the results (e.g., which group performed better?).
  • It is optional to report the effect size (this does not appear on the SPSS output).
  • Avoid interpreting the results (save this for the discussion).
  • Make sure the results are presented clearly and concisely. A table can be used to display descriptive statistics if this makes the data easier to understand.
  • DO NOT include any raw data.
  • Follow APA style.

Use APA Style

  • Numbers reported to 2 d.p. (incl. 0 before the decimal if 1.00, e.g., “0.51”). The exceptions to this rule: Numbers which can never exceed 1.0 (e.g., p -values, r-values): report to 3 d.p. and do not include 0 before the decimal place, e.g., “.001”.
  • Percentages and degrees of freedom: report as whole numbers.
  • Statistical symbols that are not Greek letters should be italicized (e.g., M , SD , t , X 2 , F , p , d ).
  • Include spaces on either side of the equals sign.
  • When reporting 95%, CIs (confidence intervals), upper and lower limits are given inside square brackets, e.g., “95% CI [73.37, 102.23]”
  • Outline your findings in plain English (avoid statistical jargon) and relate your results to your hypothesis, e.g., is it supported or rejected?
  • Compare your results to background materials from the introduction section. Are your results similar or different? Discuss why/why not.
  • How confident can we be in the results? Acknowledge limitations, but only if they can explain the result obtained. If the study has found a reliable effect, be very careful suggesting limitations as you are doubting your results. Unless you can think of any c onfounding variable that can explain the results instead of the IV, it would be advisable to leave the section out.
  • Suggest constructive ways to improve your study if appropriate.
  • What are the implications of your findings? Say what your findings mean for how people behave in the real world.
  • Suggest an idea for further research triggered by your study, something in the same area but not simply an improved version of yours. Perhaps you could base this on a limitation of your study.
  • Concluding paragraph – Finish with a statement of your findings and the key points of the discussion (e.g., interpretation and implications) in no more than 3 or 4 sentences.

Reference Page

The reference section lists all the sources cited in the essay (alphabetically). It is not a bibliography (a list of the books you used).

In simple terms, every time you refer to a psychologist’s name (and date), you need to reference the original source of information.

If you have been using textbooks this is easy as the references are usually at the back of the book and you can just copy them down. If you have been using websites then you may have a problem as they might not provide a reference section for you to copy.

References need to be set out APA style :

Author, A. A. (year). Title of work . Location: Publisher.

Journal Articles

Author, A. A., Author, B. B., & Author, C. C. (year). Article title. Journal Title, volume number (issue number), page numbers

A simple way to write your reference section is to use Google scholar . Just type the name and date of the psychologist in the search box and click on the “cite” link.

google scholar search results

Next, copy and paste the APA reference into the reference section of your essay.

apa reference

Once again, remember that references need to be in alphabetical order according to surname.

Psychology Lab Report Example

Quantitative paper template.

Quantitative professional paper template: Adapted from “Fake News, Fast and Slow: Deliberation Reduces Belief in False (but Not True) News Headlines,” by B. Bago, D. G. Rand, and G. Pennycook, 2020,  Journal of Experimental Psychology: General ,  149 (8), pp. 1608–1613 ( https://doi.org/10.1037/xge0000729 ). Copyright 2020 by the American Psychological Association.

Qualitative paper template

Qualitative professional paper template: Adapted from “‘My Smartphone Is an Extension of Myself’: A Holistic Qualitative Exploration of the Impact of Using a Smartphone,” by L. J. Harkin and D. Kuss, 2020,  Psychology of Popular Media ,  10 (1), pp. 28–38 ( https://doi.org/10.1037/ppm0000278 ). Copyright 2020 by the American Psychological Association.

Print Friendly, PDF & Email

Related Articles

How To Cite A YouTube Video In APA Style – With Examples

Student Resources

How To Cite A YouTube Video In APA Style – With Examples

How to Write an Abstract APA Format

How to Write an Abstract APA Format

APA References Page Formatting and Example

APA References Page Formatting and Example

APA Title Page (Cover Page) Format, Example, & Templates

APA Title Page (Cover Page) Format, Example, & Templates

How do I Cite a Source with Multiple Authors in APA Style?

How do I Cite a Source with Multiple Authors in APA Style?

How to Write a Psychology Essay

How to Write a Psychology Essay

  • How To Find Articles with Databases
  • Video Learning
  • Artificial Intelligence Tools
  • Commercialization & Industry
  • How To Evaluate Articles
  • Search Tips, General
  • Develop a Research Question
  • How To Read A Scientific Paper
  • How To Interpret Data
  • How To Write A Lab Report
  • How To Write A Scientific Paper
  • Get More Help
  • Teaching Materials
  • Other STEM Guides
  • Systematic & Evideced-Based Reviews

Writing Lab Reports

Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. 

  • Ex: "Determining the Free Chlorine Content of Pool Water"
  • Abstracts are a summary of the experiment as a whole and should familiarize the reader with the purpose of the research. 
  • Abstracts will always be written last, even though they are the first paragraph of a lab report. 
  • Not all lab reports will require an abstract. However, they are often included in upper-level lab reports and should be studied carefully. 
  • Why was the research done or experiment conducted?
  • What problem is being addressed?
  • What results were found?
  • What are the meaning of the results?
  • How is the problem better understood now than before, if at all?

Introduction

  • The introduction of a lab report discusses the problem being studied and other theory that is relevant to understanding the findings. 
  • The hypothesis of the experiment and the motivation for the research are stated in this section. 
  • Write the introduction in your own words. Try not to copy from a lab manual or other guidelines. Instead, show comprehension of the experiment by briefly explaining the problem.

Methods and Materials

  • Ex: pipette, graduated cylinder, 1.13mg of Na, 0.67mg Ag
  • List the steps taken as they actually happened during the experiment, not as they were supposed to happen. 
  • If written correctly, another researcher should be able to duplicate the experiment and get the same or very similar results. 
  • The results show the data that was collected or found during the experiment. 
  • Explain in words the data that was collected.
  • Tables should be labeled numerically, as "Table 1", "Table 2", etc. Other figures should be labeled numerically as "Figure 1", "Figure 2", etc. 
  • Calculations to understand the data can also be presented in the results. 
  • The discussion section is one of the most important parts of the lab report. It analyzes the results of the experiment and is a discussion of the data. 
  • If any results are unexpected, explain why they are unexpected and how they did or did not effect the data obtained. 
  • Analyze the strengths and weaknesses of the design of the experiment and compare your results to other similar experiments.
  • If there are any experimental errors, analyze them.
  • Explain your results and discuss them using relevant terms and theories.
  • What do the results indicate?
  • What is the significance of the results?
  • Are there any gaps in knowledge?
  • Are there any new questions that have been raised?
  • The conclusion is a summation of the experiment. It should clearly and concisely state what was learned and its importance.
  • If there is future work that needs to be done, it can be explained in the conclusion.
  • If using any outside sources to support a claim or explain background information, those sources must be cited in the references section of the lab report. 
  • In the event that no outside sources are used, the references section may be left out. 

Other Useful Sources

  • The Lab Report
  • Sample Laboratory Report #2
  • Some Tips on Writing Lab Reports
  • Writing a Science Lab Report
  • << Previous: How To Interpret Data
  • Next: How To Write A Scientific Paper >>
  • Last Updated: Jun 21, 2024 12:38 PM
  • URL: https://guides.libraries.indiana.edu/STEM

Social media

  • Instagram for Herman B Wells Library
  • Facebook for IU Libraries

Additional resources

Featured databases.

  • Resource available to authorized IU Bloomington users (on or off campus) OneSearch@IU
  • Resource available to authorized IU Bloomington users (on or off campus) Academic Search (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) ERIC (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) Nexis Uni
  • Resource available without restriction HathiTrust Digital Library
  • Databases A-Z
  • Resource available to authorized IU Bloomington users (on or off campus) Google Scholar
  • Resource available to authorized IU Bloomington users (on or off campus) JSTOR
  • Resource available to authorized IU Bloomington users (on or off campus) Web of Science
  • Resource available to authorized IU Bloomington users (on or off campus) Scopus
  • Resource available to authorized IU Bloomington users (on or off campus) WorldCat

IU Libraries

  • Diversity Resources
  • About IU Libraries
  • Alumni & Friends
  • Departments & Staff
  • Jobs & Libraries HR
  • Intranet (Staff)
  • IUL site admin

How to Write a Lab Report

Lab Reports Describe Your Experiment

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Lab reports are an essential part of all laboratory courses and usually a significant part of your grade. If your instructor gives you an outline for how to write a lab report, use that. Some instructors require a lab report to be included in a lab notebook , while others will request a separate report. Here's a format for a lab report you can use if you aren't sure what to write or need an explanation of what to include in the different parts of the report.

A lab report is how you explain what you did in ​your experiment, what you learned, and what the results meant.

Lab Report Essentials

Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states:​

  • The title of the experiment.
  • Your name and the names of any lab partners.
  • Your instructor's name.
  • The date the lab was performed or the date the report was submitted.

The title says what you did. It should be brief (aim for ten words or less) and describe the main point of the experiment or investigation. An example of a title would be: "Effects of Ultraviolet Light on Borax Crystal Growth Rate". If you can, begin your title using a keyword rather than an article like "The" or "A".

Introduction or Purpose

Usually, the introduction is one paragraph that explains the objectives or purpose of the lab. In one sentence, state the hypothesis. Sometimes an introduction may contain background information, briefly summarize how the experiment was performed, state the findings of the experiment, and list the conclusions of the investigation. Even if you don't write a whole introduction, you need to state the purpose of the experiment, or why you did it. This would be where you state your hypothesis .

List everything needed to complete your experiment.

Describe the steps you completed during your investigation. This is your procedure. Be sufficiently detailed that anyone could read this section and duplicate your experiment. Write it as if you were giving direction for someone else to do the lab. It may be helpful to provide a figure to diagram your experimental setup.

Numerical data obtained from your procedure usually presented as a table. Data encompasses what you recorded when you conducted the experiment. It's just the facts, not any interpretation of what they mean.

Describe in words what the data means. Sometimes the Results section is combined with the Discussion.

Discussion or Analysis

The Data section contains numbers; the Analysis section contains any calculations you made based on those numbers. This is where you interpret the data and determine whether or not a hypothesis was accepted. This is also where you would discuss any mistakes you might have made while conducting the investigation. You may wish to describe ways the study might have been improved.

Conclusions

Most of the time the conclusion is a single paragraph that sums up what happened in the experiment, whether your hypothesis was accepted or rejected, and what this means.

Figures and Graphs

Graphs and figures must both be labeled with a descriptive title. Label the axes on a graph, being sure to include units of measurement. The independent variable is on the X-axis, the dependent variable (the one you are measuring) is on the Y-axis. Be sure to refer to figures and graphs in the text of your report: the first figure is Figure 1, the second figure is Figure 2, etc.

If your research was based on someone else's work or if you cited facts that require documentation, then you should list these references.

  • The 10 Most Important Lab Safety Rules
  • Null Hypothesis Examples
  • Examples of Independent and Dependent Variables
  • How to Format a Biology Lab Report
  • Science Lab Report Template - Fill in the Blanks
  • How to Write a Science Fair Project Report
  • How to Write an Abstract for a Scientific Paper
  • Six Steps of the Scientific Method
  • How To Design a Science Fair Experiment
  • Understanding Simple vs Controlled Experiments
  • Make a Science Fair Poster or Display
  • How to Organize Your Science Fair Poster
  • What Is an Experiment? Definition and Design
  • Scientific Method Lesson Plan
  • What Are the Elements of a Good Hypothesis?

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

states your hypothesis explains how you derived that hypothesis and how it connects to previous research; gives the purpose of the experiment/study
details how you tested your hypothesis clarifies why you performed your study in that particular way
provides raw (i.e., uninterpreted) data collected (perhaps) expresses the data in table form, as an easy-to-read figure, or as percentages/ratios
considers whether the data you obtained support the hypothesis explores the implications of your finding and judges the potential limitations of your experimental design

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
1058
432
7
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

  • Science & Math
  • Sociology & Philosophy
  • Law & Politics

How to Write Hypothesis for Lab Report

  • How to Write Hypothesis for…

What Is a Real Hypothesis?

A hypothesis is a tentative statement that proposes a possible explanation for some phenomenon or event. A useful hypothesis is a testable statement that may include a prediction.

When Are Hypotheses Used?

The keyword is testable. That is, you will perform a test of how two variables might be related. This is when you are doing a real experiment. You are testing variables. Usually, a hypothesis is based on some previous observations such as noticing that in November many trees undergo color changes in their leaves and the average daily temperatures are dropping. Are these two events connected? How?

Any laboratory procedure you follow without a hypothesis is really not an experiment. It is just an exercise or demonstration of what is already known.

How Are Hypotheses Written?

  • Chocolate may cause pimples.
  • Salt in soil may affect plant growth.
  • Plant growth may be affected by the color of the light.
  • Bacterial growth may be affected by temperature.
  • Ultraviolet light may cause skin cancer.
  • The temperature may cause leaves to change color.

All of these are examples of hypotheses because they use the tentative word “may.”. However, their form is not particularly useful. Using the word may do not suggest how you would go about proving it. If these statements had not been written carefully, they may not have even been hypotheses at all. For example, if we say “Trees will change color when it gets cold.” we are making a prediction. Or if we write, “Ultraviolet light causes skin cancer.” could be a conclusion. One way to prevent making such easy mistakes is to formalize the form of the hypothesis.

Formalized Hypotheses example: If the incidence of skin cancer is related to exposure levels of ultraviolet light , then people with a high exposure to uv light will have a higher frequency of skin cancer.

If leaf color change is related to temperature , then exposing plants to low temperatures will result in changes in leaf color .

Notice that these statements contain the words, if and then. They are necessary for a formalized hypothesis. But not all if-then statements are hypotheses. For example, “If I play the lottery, then I will get rich.” This is a simple prediction. In a formalized hypothesis, a tentative relationship is stated. For example, if the frequency of winning is related to the frequency of buying lottery tickets . “Then” is followed by a prediction of what will happen if you increase or decrease the frequency of buying lottery tickets. If you always ask yourself that if one thing is related to another, then you should be able to test it.

Formalized hypotheses contain two variables. One is “independent” and the other is “dependent.” The independent variable is the one you, the “scientist” control, and the dependent variable is the one that you observe and/or measure the results. In the statements above the dependent variable is underlined and the independent variable is underlined and italicized .

The ultimate value of a formalized hypothesis is it forces us to think about what results we should look for in an experiment.

For the “ If, Then, Because ” hypothesis…you would use: “ IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

IF X and Y both do or share this, THEN this should be found/confirmed, BECAUSE of this fact or logical assumption.

Example Question : How does the type of liquid (water, milk, or orange juice) given to a plant affect how tall the plant will grow? Hypothesis : If the plant is given water then the plant will grow the tallest because water helps the plant absorb the nutrients that the plant needs to survive.

Related Posts

  • Energy Content of Food Lab Report Answers
  • Phet Projectile Motion Lab: Lab Answers
  • Magnesium Oxide: Percent Yield Lab Report
  • How to Write a Formal Laboratory Report
  • Physics: Lab Report Style

16 Comments

How would I write a hypothesis about a flying pig lab?

your lab hypothesis should have been written before the experiment. The purpose of the hypothesis was to create a testable statement in which your experimental data would either support or reject. Having a hypothesis based on a logical assumption (regardless of whether your data supports it) is still correct. If there is a disagreement between your hypothesis and experimental data it should be addressed in the discussion.

So you can go ahead an choose a hypothesis for either increase or decrease of adipogenesis after the inducement of insulin and not be wrong….as long as it is correctly formatted (see examples above).

Hey, I am having trouble writing my hypothesis.. I am supposed to write a hypothesis about how much adipogenesis was produced after the inducement of insulin. However, after proceeding with the experiments the results were On/Off .. meaning it will increase, decrease, increase, etc.. so it wasnt a constant result. It was supposed to be increasing.

please help!!!

this is very helpful but i don’t know how i would structure my hypothesis. i’m supposed to come up with a hypothesis related to the topic ‘how does mass effect the stopping distance of a cart?’. Could you help?

Thank you so much, it really help alot.:)

This is a rather difficult usage of this construct. It would most likely follow

“If the empirical formula of (enter compound’s name) is (enter compound’s formula) then it would be expected that combustion of _________ would yield _________, because (enter your rationale)

Need more background info.

For the “If, then, because” hypothesis I am doing an experiment to determine the empirical formula by using combustion but I am unsure on how to formulate the hypothesis using this structure.

For the “If, Then, Because” hypothesis…you would use: “IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

Thanks, really helpful. Just one question, what about the ‘because’ part? right after the ‘if’ and ‘then’ parts?

I really need help for onion skin lab hypothesis for class

@Lauren An if/and statement is not usually apart of the convention. What exactly do you need help with?

Is there such thing as a if/and statement? I am in 8th grade science an I need to know for my lab report due tomorrow.HELP!!!!

Would have been better if more examples were given

If the purpose of your lab is “To obtain dissecting skills in an observational lab,” you can’t really formulate a testable hypothesis for that. I’ll assume you are doing some kind of pig or frog dissection. Often teachers give general outlines of skills that students are meant to ascertain from an experiment which aren’t necessarily what the actual experiment is directly testing. Obviously to do the dissection lab you need to obtain dissection skills but testing that would be rather subjective unless the teacher provided you with standards or operationally defined “dissecting skills”. If I were you, I would obviously mention it in the introduction of your lab but I am not sure if your teacher wants you to actually format it as a hypothesis; you can ask your teacher for clarification. If making a hypothesis from each purpose was some arbitrary exercise assigned to you then, it could look like this:

“If a student has successful acquired dissection skills, then they will be able to complete this observational lab with satisfactory competence because they utilized these newly acquired skills.”

For the “If, Then, Because” hypothesis…you pretty much have it. You would modify what you posted: “IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

Thanks for this, it proved to be helpful. However, I do have a few questions. Obviously different teachers or instructors have their own requirements for their classes. How would you write an appropriate Question to follow each purpose in your lab report? For example: If the purpose was, “To obtain dissecting skills in an observational lab,” what question could you formulate with the purpose? (which is answered in the hypothesis)

And if a teacher requires the hypothesis to be in the format “If, Then, Because” how should this be written? I can actively complete the if and then, but I’m unsure how to incorporate the “because’ statement. For example, “If pigs and humans share the same nutritional behaviors, then their internal organs should function comparably and look relatively the same.” (how do i incorporate because?)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Post comment

Banner

  • Scientific Lab Reports
  • Understanding the Assignment
  • Need a Topic?
  • Evaluating Sources
  • Brainstorming Strategies
  • Drafting Strategies
  • Thesis Formulation
  • Introductions
  • Conclusions
  • Show Don't Tell
  • Expand Your Draft
  • Flow & Lexical Coherence
  • Revision Checklist
  • Introduction to Style and Grammar
  • Apostrophes
  • Article Usage for ESL Learners
  • Capitalization
  • Clarity: Get Rid of Nominalizations
  • Cohesion: Does my Paragraph Flow?
  • Commas and Colons
  • Conciseness
  • Confusing Words
  • Parallel Structure
  • Passive Voice
  • Quotation Marks
  • Run-on Sentences
  • Subject-Verb Agreement
  • Writing Mechanics
  • Other Styles
  • Art History This link opens in a new window
  • Programming Lab Reports

Writing a Lab Report

Link to other resources.

  • Screenwriting
  • Publication Opportunities
  • Meet with a Tutor This link opens in a new window

Academic Resource Center Hours :

Monday-Thursday: 8:00 AM-6:00 PM

Friday: 8:00 AM-4:00 PM

Phone Number : 310-338-2847

Email :  [email protected]

www.lmu.edu/arc

We are located in Daum Hall on the 2nd floor!

Writing a scientific lab report is significantly different from writing for other classes like philosophy, English, and history. The most prominent form of writing in biology, chemistry, and environmental science is the lab report, which is a formally written description of results and discoveries found in an experiment. College lab reports should emulate and follow the same formats as reports found in scholarly journals, such as Nature , Cell , and The American Journal of Biochemistry .

Report Format

Title: The title says what you did. It should be brief (aim for ten words or less) and describe the main point of the experiment or investigation.

  • Example:  Caffeine Increases Amylase Activity in the Mealworm ( Tenebrio molitar).
  • If you can, begin your title using a keyword rather than an article like “The” or “A.”

Abstract: An abstract is a very concise summary of the purpose of the report, data presented, and major conclusions in about 100 - 200 words.  Abstracts are also commonly required for conference/presentation submissions because they summarize all of the essential materials necessary to understand the purpose of the experiment. They should consist of a background sentence , an introduction sentence , your hypothesis/purpose of the experiment, and a sentence about the results and what this means.

Introduction: The introduction of a lab report defines the subject of the report, provides background information and relevant studies, and outlines scientific purpose(s) and/or objective(s).

  • The introduction is a place to provide the reader with necessary research on the topic and properly cite sources used.
  • Summarizes the current literature on the topic including primary and secondary sources.
  • Introduces the paper’s aims and scope.
  • States the purpose of the experiment and the hypothesis.

Materials and Methods: The materials and methods section is a vital component of any formal lab report. This section of the report gives a detailed account of the procedure that was followed in completing the experiment as well as all important materials used. (This includes bacterial strains and species names in tests using living subjects.)

  • Discusses the procedure of the experiment in as much detail as possible.
  • Provides information about participants, apparatus, tools, substances, location of experiment, etc.
  • For field studies, be sure to clearly explain where and when the work was done.
  • It must be written so that anyone can use the methods section as instructions for exact replications.
  • Don’t hesitate to use subheadings to organize these categories.
  • Practice proper scientific writing forms. Be sure to use the proper abbreviations for units. Example: The 50mL sample was placed in a 5ºC room for 48hrs.

Results: The results section focuses on the findings, or data, in the experiment, as well as any statistical tests used to determine their significance.

  • Concentrate on general trends and differences and not on trivial details.
  • Summarize the data from the experiments without discussing their implications (This is where all the statistical analyses goes.)
  • Organize data into tables, figures, graphs, photographs, etc.  Data in a table should not be duplicated in a graph or figure. Be sure to refer to tables and graphs in the written portion, for example, “Figure 1 shows that the activity....”
  • Number and title all figures and tables separately, for example, Figure 1 and Table 1 and include a legend explaining symbols and abbreviations. Figures and graphs are labeled below the image while tables are labeled above.

  Discussion: The discussion section interprets the results, tying them back to background information and experiments performed by others in the past.This is also the area where further research opportunities shold be explored.

  • Interpret the data; do not restate the results.
  • Observations should also be noted in this section, especially anything unusual which may affect your results.

For example, if your bacteria was incubated at the wrong temperature or a piece of equipment failed mid-experiment, these should be noted in the results section.

  • Relate results to existing theories and knowledge.This can tie back to your introduction section because of the background you provided.
  • Explain the logic that allows you to accept or reject your original hypotheses.
  • Include suggestions for improving your techniques or design, or clarify areas of doubt for further research.

Acknowledgements and References: A references list should be compiled at the end of the report citing any works that were used to support the paper. Additionally, an acknowledgements section should be included to acknowledge research advisors/ partners, any group or person providing funding for the research and anyone outside the authors who contributed to the paper or research.

General Tips

  • In scientific papers, passive voice is perfectly acceptable. On the other hand, using “I” or “we” is not.

          Incorrect: We found that caffeine increased amylase levels in Tenebrio molitar.  Correct: It was discovered that caffeine increased amylase levels in Tenebrio molitar.   

  • It is expected that you use as much formal (bland) language and scientific terminology as you can. There should be no emphasis placed on “expressing yourself” or “keeping it interesting”; a lab report is not a narrative.
  • In a lab report, it is important to get to the point. Be descriptive enough that your audience can understand the experiment, but strive to be concise.
  • << Previous: Programming Lab Reports
  • Next: Screenwriting >>
  • Last Updated: Jun 2, 2024 10:04 PM
  • URL: https://libguides.lmu.edu/writing

Academic Editing and Proofreading

  • Tips to Self-Edit Your Dissertation
  • Guide to Essay Editing: Methods, Tips, & Examples
  • Journal Article Proofreading: Process, Cost, & Checklist
  • The A–Z of Dissertation Editing: Standard Rates & Involved Steps
  • Research Paper Editing | Guide to a Perfect Research Paper
  • Dissertation Proofreading | Definition & Standard Rates
  • Thesis Proofreading | Definition, Importance & Standard Pricing
  • Research Paper Proofreading | Definition, Significance & Standard Rates
  • Essay Proofreading | Options, Cost & Checklist
  • Top 10 Paper Editing Services of 2024 (Costs & Features)
  • Top 10 Essay Checkers in 2024 (Free & Paid)
  • Top 10 AI Proofreaders to Perfect Your Writing in 2024
  • Top 10 English Correctors to Perfect Your Text in 2024
  • Top 10 Essay Editing Services of 2024
  • 10 Advanced AI Text Editors to Transform Writing in 2024

Academic Research

  • Research Paper Outline: Templates & Examples
  • How to Write a Research Paper: A Step-by-Step Guide

How to Write a Lab Report: Examples from Academic Editors

  • Research Methodology Guide: Writing Tips, Types, & Examples
  • The 10 Best Essential Resources for Academic Research
  • 100+ Useful ChatGPT Prompts for Thesis Writing in 2024
  • Best ChatGPT Prompts for Academic Writing (100+ Prompts!)
  • Sampling Methods Guide: Types, Strategies, and Examples
  • Independent vs. Dependent Variables | Meaning & Examples

Academic Writing & Publishing

  • Difference Between Paper Editing and Peer Review
  • What are the different types of peer review?
  • How to deal with rejection from a journal?
  • Editing and Proofreading Academic Papers: A Short Guide
  • How to Carry Out Secondary Research
  • The Results Section of a Dissertation
  • Checklist: Is my Article Ready for Submitting to Journals?
  • Types of Research Articles to Boost Your Research Profile
  • 8 Types of Peer Review Processes You Should Know
  • The Ethics of Academic Research
  • How does LaTeX based proofreading work?
  • How to Improve Your Scientific Writing: A Short Guide
  • Chicago Title, Cover Page & Body | Paper Format Guidelines
  • How to Write a Thesis Statement: Examples & Tips
  • Chicago Style Citation: Quick Guide & Examples
  • The A-Z Of Publishing Your Article in A Journal
  • What is Journal Article Editing? 3 Reasons You Need It
  • 5 Powerful Personal Statement Examples (Template Included)
  • Complete Guide to MLA Format (9th Edition)
  • How to Cite a Book in APA Style | Format & Examples
  • How to Start a Research Paper | Step-by-step Guide
  • APA Citations Made Easy with Our Concise Guide for 2024
  • A Step-by-Step Guide to APA Formatting Style (7th Edition)
  • Top 10 Online Dissertation Editing Services of 2024
  • Academic Writing in 2024: 5 Key Dos & Don’ts + Examples
  • What Are the Standard Book Sizes for Publishing Your Book?
  • MLA Works Cited Page: Quick Tips & Examples
  • 2024’s Top 10 Thesis Statement Generators (Free Included!)
  • Top 10 Title Page Generators for Students in 2024
  • What Is an Open Access Journal? 10 Myths Busted!
  • Primary vs. Secondary Sources: Definition, Types & Examples
  • How To Write a College Admissions Essay That Stands Out
  • How to Write a Dissertation & Thesis Conclusion (+ Examples)
  • APA Journal Citation: 7 Types, In-Text Rules, & Examples
  • What Is Predatory Publishing and How to Avoid It!
  • What Is Plagiarism? Meaning, Types & Examples
  • How to Write a Strong Dissertation & Thesis Introduction
  • How to Cite a Book in MLA Format (9th Edition)
  • How to Cite a Website in MLA Format | 9th Edition Rules
  • 10 Best AI Conclusion Generators (Features & Pricing)
  • Additional Resources
  • Plagiarism: How to avoid it in your thesis?
  • Final Submission Checklist | Dissertation & Thesis
  • 7 Useful MS Word Formatting Tips for Dissertation Writing
  • How to Write a MEAL Paragraph: Writing Plan Explained in Detail
  • Em Dash vs. En Dash vs. Hyphen: When to Use Which
  • The 10 Best Citation Generators in 2024 | Free & Paid Plans!
  • 2024’s Top 10 Self-Help Books for Better Living
  • Citation and Referencing
  • Citing References: APA, MLA, and Chicago
  • How to Cite Sources in the MLA Format
  • MLA Citation Examples: Cite Essays, Websites, Movies & More
  • Citations and References: What Are They and Why They Matter
  • APA Headings & Subheadings | Formatting Guidelines & Examples
  • Formatting an APA Reference Page | Template & Examples
  • Research Paper Format: APA, MLA, & Chicago Style
  • How to Create an MLA Title Page | Format, Steps, & Examples
  • How to Create an MLA Header | Format Guidelines & Examples
  • MLA Annotated Bibliography | Guidelines and Examples
  • APA Website Citation (7th Edition) Guide | Format & Examples
  • APA Citation Examples: The Bible, TED Talk, PPT & More
  • APA Header Format: 5 Steps & Running Head Examples
  • APA Title Page Format Simplified | Examples + Free Template
  • How to Write an Abstract in MLA Format: Tips & Examples
  • 10 Best Free Plagiarism Checkers of 2024 [100% Free Tools]
  • 5 Reasons to Cite Your Sources Properly | Avoid Plagiarism!
  • Dissertation Writing Guide
  • Writing a Dissertation Proposal
  • The Acknowledgments Section of a Dissertation
  • The Table of Contents Page of a Dissertation
  • The Introduction Chapter of a Dissertation
  • The Literature Review of a Dissertation
  • The Only Dissertation Toolkit You’ll Ever Need!
  • 5 Thesis Writing Tips for Master Procrastinators
  • How to Write a Dissertation | 5 Tips from Academic Editors
  • The Title Page of a Dissertation
  • The 5 Things to Look for in a Dissertation Editing Service
  • Top 10 Dissertation Editing & Proofreading Services
  • Why is it important to add references to your thesis?
  • Thesis Editing | Definition, Scope & Standard Rates
  • Expert Formatting Tips on MS Word for Dissertations
  • A 7-Step Guide on How to Choose a Dissertation Topic
  • 350 Best Dissertation Topic Ideas for All Streams in 2024
  • A Guide on How to Write an Abstract for a Research Paper
  • Dissertation Defense: What to Expect and How to Prepare
  • Essay Writing Guide
  • Essential Research Tips for Essay Writing
  • What Is a Mind Map? Free Mind Map Templates & Examples
  • How to Write an Essay Outline: 5 Examples & Free Template
  • How to Write an Essay Header: MLA and APA Essay Headers
  • What Is an Essay? Structure, Parts, and Types
  • How to Write an Essay in 8 Simple Steps (Examples Included)
  • 8 Types of Essays | Quick Summary with Examples
  • Expository Essays | Step-by-Step Manual with Examples
  • Narrative Essay | Step-by-Step Guide with Examples
  • How to Write an Argumentative Essay (Examples Included)
  • Guide to a Perfect Descriptive Essay [Examples & Outline Included]
  • How to Start an Essay: 4 Introduction Paragraph Examples
  • How to Write a Conclusion for an Essay (Examples Included!)
  • How to Write an Impactful Personal Statement (Examples Included)
  • Literary Analysis Essay: 5 Steps to a Perfect Assignment
  • Compare and Contrast Essay | Quick Guide with Examples
  • Top 10 Essay Writing Tools in 2024 | Plan, Write, Get Feedback
  • Top AI Essay Writers in 2024: 10 Must-Haves
  • 100 Best College Essay Topics & How to Pick the Perfect One!
  • College Essay Format: Tips, Examples, and Free Template
  • Structure of an Essay: 5 Tips to Write an Outstanding Essay

Still have questions? Leave a comment

Add Comment

Checklist: Dissertation Proposal

Enter your email id to get the downloadable right in your inbox!

Examples: Edited Papers

Need editing and proofreading services.

calender

  • Tags: Academic Research , Academic Writing

A lab report documents the theory, methods, and results of your experiment to demonstrate your understanding of research and scientific methodology. In this article, we’ll tell you how to write a lab report with the help of some useful examples.

For many students, writing a lab report can be confusing: how to format it, what to include and not include, and so on. The questions are endless! Just remember that your lab report will allow others to reproduce your results and draw their own conclusions. This will help you write a lab report that’s well-formatted and organized.

In true Resource Center fashion, let’s start with the basics: What exactly is a lab report?

Need help creating a perfect lab report? Learn more

What is a lab report? 

A laboratory report is a document written to describe and analyze an experiment that addresses a scientific inquiry. A lab report helps you conduct an experiment and then systematically design a conclusion based on your hypothesis. 

Note: A lab report is not the same as a lab notebook. A notebook is a detailed log you keep throughout the study. A lab report is a concise summary that you submit after the study is done, usually for a final grade. 

A lab report typically follows this format:  

  • Title 

Introduction 

  • Equipment/Materials 
  • Methods 
  • Discussion 
  • References 

This is a broad list of sections you might have to include in your lab report, but by no means is this compulsory or exhaustive. You should always refer to the course or university guidelines to understand the desired format. 

How to Write a Lab Report

A lab report should be clear, concise, and well-organized, and it should include all the necessary information for others to replicate your experiment. Since the lab report format is designed to serve this purpose, you must follow it to the bone while writing your report.

Let’s start with learning how to title a lab report.

Title  

The title of your lab report should:

  • Be clear, direct, and informative.
  • Include keywords that clarify your objectives and involved variables.
  • Be under ten words (ideally).

It’s a good idea to avoid phrasing the title as a question. Remember, your title doesn’t have to be witty or clever, just descriptive and to the point. Here are a few title examples that can clarify this for you:

  • Unraveling the genetic code through gel electrophoresis.
  • Hot and cold: How temperature affects enzymes yeast cells
  • Impervious alloys of Aluminium
  • How fast does Hydrogen Peroxide decompose?
  • The speed of growth: An Analysis of bacterial growth rates in different culture media

Analysis of DNA fragment lengths using gel electrophoresis

The effects of temperature on enzyme activity in yeast cells

Investigating the corrosion resistance of Aluminum alloys

Study of chemical kinetics through the decomposition of Hydrogen Peroxide

Quantifying bacterial growth rates in different culture media

While it’s not necessary to dedicate an entire page to the title, some universities might ask for a title page. If you’ve been asked to make this, include the following details:

  • The experiment title 
  • Your name and student details 
  • Course and program details 
  • Date and year of submission 

An abstract is a brief but comprehensive overview of the purpose, findings, and larger relevance of your experiment. It communicates the essential details of your study to your readers, whether it’s evaluators or peers.

Follow these tips to write a lab report abstract:

  • Clearly state the topic of your experiment.
  • Briefly describe the conditions of your study, the variables involved, and the method(s) used to collect data.
  • Lay out the major findings of your study and your interpretations of them.
  • Mention the relevance and importance of your study in brief.

An abstract is usually only a page long (typically between 100 and 250 words), so your writing must be concise and crisp.

Bonus tip: Although the abstract is the first section of your report, it’s best to write it toward the end. Much easier to summarize the report afte r it’s been written!

Lab report abstract example

This experiment aimed to investigate the corrosion resistance of two different aluminum alloys: 6061-T6 and 7075-T6. The experiment involved exposing samples of each alloy to a 3% NaCl solution for a period of 72 hours and then measuring the weight loss of the samples. The results showed that 6061-T6 had a weight loss of 0.10 g, while 7075-T6 had a weight loss of 0.25 g, indicating that 6061-T6 was more corrosion resistant. These findings suggest that the composition of the alloy has a significant impact on its resistance to corrosion. This information is important for industries that use aluminum alloys in environments that are prone to corrosion, such as marine applications or chemical processing. Further research could explore the specific mechanisms that contribute to the corrosion resistance of different aluminum alloys and could investigate the effects of other environmental factors on corrosion.

The lab report introduction provides your readers with background information on your experiment and its significance. It should be brief and to the point, so a few paragraphs is the maximum length recommended.

You can adopt either of two modes to write your introduction:

  • Beginning with the research question and then adding context, ultimately closing with your purpose.
  • Beginning with the broad topic and narrowing it down to your research question.

Follow these steps to write your lab report introduction:

  • Begin with a brief overview of the broad research area and existing literature. 
  • Include only essential background information and cite only highly relevant sources. 
  • Clearly define any key terms or concepts that you’ll use in the report.
  • State the specific purpose and objectives of your experiment.
  • Mention the relevance and significance of your study.
  • State a clear hypothesis and expected outcomes.
  • Check with your instructor about adding the variables, results, and conclusions to the introduction.
  • Refer to the university guidelines for instructions on labeling paragraphs in your introduction.
  • Use the past tense when describing the purpose and other specifics of the experiment since it has already been carried out and is in the past. (“This experiment aimed to investigate the corrosion resistance of two different aluminum alloys.”)
  • Use the present tense when describing the report, existing theories, and established facts. (“This information is important for industries that use aluminum alloys in environments prone to corrosion.”)

Make sure you use your own words rather than following a templatized format.

Lab report introduction example

Aluminum alloys are widely used in a variety of industrial applications due to their excellent strength-to-weight ratio, good corrosion resistance, and other desirable properties. However, the corrosion resistance of aluminum alloys can vary depending on their composition, and understanding the factors that contribute to corrosion resistance is crucial for their effective use in harsh environments. In this experiment, we aim to investigate the corrosion resistance of two different aluminum alloys: 6061-T6 and 7075-T6.

These alloys were selected because they are commonly used in industrial applications and have different compositions, with 6061-T6 containing magnesium and silicon, while 7075-T6 contains zinc and copper. By exposing samples of each alloy to a 3% NaCl solution and measuring the weight loss of the samples over time, we can determine which alloy is more corrosion-resistant and gain insight into the factors that contribute to their corrosion resistance. This information is important for industries that use aluminum alloys in harsh environments, such as marine and aerospace applications, and can contribute to the development of more effective corrosion-resistant materials.

The lab report methods section documents the methods, subjects, materials, and equipment you used to collect data. This is a record of the steps you followed and not the steps as they were prescribed.

Follow these tips to write a lab report method section:

  • List all materials and equipment used in the experiment, including their material specifications such as weight or amount. (Ex: 5 ml of 3% NaCl solution)
  • In the case of elaborate lists and sets of steps, you may include them in the appendix section and refer to them in the methods section. (Check this with your instructor!)
  • Detail the procedures you used to carry out the experiment step-by-step, including apparatus setup, mixing of reagents, and other technical processes.
  • Explain how you collected and recorded the data as well as the involved analytical methods and calculations.
  • Use the past tense to write this section.
  • Discuss the limitations and margins of error and how you tried to minimize them.
  • Where relevant, mention the safety precautions and protective equipment used during the experiment.

Your methods section should be accurate enough for other researchers to follow the instructions and obtain results similar to yours.

Lab report method example

  • Two aluminum alloy samples: 6061-T6 and 7075-T6
  • 3% NaCl solution
  • Two beakers
  • Two stirring rods
  • Digital scale
  • Vernier caliper
  • Cut four aluminum alloy samples, two from each type of alloy, each with dimensions of 1 cm x 1 cm x 0.2 cm.
  • Clean the samples thoroughly using ethanol to remove any impurities or oils.
  • Weigh each sample accurately using a digital scale and record the initial weight.
  • Prepare a 3% NaCl solution by dissolving 30 g of NaCl in 1000 mL of deionized water.
  • Pour 250 mL of the 3% NaCl solution into each beaker.
  • Submerge two samples of each aluminum alloy in separate beakers containing the NaCl solution.
  • Use the stirring rods to stir the solutions gently to ensure uniformity.
  • Allow the samples to remain in the solutions for 72 hours at room temperature (25°C).
  • After 72 hours, carefully remove each sample from the solution and rinse with deionized water to remove any remaining salt.
  • Dry each sample using a lint-free cloth and measure its weight using the digital scale.
  • Record the final weight of each sample.
  • Calculate the weight loss of each sample by subtracting the final weight from the initial weight.
  • Use a Vernier caliper to measure the thickness of each sample, and record these measurements.
  • Calculate the corrosion rate for each sample by dividing the weight loss by the surface area of the sample and the time of immersion in the solution.

Data Collection:

Weight loss and thickness measurements were recorded for each sample after the 72-hour immersion period. Corrosion rates were calculated using the weight loss, surface area, and time of immersion.

The experiment was conducted in a well-ventilated area with appropriate personal protective equipment, including gloves and goggles. Care was taken when handling the NaCl solution to avoid contact with the skin or eyes.

Limitations:

The experiment was conducted under controlled conditions, which may not reflect real-world scenarios. The NaCl solution concentration used may not be representative of all environmental conditions that aluminum alloys may encounter in industrial applications. Further research could explore a wider range of environmental factors to more accurately predict the corrosion resistance of aluminum alloys.

The results section presents the findings of the experiment including the data you have collected and analyzed. In some cases, this section may be combined with the discussion section.

Put your findings into words and present relevant figures, tables, and graphs. You may also include the calculations you used to analyze the data.

Here are some guidelines on how to write a results section:

  • Begin with a concise summary of your key findings in the form of a brief paragraph or bullet points.
  • Present the data collected in the form of tables, graphs, or charts.
  • Describe important data to highlight any patterns you have observed.
  • Use descriptive statistics such as mean, median, and standard deviation, to summarize your data.

Add your raw data in the Appendices section and refer to it whenever required. Remember to use symbols and units of measurement correctly.

Lab report results example

The aluminum alloys tested have varying degrees of corrosion resistance. Table 1 shows the corrosion rates for each sample, calculated as the percentage weight loss over the duration of the experiment.

Table 1: Corrosion rates for aluminum alloy samples

Sample Corrosion rate (%)

Alloy sample Corrosion rate
A 0.12
B 0.08
C 0.02
D 0.05

As can be seen from Table 1, sample C had the lowest corrosion rate, indicating the highest resistance to corrosion among the four samples tested. Sample A had the highest corrosion rate, indicating the lowest corrosion resistance.

Figure 1 shows the corrosion morphology of the aluminum alloy samples after exposure to the saltwater solution for 7 days. The images were taken using scanning electron microscopy (SEM).

The SEM images show that sample C had the least amount of corrosion, with only small pits visible on the surface. Samples A and B showed more severe corrosion, with visible pitting and cracking. Sample D showed moderate corrosion, with some surface roughening and small pits.

In conclusion, the results of this experiment indicate that the corrosion resistance of aluminum alloys varies depending on the composition of the alloy. Sample C, which had the lowest corrosion rate and the least amount of corrosion morphology, showed the highest resistance to corrosion among the four samples tested. Further research could investigate the effect of different environmental conditions on the corrosion resistance of aluminum alloys.

The discussion section of a lab report is where you interpret and analyze the results of your experiment in the context of the research question or hypothesis. This is the most important part of the lab report because this is your contribution to your field of study.

Follow these guidelines to write your discussion section:

  • Begin with a brief summary of the main findings of the experiment.
  • Interpret the results and explain how they relate to your research question or hypothesis.
  • Compare the results to previous research in the field and analyze how they support or oppose existing theories or models.
  • Discuss any limitations or sources of error in the experiment and how they can be improved upon.
  • If applicable, include any additional analysis such as post-hoc tests or follow-up experiments.

Your discussion section shouldn’t simply repeat the results but offer a critical interpretation and analysis of them. Furthermore, it should also reflect upon the methods and procedures undertaken and take stock of whether you applied processes most favorable for your subject.

Lab report discussion example

The investigation into the corrosion resistance of aluminum alloys has provided valuable insight into the behavior of these materials under various conditions. The results of the experiment indicated that the aluminum alloys tested had varying degrees of corrosion resistance depending on the specific alloy composition and environmental conditions.

Comparing the results to previous research in the field, the findings are consistent with the general understanding that aluminum alloys are susceptible to corrosion under certain circumstances. However, the exact mechanisms of corrosion and the specific factors that influence corrosion resistance are still subject to ongoing research.

One limitation of the experiment is the relatively short duration of exposure to the corrosive environment. Longer exposure times may have provided additional insights into the behavior of the aluminum alloys over time. Additionally, the use of only one type of corrosive environment may not accurately reflect the behavior of the materials in other environments.

The unexpected finding of pitting corrosion in Alloy B warrants further investigation to determine the underlying causes and potential solutions. Future research could also explore the effects of additional factors, such as temperature and humidity, on the corrosion resistance of aluminum alloys.

Overall, the results of this experiment demonstrate the importance of considering the specific composition and environmental conditions when evaluating the corrosion resistance of aluminum alloys. The findings have implications for the development of more durable and corrosion-resistant materials for various applications in industry and engineering.

The conclusion summarizes the experiment and its significance in your field of study. It’s usually one brief paragraph, and in some cases might be omitted altogether. Check with your instructor about whether or not you need to write a lab report conclusion.

Here’s how to write a lab report conclusion:

  • State whether the experiment supported or opposed your hypothesis.
  • Reflect upon the significance and implications of your study.
  • Suggest avenues for future research.

Lab report conclusion example

The investigation into the corrosion resistance of aluminum alloys demonstrated that the aluminum alloys tested had varying degrees of corrosion resistance, depending on their specific composition and the nature of the corrosive environment. The results of the experiment are consistent with previous research in the field, and the findings support the notion that aluminum alloys are susceptible to corrosion under certain conditions.

The experiment also revealed some unexpected findings, such as the pitting corrosion observed in Alloy B. This finding warrants further investigation to determine the underlying causes and potential solutions.

The experiment was limited by the relatively short exposure time to the corrosive environment and the use of only one type of corrosive environment. Future research could explore the effects of longer exposure times and different corrosive environments on the corrosion resistance of aluminum alloys.

Overall, the results of this experiment provide important insights into the behavior of aluminum alloys and have implications for the development of more durable and corrosion-resistant materials for various applications in industry and engineering.

List all the sources you consulted while writing the lab report. Include the full bibliographic information in the appropriate format.

For lab reports in sciences and social sciences, the APA citation style is usually followed. Students of business, fine arts, and history will use Chicago style citations in their lab reports. In the rare event of a lab report under humanities, you’ll be expected to write your citations in MLA format .

Remember that failing to cite your sources is considered plagiarism and has serious consequences. Always give credit where credit is due!

Lab Report Example & Templates

A. basic lab report template, b. chemistry lab report example, c. example of good labeling.

The above examples accurately demonstrate the hallmarks of a good lab report. If you need help to perfect your lab report, you can consider taking our editing and proofreading services . Keep reading to perfect your writing skills! 

  • The Top 5 Dos & Don’ts of Academic Writing | Useful Examples
  • 10 Most Common Grammar Mistakes & How to Avoid Them
  • 14 Punctuation Marks: Examples & Free Guide on How to Use

Frequently Asked Questions

What is the primary purpose of writing a lab report, what should a lab report look like, how to write a lab report for biology, how long is a lab report, what is the longest part of a lab report.

Found this article helpful?

6 comments on “ How to Write a Lab Report: Examples from Academic Editors ”

Good info. Lucky me I came across your blog by chance. I’ve saved it for later!

Hi there, I don’t leave comments a lot but I must say, the lab report results part was quite well-written. Keep up the good work!

It’s quite well-written but you can improve the images maybe. Anyway, keep up writing.

You’ve explained each lab report section so easily! I appreciate the tips and example combination!

Honestly, the lab report examples could be better. But great work, super easy to read and informative

This information on lab report writing is so useful! Thanks for all the templates and examples, super helpful!

Leave a Comment: Cancel reply

Your email address will not be published.

Your vs. You’re: When to Use Your and You’re

Your organization needs a technical editor: here’s why, your guide to the best ebook readers in 2024, writing for the web: 7 expert tips for web content writing.

Subscribe to our Newsletter

Get carefully curated resources about writing, editing, and publishing in the comfort of your inbox.

How to Copyright Your Book?

If you’ve thought about copyrighting your book, you’re on the right path.

© 2024 All rights reserved

  • Terms of service
  • Privacy policy
  • Self Publishing Guide
  • Pre-Publishing Steps
  • Fiction Writing Tips
  • Traditional Publishing
  • Academic Writing and Publishing
  • Partner with us
  • Annual report
  • Website content
  • Marketing material
  • Job Applicant
  • Cover letter
  • Resource Center
  • Case studies

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Lab Report Format – How to Write a Laboratory Report

A typical lab report format includes a title, introduction, procedure, results, discussion, and conclusions.

A science laboratory experiment isn’t truly complete until you’ve written the lab report. You may have taken excellent notes in your laboratory notebook, but it isn’t the same as a lab report. The lab report format is designed to present experimental results so they can be shared with others. A well-written report explains what you did, why you did it, and what you learned. It should also generate reader interest, potentially leading to peer-reviewed publication and funding.

Sections of a Lab Report

There is no one lab report format. The format and sections might be specified by your instructor or employer. What really matters is covering all of the important information.

Label the sections (except the title). Use bold face type for the title and headings. The order is:

You may or may not be expected to provide a title page. If it is required, the title page includes the title of the experiment, the names of the researchers, the name of the institution, and the date.

The title describes the experiment. Don’t start it with an article (e.g., the, an, a) because it messes up databases and isn’t necessary. For example, a good title might be, “Effect of Increasing Glucose Concentration on Danio rerio Egg Hatching Rates.” Use title case and italicize the scientific names of any species.

Introduction

Sometimes the introduction is broken into separate sections. Otherwise, it’s written as a narrative that includes the following information:

  • State the purpose of the experiment.
  • State the hypothesis.
  • Review earlier work on the subject. Refer to previous studies. Cover the background so a reader understands what is known about a subject and what you hope to learn that is new.
  • Describe your approach to answering a question or solving a problem. Include a theory or equation, if appropriate.

This section describes experimental design. Identify the parameter you changed ( independent variable ) and the one you measured ( dependent variable ). Describe the equipment and set-up you used, materials, and methods. If a reader can’t picture the apparatus from your description, include a photograph or diagram. Sometimes this section is broken into “Materials” and “Methods.”

Your lab notebook contains all of the data you collected in the experiment. You aren’t expected to reproduce all of this in a lab report. Instead, provide labelled tables and graphs. The first figure is Figure 1, the second is Figure 2, etc. The first graph is Graph 1. Refer to figures and graphs by their figure number. For some experiments, you may need to include labelled photographs. Cite the results of any calculations you performed, such as slope and standard deviation. Discuss sources of error here, including instrument, standard, and random errors.

Discussion or Conclusions

While the “Results” section includes graphs and tables, the “Discussion” or “Conclusions” section focuses on what the results mean. This is where you state whether or not the objective of the experiment was met and what the outcome means.  Propose reasons for discrepancies between expected and actual outcomes. Finally, describe the next logical step in your research and ways you might improve on the experiment.

References or Bibliography

Did you build upon work conducted by someone else? Cite the work. Did you consult a paper relating to the experiment? Credit the author. If you’re unsure whether to cite a reference or not, a good rule of thumb is to include a reference for any fact not known to your audience. For some reports, it’s only necessary to list publications directly relating to your procedure and conclusions.

The Tone of a Lab Report

Lab reports should be informative, not entertaining. This isn’t the place for humor, sarcasm, or flowery prose. A lab report should be:

  • Concise : Cover all the key points without getting crazy with the details.
  • Objective : In the “Conclusions” section, you can propose possible explanations for your results. Otherwise, keep your opinions out of the report. Instead, present facts and an analysis based on logic and math.
  • Critical : After presenting what you did, the report focuses on what the data means. Be on the lookout for sources of error and identify them. Use your understanding of error to determine how reliable your results are and gauge confidence in your conclusions.

Related Posts

Main Chegg Logo

How to Write a Good Lab Report

Published September 27, 2020. Updated May 4, 2022.

Lab Report Definition

Students typically write lab reports to define and analyze a laboratory experiment. Scientists often conduct such experiments to discover a scientific concept.

Overview of a Lab Report

The exact requirements and terminology for lab reports often differ from one course to the next. Instructors typically assign lab reports to enable students to conduct scientific research. Every lab report follows the same basic structure. The basic format of the report is also important.

Lab reports include a title, introduction, methods, results, conclusion or discussion, and references. Reports should use a professional font and size, with double-line spacing and page numbers. Specific sections of the report should have separate headings and subheadings.

Other sections include:

Worried about your writing? Submit your paper for a Chegg Writing essay check , or for an Expert Check proofreading . Both can help you find and fix potential writing issues.

Formatting Your Lab Report

Following a basic format for a lab report is important. General guidelines follow, but if your instructor has any specific requests, be sure to follow them.

  • For any lab report, use a professional font and size. For example, 12-point Times New Roman.
  • Double-space the report.
  • Include a page number, usually either in the top or bottom right corner of each page.
  • Clearly separate specific sections of the report with headings and subheadings.

Below is a quick overview of how to format a basic lab report:

Lab report outline

Next, let’s examine each section in detail and review how to structure a lab report.

Introduction

An introduction is a paragraph often written before conducting the experiment. A good introduction paragraph should have at least three parts:

  • the purpose
  • the procedure
  • the hypothesis

Additionally, some introductions may require you to include a few sentences of background information on the topic. If you use information from an outside source, make sure you cite it (in the format preferred by your instructor)!

How to set up the introduction:

  • Purpose : Restate the question being asked. What is being tested or observed?
  • Procedure : What will you do during the experiment? How will you test/observe the results? How will you report the results?
  • Hypothesis : Based on what you know, what do you think your results will be?

An example of a good, concise introduction follows:

In this experiment, we will test the effects of temperature on enzyme reactions. The reaction rates of most enzymes increase with the increase in temperature (Keeling et al., 1994). To test this, we will perform identical enzyme reactions in water baths of different temperatures (hot, room temperature, and cold). The absorbance of each reaction will then be evaluated to determine how well the enzymes performed. Our hypothesis is that the reaction rate will increase with increasing temperature, but the rate may decrease in the hot temperature because high temperatures can denature enzymes.

Methods Section

The methods section is sometimes also known as the procedures section or methods and materials section. This part of your report describes exactly what was done in the experiment and what was used to do it. A good methods section is so detailed that anyone could follow it and repeat the experiment from start to finish, using the same materials. The methods section can sometimes be in bullet format, but it is often written in paragraphs.

Here are a few examples of good sentences for the methods section:

A cold-water bath was made by filling a beaker with ice and water.

We then filled nine test tubes with 3 mL of water, 2 mL of potato extract, and 1 mL of enzyme.

A graph was created, then the averages of our values were taken using Microsoft Excel.

Results Section

A results section includes exactly what you might think: your results! You can describe results in a paragraph and/or display data in tables and graphs. It is important to remember that this is not where you interpret your results, just report them.

When including tables and graphs:

  • Always list tables first, then graphs.
  • Label each table/graph and include a caption to describe the data it contains.
  • Always place captions above tables and below graphs.

An example of a good results section:

“The results of this experiment are shown in Table 1 and Figure 1. Table 1 shows the values of absorbances for each tube (hot, room temperature, and cold) in each trial. The trials are visually compared in Figure 1.”

table example

Conclusion Section

A conclusion is basically a paragraph or two to summarize your whole experiment. The conclusion section may be divided, so the lab report includes a separate “discussion” section. If not, conclusions often include a mixture of the following topics:

  • restatement of the purpose
  • summary of how the experiment was conducted
  • explanation and interpretation of results
  • support/rejection of the hypothesis
  • possible sources of error
  • future methods to improve the experiment
  • relevance to the real world

Instructors usually let you know which of the above topics to focus on in your conclusion.

Here is an example of a good conclusion:

In this experiment, we tested the effects of temperature in an enzyme reaction by performing three trials of identical reactions in hot, room temperature, and cold-water baths. By comparing our data, it is shown that the rate of reaction increased with temperature. This supports our hypothesis that higher temperatures cause faster reactions. In trial 1, the cold-water reaction was faster than the room temperature reaction, but that is most likely due to human error. Another experiment could be performed in the future to see how fast the reaction can take place by testing the reaction in even hotter water baths. This experiment is relevant to the real world because enzymes are constantly working in the human body and all around us.

References Section

The references section should be on the last page of the lab report. References give credit to any source used to write your report (e.g., articles from the internet, a textbook, a lab manual). You should cite any source in a lab report that is not common knowledge.

There are multiple formats for citations and references. Make sure you are using the correct format. The most common format is to list references in alphabetical order with hanging indentions:

Cano, M. P., Hernandez, A., & Ancos, B. (1997). High Pressure and Temperature Effects on Enzyme Inactivation in Strawberry and Orange Products. Journal of Food Science, 62 (1), 85-88. https://doi.org/10.1111/j.1365-2621.1997.tb04373.x

Keeling, P., Banisadr, R., Barone, L., Wasserman, B., & Singletary, G. (1994). Effect of Temperature on Enzymes in the Pathway of Starch Biosynthesis in Developing Wheat and Maize Grain. Functional Plant Biology, 21 (6), 807. https://doi.org/10.1071/pp9940807

Olson, A. R. (2011). Symbiosis: The Pearson custom library for the biological sciences . New York: Pearson Learning Solutions.

Optional Sections

Depending on your instructor or experiment, you may also need to include additional sections.

A title page is often required for formal lab reports. There are many different formats for a title page. In general, it should be the very first page of your lab report with the title in the center of the page. Beneath the title, include your name, course title, instructor’s name, and date (each on a separate line).

What was the goal or reason for the experiment? Explain in detail.

An abstract is a paragraph that provides a very brief overview of your experiment. The abstract should include a sentence or two describing each of the major parts of your lab report:

  • the purpose of the experiment
  • the methods used to do the experiment
  • the major results
  • the main conclusion

Write the abstract once the whole report has been completed. Place the abstract under the title of your report, before the introduction. After reading your abstract, we should have a clear summary of what the whole lab report is about.

Here is an example abstract:

Temperature and pH are widely known to affect the function of enzymes. In this experiment, we tested the effects of temperature on an enzyme reaction. This was done by performing three identical enzyme reactions in water baths of different temperatures (hot, room temperature, and cold). After the reactions proceeded for 5 minutes, the absorbance values of each reaction tube were measured using a spectrometer. After performing three trials and comparing the results, it was found that the reactions in the hot water baths gave higher absorbance values. Therefore, it can be concluded that temperature directly correlates with enzyme reaction rate.

Place the discussion section after the results and before the conclusion. The discussion should include an interpretation of the results and an explanation of errors. Often, these topics can be included in the conclusion, but they are sometimes required to be reported separately.

To sum up, the skeleton of every lab report is the same. By following this guide, you should be able to write each section of your lab report correctly. If you still have questions about the requirements for your specific lab, do not be afraid to ask your instructor for clarification!

Before you turn in that paper, don’t forget to cite your sources in APA format , MLA format , or a style of your choice.

Example and Template

Example lab report on papillomavirus and rats, example lab report: molecular biology, lab report template, common writing assignments, apps & tests.

  • Analytical Essay
  • AP synthesis Essay
  • Argumentative Essay
  • Book Report
  • Compare and Contrast Essay
  • Cause and Effect Essay
  • College Admissions Essay
  • Critical Analysis Essay
  • Definition Essay
  • Descriptive Essay
  • Dissertation
  • Explanatory Essay
  • Expository Essay
  • Informative Essay
  • Narrative Essay
  • Opinion Essay
  • Personal Essay
  • Persuasive Essay
  • Reflective Essay
  • Research Paper
  • Rhetorical Analysis
  • Scholarship Essay
  • Short Essay
  • Thesis Paper

Framed paper

What’s included with a Chegg Writing subscription

  • Unlimited number of paper scans
  • Plagiarism detection: Check against billions of sources
  • Expert proofreading for papers on any subject
  • Grammar scans for 200+ types of common errors
  • Automatically create & save citations in 7,000+ styles
  • Cancel subscription anytime, no obligation

hypothesis in a lab report example

Princeton Correspondents on Undergraduate Research

How to Write An Effective Lab Report

hypothesis in a lab report example

Whether you are in lab for general chemistry, independent work, or senior thesis, almost all lab experiments will be followed up with a lab report or paper. Although it should be relatively easy to write about an experiment you completed, this is often the most difficult part of lab work, especially when the results are unexpected. In this post, I will outline the components of a lab report while offering tips on how to write one.

Understand Your Experiments Thoroughly

Before you begin writing your draft, it is important that you understand your experiment, as this will help you decide what to include in your paper. When I wrote my first organic chemistry lab report, I rushed to begin answering the discussion questions only to realize halfway through that I had a major conceptual error. Because of this, I had to revise most of what I had written so far, which cost me a lot of time. Know what the purpose of the lab is, formulate the hypothesis, and begin to think about the results you are expecting. At this point, it is helpful to check in with your Lab TA, mentor, or principal investigator (PI) to ensure that you thoroughly understand your project. 

The abstract of your lab report will generally consist of a short summary of your entire report, typically in the same order as your report. Although this is the first section of your lab report, this should be the last section you write. Rather than trying to follow your entire report based on your abstract, it is easier if you write your report first before trying to summarize it.

Introduction and Background

The introduction and background of your report should establish the purpose of your experiment (what principles you are examining), your hypothesis (what you expect to see and why), and relevant findings from others in the field. You have likely done extensive reading about the project from textbooks, lecture notes, or scholarly articles. But as you write, only include background information that is relevant to your specific experiments. For instance, over the summer when I was still learning about metabolic engineering and its role in yeast cells, I read several articles detailing this process. However, a lot of this information was a very broad introduction to the field and not directly related to my project, so I decided not to include most of it. 

This section of the lab report should not contain a step-by-step procedure of your experiments, but rather enough details should be included so that someone else can understand and replicate what you did. From this section, the reader should understand how you tested your hypothesis and why you chose that method. Explain the different parts of your project, the variables being tested, and controls in your experiments. This section will validate the data presented by confirming that variables are being tested in a proper way.

You cannot change the data you collect from your experiments; thus the results section will be written for you. Your job is to present these results in appropriate tables and charts. Depending on the length of your project, you may have months of data from experiments or just a three-hour lab period worth of results. For example, for in-class lab reports, there is usually only one major experiment, so I include most of the data I collect in my lab report. But for longer projects such as summer internships, there are various preliminary experiments throughout, so I select the data to include. Although you cannot change the data, you must choose what is relevant to include in your report. Determine what is included in your report based on the goals and purpose of your project.

Discussion and Conclusion

In this section, you should analyze your results and relate your data back to your hypothesis. You should mention whether the results you obtained matched what was expected and the conclusions that can be drawn from this. For this section, you should talk about your data and conclusions with your lab mentors or TAs before you begin writing. As I mentioned above, by consulting with your mentors, you will avoid making large conceptual error that may take a long time to address.

There is no correct order for how to write a report, but it is generally easier to write some sections before others. For instance, because your results cannot be changed, it is easier to write the results section first. Likewise, because you also cannot change the methods you used in your experiment, it is helpful to write this section after writing your results. Although there are multiple ways to write and format a lab report or research paper, the goals of every report are the same: to describe what you did, your results, and why they are significant. As you write, keep your audience and these goals in mind.

— Saira Reyes, Engineering Correspondent

Share this:

  • Share on Tumblr

hypothesis in a lab report example

Doyle Online Writing Lab

Example of a well-written lab report.

Return to Laboratory report Instruction main page Example of a poorly written lab report

(single-spaced to conserve paper; yours should be double-spaced to leave room for comments)

Ontogenetic Color Change and Mating Cues in Largus californicus (Hemiptera: Largidae)

Carey Booth Box 123 Biology 102 2 February 1995 Lab instructor: Ned Knight Lab day: Friday

Ontogenetic color change at sexual maturation can be useful in identifying an appropriate mate for some organisms. Largus californicus individuals undergo two ontogenetic color changes. First instars are bright red, second through fifth instars are shiny blue-black, and adults are black with orange markings. Adult male mating behavior suggested that the change in color from fifth instars to adults might enable males to discriminate between nymphs and adults. Males mount adults and persist if they have mounted a female and quickly release if they have mounted another male. Males were never observed to mount nymphs. Female color patterns were altered and male's copulatory attempts were timed to determine if color pattern was used by males in mating decisions. The null hypothesis that dorsal color pattern does not significantly affect male mating behavior could not be rejected, therefore the significance of the color change from nymph to adult must be sought elsewhere.

Introduction

Ontogenetic color change at the time of sexual maturation has been shown to be advantageous to fish (Fricke 1980), reptiles (Werner, 1978), and birds (Lyon and Montgomerie, 1986). In general, dull-colored juveniles avoid predation risk and harassment by breeding males, and sexually mature individuals use bright colors to advertise their readiness to mate (Booth, 1990a). In insects, mating cues are often chemical rather than visual (Jacobson, 1972), but there are some exceptions. In diurnal Lepidoptera, adult color pattern plays an important role in the initial phase of mating behavior (Graham et al., 1980). In holometabolous insects, such as Lepidoptera, maturation is associated with dramatic morphological changes, therefore distinguishing between larvae and adults for mating attempts is not difficult. The recognition of maturity is more difficult in hemimetabolous insects where late instars may be similar to adults in size and shape. The possibility that ontogenetic color change in some Hemiptera may have evolved as an indication of maturation has not been investigated experimentally.

The mating behavior of male Largus californicus suggests that males may be using visual cues, perhaps in addition to pheromonal cues, to distinguish between fifth instars and adults for mating attempts. Fifth instars are shiny blue-black and almost adult-sized. Adults (both males and females) are black with orange borders around the thickened portion of the hemelytra and pronotum (Booth, 1990b). Although males were never observed to mount nymphs, they do mount other adults, and persist if they have mounted a female or release within a few seconds if they have mounted another male. Their distinctive courtship behavior allows an observer to identify immediately the initiation of a mating event. This consists of the male orienting towards the female when he is approximately 1 cm away, rapidly waving his antennae, leaping onto the female's back, and agitatedly grabbing the female with his legs. As their genitals do not immediately join, it is possible to separate a pair before they actually mate.

These bugs do not fly and are easily handled and painted without significantly disrupting their normal behavior. Experiments were designed to determine if males use color cues in their mating decision and if their behavior could explain the significance of the ontogenetic color change from fifth instars to adults. The null hypothesis that dorsal color pattern does not significantly affect male mating behavior was tested.

Materials and Methods

The experiment was performed outdoors at the Main Campus Reserve at the University of California, Santa Barbara on January 31, 1988. Bugs were collected from the Reserve on the morning of the testing day. Tests were performed when the bugs are normally active (1030 to 1430 hours) and control tests were interspersed between experimental tests so that time of day, temperature, cloudiness, and other environmental variables would be approximately the same between experiment and control.

An acrylic black paint and clear finish were used in each treatment. The first treatment was black paint and clear finish on the ventral surface of the female to control for the smell of the paints without altering the black and orange pattern on the dorsum. The second treatment was clear finish on the dorsum to control for covering the dorsal surface, which may reduce any scent emitted or otherwise affect the female's behavior. The third treatment was black paint on the dorsum to mimic the color of the fifth instars. The three treatments will be referred to as normal, clear, and black for brevity.

One female was used for all three treatments to hold other aspects (size, shape, scent) of the female's attractiveness constant. The order of presentation of the three treatments was necessarily the same for all males, as the one female in each experiment could only have black paint added after the normal and clear treatments. This design allows for a repeated measures analysis of variance as each male is tested with the same female under three different paint conditions.

After each painting, the female was placed in a clear plastic 9 x 7 x 3 cm box. Males were held separately in labeled plastic petri dishes. Each male was introduced one at a time into the box at the point farthest from the female. He was removed when he mounted the female or after an arbitrarily chosen time of 270 seconds had elapsed, whichever came first. The time to mount or 270 seconds (no-mount) was recorded. The pair was separated before their genitalia joined so no actual mating occurred. After all 15 males were tested, the female was painted for the next treatment and the males were tested in the same order.

To control for the possibility of males tiring by the second or third trial, a similar number of different males were tested three times each with one untreated female; i.e. no changes were made to the female between trials. Trials were alternated between experimental and control males throughout the day of testing. A total of two females (one experimental and one control) and 29 males (15 experimental and 14 control) were used.

Statistical analyses were performed using the StatView program on a Macintosh microcomputer. One-way, repeated measures ANOVAs were used to test for differences in males' time to mount among the three treatments and among the three control trials.

No significant differences were found in males' time to mount among the three treatments or among the three control trials based on a repeated measures ANOVA (Table 1). Males mounted black painted females as readily as females with the typical black and orange pattern.

There was a slight, but not significant, increase in male's mean time to mount for the black treatment as compared to the normal and clear treatments (Figure 1). The 95% confidence intervals were also larger for the black treatment. The first control trial had a slightly larger, but not significantly different, male's mean time to mount as compared to the second and third trials (Figure 2). The male's mean times to mount were lower for the three control trials than for the three experimental treatments.

Because the maximal time males were allowed to stay in the box without mounting the female was chosen arbitrarily, the one case where a male did not mount the female within the allotted 270 seconds could have biased the results (Table 1). After excluding the mount time for the male that failed to mount, the results did not differ qualitatively from the above: no significant differences were found.

By using one female for all three color treatments, any non-color aspects of the female's attractiveness were held constant. As the null hypothesis (that males' time to mount is not significantly affected by color of the female) was not rejected, males evidently used those other traits in seeking a mate. The male behavior of mounting other adults (male or female) and not nymphs may indicate that there are pheromonal differences between nymphs and adults but not between adult males and females. Males release other males rapidly once contact has been made, so chemical cues transferred by touch or other close range signals (such as sound) may be used to distinguish males from females. There are slight shape differences between nymphs and adults (nymphs are more spherical) that could possibly be used by males in mating decisions. Other experiments are necessary to determine the nature of the communication between adults and between adults and nymphs.

Among hemipterans, several species use pheromones as mating cues. Males of the southern green stink bug (Nezara viridula) release a pheromone that attracts females, males, late-stage nymphs, and a parasitoid (Aldrich et al., 1987). Females of Dysdercus cingulatus and Pyrrhocoris apterus also produce substances attractive to males (Osmani and Naidu, 1967; Zdarek, 1970). As these last two species are in the same superfamily (Pyrrhocoroidea) as L. californicus, it is possible that L. californicus females also produce a pheromone that is attractive to males. However, several species in the family Largidae, including L. cinctus (a close relative of L. californicus), have minimal development of the metathoracic scent gland evaporative area (Schaefer, 1972), so their use of pheromonal communication may be limited. The use of pheromones does not rule out the possibility that visual cues may also be important.

Aldrich, J. R., J. E. Oliver, W. R. Lusby, J. P. Kochansky and J. A. Lockwood. 1987. Pheromone strains of the cosmopolitan pest, Nezara viridula (Heteroptera: Pentatomidae). J. Exp. Zool. 244: 171-175.

Booth, C. L. 1990a. Evolutionary significance of ontogenetic colour change in animals. Biol. J. Linn. Soc. 40: 125-163.

Booth, C. L. 1990b. Biology of Largus californicus (Hemiptera: Largidae). Southwestern Naturalist 35: 15-22.

Fricke, H. W. 1980. Juvenile-adult colour patterns and coexistence in the territorial coral reef fish Pomacanthus imperator. Mar. Ecol. 1: 133-141.

Graham, S. M., W. B. Watt and L. F. Gall. 1980. Metabolic resource allocation vs. mating attractiveness: Adaptive pressures on the "alba" polymorphism of Colias butterflies. Proc. Natl. Acad. Sci. 77: 3615-3619.

Jacobson, M. 1972. Insect sex pheromones. Academic Press, New York.

Lyon, B. E. and R. D. Montgomerie. 1986. Delayed plumage maturation in passerine birds: reliable signaling by subordinate males? Evolution 40: 605-615.

Osmani, Z. and M. B. Naidu. 1967. Evidence of sex attractant in female Dysdercus cingulatus Fabr. Indian J. Exp. Biol. 5: 51.

Schaefer, C. W. 1972. Degree of metathoracic scent-gland development in the trichophorous Heteroptera (Hemiptera). Ann. Entomol. Soc. Am. 65: 810-821.

Werner, D. I. 1978. On the biology of Tropidurus delanonis, Baur (Iguanidae). Z. Tierpsychol. 47: 337-395.

Zdarek, J. 1970. Mating behaviour in the bug, Pyrrhocoris apterus L. (Heteroptera): ontogeny and its environmental control. Behaviour 37: 253-268.

Table 1. Repeated measures ANOVA on males' time to mount female (in seconds).

Treatment or Trial

number males

mean time ± SEM

number no-mounts

ANOVA Between Treatments

F

df

P

Experiment
Normal
Clear
Black
15
15
15
43.9 ± 10.9
35.4 ± 6.1
64.7 ± 20.5
0
0
1
Control
Trial 1
Trial 2
Trial 3
14
14
14
30.4 ± 7.2
19.0 ± 3.8
19.6 ± 5.4
0
0
0

a Males' copulatory attempts were timed from point of entry into female container.

b SEM = standard error of the mean

c F = F statistic

d df = degrees of freedom for numerator, denominator

e P = probability value

f Each Largus californicus male was tested with the same female under three different paint conditions. Black and clear paint on the dorsum = Normal treatment. Clear paint on the dorsum = Clear treatment. Black paint on the dorsum = Black treatment to mimic the color of the fifth instar larva.

g Different males were tested three times each with one untreated female = Control trials 1-3.

Figure 1: Mean male mount time (sec) with 95% confidence intervals under three experimental conditions. Each Largus californicus male was tested for time to mount (attempting copulation) with the same female under three different paint conditions. Normal = Black and clear paint on the dorsum to control for odor of paints. Clear = Clear paint on the dorsum to control for covering the dorsal surface. Black = Black paint on the dorsum to mimic the color of the fifth instar larva.

Figure 2: Mean male mount time (sec) with 95% confidence intervals for three control trials. Different Largus californicus males were tested for time to mount (attempting copulation) three times each with one untreated female to control for order of presentation in the experimental treatments.

 


Improving your Title
A good title efficiently tells the reader what the report is about. It may include such information as the subject of the experiment (what it is about), the key research variables, the kind of research methodology used, and the overall findings of the experiment. To make your titles better, follow these guidelines:

Improving your Abstract
A good Abstract is a miniature version of the lab report in one concise paragraph and labeled Abstract.

If you are not sure what should be included in each summary sentence, use the following list as a guide:

If your Abstract is too long, look carefully at each summary sentence and take out any information that is not essential to that section of the report.

Improving your Introduction


To establish the scientific concept for the lab you need to do two things:

1. state what the lab is about, that is, what scientific concept (theory, principle, procedure, etc.) you are supposed to be learning about by doing the lab. You should do this briefly, in a sentence or two. If you are having trouble writing the opening sentence of the report, you can try something like: "This laboratory experiment focuses on X…"; "This lab is designed to help students learn about, observe, or investigate, X…." Or begin with a definition of the scientific concept: "X is a theory that…."

2. give the necessary background for the scientific concept by telling what you know about it (the main references you can use are the lab manual, the textbook, lecture notes, and other sources recommended by the lab manual or lab instructor; in more advanced labs you may also be expected to cite the findings of previous scientific studies related to the lab). In relatively simple labs you can do this in a paragraph following the initial statement of the scientific concept of the lab. But in more complex labs, the background may require more paragraphs.


In a paragraph, or more if you need it, write out the objectives of the lab in paragraph form and then describe the purpose of the lab: what it is that accomplishing the objectives will help you learn about the scientific concept of the lab.

1. The objective(s) are what it is you are supposed to accomplish in the experimental procedure itself. The objective(s), therefore, is usually presented in terms of a specific verb that describes what you are supposed to be doing in the lab, such as to measure, to analyze, to determine, to test etc. Often, the objective(s) for the lab is given in the lab manual. If you are having trouble phrasing the sentence about objectives, try something like: "The main objectives of this lab were to…"; "In this lab we were to…."

2. The purpose of the lab is different in significant ways from its objective(s). Purpose provides the wider view; it answers the why question, why you are doing the lab in the first place. Instead of focusing just on the specific actions of the experimental procedure, purpose looks at the experimental procedure within the context of what you are supposed to be learning.

If you are having trouble starting the sentence about the purpose of the lab, try saying something like this: "The objectives of this lab enabled me to learn about X by…"; "Performing these objectives helped me to understand X by…." To improve this part of the introduction, go back to what you have written about the scientific concept and look for a link between it and the activities you are expected to perform in the lab: what specifically about the scientific concept were these activities designed to teach you?


A good statement of the hypothesis summarizes in a sentence or two what outcomes you anticipate for the experimental procedure. Typically the outcomes will be presented in terms of the relationship between dependent and independent variables. If you are having trouble starting the paragraph on the hypothesis, try a sentence opener like this: "The hypothesis for this lab was…"; "My hypothesis was…"; "We predicted that…"; I hypothesized that…."

Providing logical reasoning for the hypothesis means explaining the reasoning that you used to make your hypothesis. Usually this reasoning is based on what you know about the scientific concept of the lab and how that knowledge led you to the hypothesis. In science, you reason from what you know to what you don't know. In a couple of sentences (more for complex labs) describe the logic that you used to reason from what you know about the scientific concept to your educated guess of the outcomes of the experimental procedure. If you need to make the logic of your hypothesis clearer, use words that indicate an explanation: because, since, due to the fact that, as a result, therefore, consequently, etc.

Often you can present the hypothesis and the supporting reasoning in one paragraph. In more complex labs, especially those with multiple procedures and therefore multiple hypotheses, you may need more paragraphs, perhaps one for each hypothesis.

Improving your Methods

A good Methods section describes what you did in the lab in a way that is easy to understand and detailed enough to be repeated. To make your Methods better, follow these guidelines:

Improving your Results


Results sections typically begin with a brief overview of the findings. This is where you sum up your findings. Such a statement is typically a sentence or two. This summary will act as the opening sentence for the Results. If you had trouble getting the first sentence started, here are some possibilities: "The results of the lab show that …"; "The data from the experiments demonstrate that…"; "The independent variable X increased as Y and Z were…."

One of the main problems with visuals is lack of clarity. You may have chosen a form of visual that does not represent the data clearly. To see if there is a form of visual that represents the data more clearly, go to the LabWrite Graphing Resources for help.

Another problem with visuals can be ascribed to lack of accuracy. Visuals are accurate when they correctly represent the data from the experiment. If there is a problem with accuracy, you should check three points at which accuracy could be jeopardized: (1) you may have recorded the raw data from the procedure incorrectly; (2) you may have entered the raw data onto the spread sheet incorrectly; and (3) you may have made careless errors in the format of the visuals, particularly in labeling the x- and y-axes and in designating the units along those axes.

The presentation of findings in words should be ordered according the order of the visuals, each visual being described in words. Each description should include a sentence or so summarizing the visual and then any details from the visual pertinent to the data from that visual. To make the verbal part of your Results better, follow this general outline:

Etc.

The verbal representation of each visual should refer explicitly to the visual (Table 1, Figure 2, etc.). You should create the sense that the visual and the word representations of data are working together. The primary way of doing that is to cite the visuals in your verbal findings. If you had trouble integrating the verbal and the visuals, be sure you have, at a minimum, a reference to the visual in the first sentence of each paragraph when you describe the overall finding of the visual.

Improving your Discussion

The Discussion should start with a sentence or two in which you make a judgment as to whether your original hypothesis (from the Introduction) was supported, supported with qualifications, or not supported by the findings. To improve the opening of your Introduction, make sure your judgment is stated clearly, so that the reader can understand it. There are, generally speaking, three possible conclusions you could draw:

If you had trouble composing this sentence, try being straightforward about it, for example, "The hypothesis that X solution would increase in viscosity when solutions Y and Z were added was supported by the data."


After stating the judgment about the hypothesis, you should provide specific evidence from the data in the Results to back up the judgment. The first key to improving this part of the Discussion is finding specific evidence reported in the Results that you can use to back up your judgment about your hypothesis. The second key is to describe the evidence in such a way that the reader can clearly see that there is sufficient evidence that supports your judgment about the hypothesis. Be specific. Point out specific evidence from the Results and show how that evidence contributed to your judgment about the hypothesis.


You should return to the scientific concept of the lab (described in the Introduction) and use that concept as a basis for explaining your judgment of the hypothesis. Your understanding of the scientific concept may have changed by doing the lab.

Problems with the sufficiency of the explanation refer to the reader's judgment that you didn't include enough details in your explanation, that there wasn't enough of an explanation to satisfy the reader that you fully understood why the relationship between the results and hypothesis was what it was. You need to provide greater depth in your explanation. Do some brainstorming. Look again at the explanation you placed at the end of the Introduction. Jot down more details about the explanation and use those jottings to help you expand that part of the Discussion.

Problems with the logic of the explanation refer to the reader's judgment that your explanation of the support or lack of support of the hypothesis did not adhere to sound scientific reasoning. Look at the reasoning you used in the explanation. It should follow one of four basic arguments:

1. If the results fully support your hypothesis and your reasoning was basically sound, then elaborate on your reasoning by showing how the science behind the experiment provides an explanation for the results.

2. If the results fully support your hypothesis but your reasoning was not completely sound, then explain why the initial reasoning was not correct and provide the better reasoning.

3. If the results generally support the hypothesis but with qualifications, then describe those qualifications and use your reasoning as a basis for discussing why the qualifications are necessary.

4. If the results do not support your hypothesis, then explain why not; consider (1) problems with your understanding of the lab's scientific concept; (2) problems with your reasoning, and/or (3) problems with the laboratory procedure itself (if there are problems of reliability with the lab data or if you made any changes in the lab procedure, discuss these in detail, showing specifically how they could have affected the results and how the errors could have been eliminated).

You can also improve the logic of your explanation by using words that make your argument clear, such as , , , , , , etc.


A low rating in this area means that the instructor thinks that there are other interesting issues you could have discussed about your findings. Other issues that may be appropriate to address are (1) any problems that occurred or sources of error in your lab procedure that may account for any unexpected results; (2) how your findings compare to the findings of other students in the lab and an explanation for any differences (check with the lab instructor first to make sure this is permissible); (3) suggestions for improving the lab.

Improving your Conclusion

A good Conclusion takes you back to the larger purpose of the lab as stated in the Introduction: to learn something about the scientific concept, the primary reason for doing the lab. The Conclusion is your opportunity to show your lab instructor what you learned by doing lab and writing the lab report.

You can improve your Conclusion first by making a clearer statement of what you learned. Go back to the purpose of the lab as you presented it in your Introduction. You are supposed to learn something about the scientific concept or theory or principle or important scientific procedure that the lab is about. If you are not sure if you have stated what you have learned directly enough, read your first paragraph to see if your reader would have any doubt about what you have learned. If there is any doubt, you may begin the paragraph by saying something like, "In this lab, I learned that ...."

Simply saying you learned something is not necessarily going to convince the reader that you actually did learn it. Demonstrate that you did indeed learn what you claimed to have learned by adding more details to provide an elaboration on the basic statement. Read over the Results and Discussion and jot down some notes for further details on what you have learned. Look carefully at the statement of what you have learned and underline any words or phrases that you could "unpack," explain in more detail. Use this brainstorming as a way of helping you to find details that make your Conclusion more convincing.

If you think you need to do more to convince your reader that you have learned what you say you have learned, provide more details in the Conclusion. For example, compare what you know now with what you knew before doing the lab. Describe specific parts of the procedure or data that contributed to your learning. Discuss how you may be able to apply what you have learned in the lab to other situations in the future.

 

Improving the Presentation of your Report


Different fields tend to have different styles of documentation, that is, the way you cite a source and the way you represent the source in the References. For example, biologists use the documentation style of the Council of Biological Editors, and chemists use the style of the American Chemical Society. If you don't know what style you are expected to use in your reports (it's often given in the lab manual), check with your lab instructor. For further help you can check LabWrite Resources, "Citations and References."


Tables and figures should be done to professional standards, such as proper headings and captions and numbering. For help, go to LabWrite Resource: "Revising your Visuals: Tables, Graphs, and Drawings."

Style in this case refers to your choice of words and sentence structure. The style of science writing strives to be clear and to the point. You should avoid using grand thesaurus words and long, artfully convoluted sentences.

As to choice of words, science writing uses words that its audience (other scientists in the field) will readily understand. To outsiders, the scientific vocabulary of this language looks like a lot of jargon. But the point is that scientific words that are obscure to outsiders are usually not obscure to the insiders that comprise the scientific audience. Your writing should sound like scientific writing. This means that you should go ahead and use proper scientific terminology, but you should also choose plain, everyday words for non-scientific terminology.

Your sentences should be clear and readable for your educated audience. Avoid excessively long and meandering sentences. But don't use a lot of very short sentences, either. Vary your sentence length. If you have difficulties with making your sentences readable, read over them aloud, noting the sentences that seem to be too long or are hard to read. Rewrite those sentences so that they flow more easily.

Also, avoid using quotations. Scientists very rarely quote from source materials; they do so only when a particular wording is important to the point they are trying to make. Using direct quotations is appropriate to English papers, but not to lab reports.

It's important that you understand that the source of grammar problems is not, for most of us, a matter of not knowing the rules of grammar. So don't worry about that. The source of most grammatical errors is simply not seeing them in your own writing. We usually read our own writing for the meaning that the words convey and not for the words themselves.

Correcting grammar problems, then, is usually a matter of learning to read our writing differently. Read your lab report at least twice specifically looking for errors in grammar. You should focus on the words and sentences themselves. You don't need any special knowledge for detecting and correcting most grammar problems. If you do read for error, you will probably be able to spot problems and correct them without having to look anything up in a handbook.

If you feel like you do need special help with grammar, go to the "On-line Writing Handbook" on the LabWrite Resources Page.

First, run the spell-checker on your computer. That should take care of almost all of your spelling problems. Sometimes, however, there are words that the spell-checker does not catch because they are words that are actually spelled correctly but are used for the wrong meaning, like using "to" for "too" and "that" for "than." You should be able to spot these misuses of words by reading over the report looking for error, as described under "grammar errors" immediately above.

 

Overall Aims of the Report: The student...

This is, of course, the purpose for doing the lab, to learn something about the science of the course you are taking. Reading your lab report gives your teacher a good idea of how well you have achieved this all important aim. It's your job in the lab report to represent as fairly as you can what you have learned.

What you have learned is indicated in the report, especially the Introduction and the Conclusion. You can improve the Introduction by (1) expressing more clearly the scientific concept you are supposed to be learning about and (2) showing that you have a good understanding of the scientific concept (see treatment of Introduction above). In addition, check your designation of the purpose of the lab in the Introduction. Be sure that it explicitly and clearly makes the connection between the objectives of the procedure and the scientific concept.

The other key part of the report you should review is the Conclusion. This is where you make your strongest case for what you learned in doing the lab. You may be able to improve the Conclusion by rewriting the statement of what you have learned, revising it so that it is clearer to the reader. You could also enhance the rest of the Conclusion by adding more details concerning what you have learned (see treatment of Conclusion above). Remember, your job is to convince your reader that you have achieved the overall learning goal of the lab, and this is the section of the report in which you do that directly.


One of the objects of the lab and lab report is to give you the experience of participating in scientific inquiry, the form of thinking that defines science. In other words, you need to show through the lab report that you can think like a scientist. There are key places in the report where you indicate your ability to do that.

The first is found at the end of the Introduction where you present your hypothesis, which drives scientific inquiry. You can improve this part of the report by (1) restating the hypothesis so that it more clearly and more specifically presents your educated guess of the outcomes of the experimental procedure and (2) enhancing the logic that you use to show how you have reasoned from what you know about the scientific concept to your hypothesis. You may need to make the links in that logical chain clearer to the reader, or you may need to entirely rethink your reasoning (which could lead to a different hypothesis).

The other place in your report in which you exhibit your ability to think scientifically is in the Discussion. That's where you come back to the hypothesis to see if it is supported or not supported by the results of the procedure. First, are you making a reasonable judgment about whether or not the hypothesis is supported by the findings? Second, do you provide clear evidence from the Results that back up your judgment? And third, do you give a sound explanation, based on your understanding of the scientific concept of the lab, for your judgment? Perhaps you need to revise your explanation so that it is more logical, provides a greater depth of discussion (more details), and treats all the facts that are relevant.

Also in the Discussion you have the opportunity to compare your results to the results of others, other students in the lab or (in more sophisticated labs) published scientific studies. This is an important aspect of scientific inquiry. Look to see that you make the necessary comparisons and that your explanations for the comparisons are full and logical.

There are two ways of looking at this aim, depending on the kind of lab you are in. In some labs, there is a "right answer," a specific unknown or standard measurement you are expected to find. In these cases, the emphasis of the aim is on "expected outcomes." That is, your laboratory procedure is expected to yield certain results and, to a certain extent, the quality of your work depends on whether or not you attain those results.

In other labs, there may be no established outcome for the procedure, or it may be that doing the procedure in a scientifically sound way is more important than the particular answer you get.

In both kinds of labs, the places where you need to focus your efforts on improvement are Methods and Results. If you need to have the right answer, then you should revisit your lab notebook to search out errors in recording data and transcribing data to spreadsheet and in any calculations you have done. You must rewrite your report accordingly.

But if your aim is to demonstrate that your procedures are sound and that they legitimately lead to your results, then look at these sections of the report. Is your procedure described clearly enough? Are your results presented in sufficient detail? The point is to demonstrate that there is a clear relationship between procedure and outcomes.

 

 
   

© Copyright NC State University 2004
Sponsored and funded by National Science Foundation
(DUE-9950405 and DUE-0231086)

Site design by Rosa Wallace

Rev. RW 5/15/05

IMAGES

  1. 😝 How to write hypothesis for lab report. Hypothesis For Lab Report

    hypothesis in a lab report example

  2. Lab report hypothesis sections

    hypothesis in a lab report example

  3. Formal Lab Report

    hypothesis in a lab report example

  4. 😊 Experiment report example. How to Write a Microbiology Lab Report: 14

    hypothesis in a lab report example

  5. Biology Lab Report

    hypothesis in a lab report example

  6. ️ Lab hypothesis. Guidelines for writing a lab report. 2019-02-21

    hypothesis in a lab report example

VIDEO

  1. HOW TO WRITE A LAB REPORT w/ Dr. B

  2. Proper Lab Report Format and Expectations

  3. How to write (draw) a Lab Report for Physics lab experiments easy science NTU

  4. Hypothesis in Research

  5. Hypothesis test(One sample mean) using Excel|| Ep-21|| ft.Nirmal Bajracharya

  6. Hypothesis test(Two sample means using Excel ||Ep-22|| ft.Nirmal Bajracharya

COMMENTS

  1. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  2. PDF Biology Lab Report Sample

    Example hypothesis: If the number of serial dilutions increases, the number of bacterial colonies ... Biology Lab Report Sample, Cont'd References ____ Citations are provided for every reference cited in the report and are in APA format. Please consult the Writing Center's "APA Sample Paper" or Purdue Owl

  3. How to Write a Lab Report

    Lab Report Example (Continued) Hypothesis: Now, state your hypothesis. It's important to note that a hypothesis is not the same as predicting a future outcome of an experiment. ... Lab Report Example. Hopefully, these descriptions have helped as you write your next lab report. Remember that different instructors may have different preferences ...

  4. How To Write A Lab Report

    Introduction. Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure: Start with the broad, general research topic. Narrow your topic down your specific study focus. End with a clear research question.

  5. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  6. How to Write a Lab Report: Step-by-Step Guide & Examples

    A typical lab report would include the following sections: title, abstract, introduction, method, results, and discussion. The title page, abstract, references, and appendices are started on separate pages (subsections from the main body of the report are not). Use double-line spacing of text, font size 12, and include page numbers.

  7. PDF Lab Report Guide: How to Write in the Format of a Scientific Paper

    In order to write a lab report in the format of a formal scientific paper, it is important to see where the format fits within the broader context of scientific ... high school, in which scientists make a hypothesis, test the hypothesis, gather results, and make conclusions based on their results. While this

  8. Library Research Guides: STEM: How To Write A Lab Report

    The introduction of a lab report discusses the problem being studied and other theory that is relevant to understanding the findings. The hypothesis of the experiment and the motivation for the research are stated in this section. Write the introduction in your own words. Try not to copy from a lab manual or other guidelines.

  9. PDF The Complete Guide to Writing a Report for a Scientific ...

    A lab report is fundamentally your account of the experiment you have performed. ... For example, if there are any subtopics that you think readers will enjoy exploring, briefly allude at them ... As it is the results of the experiment that ultimately determine the potency of the hypothesis, this section holds eminent significance. Undoubtedly ...

  10. How to Write a Lab Report

    Title Page. Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states: . The title of the experiment. Your name and the names of any lab partners. Your instructor's name. The date the lab was performed or the date the report was submitted.

  11. Scientific Reports

    This handout provides a general guide to writing reports about scientific research you've performed. In addition to describing the conventional rules about the format and content of a lab report, we'll also attempt to convey why these rules exist, so you'll get a clearer, more dependable idea of how to approach this writing situation ...

  12. How to Write Hypothesis for Lab Report

    If leaf color change is related to temperature , then exposing plants to low temperatures will result in changes in leaf color. Notice that these statements contain the words, if and then. They are necessary for a formalized hypothesis. But not all if-then statements are hypotheses. For example, "If I play the lottery, then I will get rich.".

  13. Scientific Lab Reports

    Writing a Lab Report. Writing a scientific lab report is significantly different from writing for other classes like philosophy, English, and history. The most prominent form of writing in biology, chemistry, and environmental science is the lab report, which is a formally written description of results and discoveries found in an experiment.

  14. How to Write a Lab Report: Examples from Academic Editors

    Clean the samples thoroughly using ethanol to remove any impurities or oils. Weigh each sample accurately using a digital scale and record the initial weight. Prepare a 3% NaCl solution by dissolving 30 g of NaCl in 1000 mL of deionized water. Pour 250 mL of the 3% NaCl solution into each beaker.

  15. PDF Writing a Lab Report

    Discussion/Conclusion: This section of a lab report consists of four or five major parts, as follows. It generally follows a triangle format: Whether or not the hypothesis was supported. Least general (conclusion for this experiment) Typically the first sentence of the discussion. Why the hypothesis was (not) supported.

  16. Formatting a testable hypothesis

    A hypothesis is a tentative statement that proposes a possible explanation to some phenomenon or event. A useful hypothesis is a testable statement, which may include a prediction. A hypothesis should not be confused with a theory. Theories are general explanations based on a large amount of data. For example, the theory of evolution applies to ...

  17. Lab Report Format

    A typical lab report format includes a title, introduction, procedure, results, discussion, and conclusions. A science laboratory experiment isn't truly complete until you've written the lab report. You may have taken excellent notes in your laboratory notebook, but it isn't the same as a lab report. The lab report format is designed to ...

  18. How to Write a Lab Report

    For any lab report, use a professional font and size. For example, 12-point Times New Roman. Double-space the report. Include a page number, usually either in the top or bottom right corner of each page. Clearly separate specific sections of the report with headings and subheadings.

  19. How to Write An Effective Lab Report

    Abstract. The abstract of your lab report will generally consist of a short summary of your entire report, typically in the same order as your report. Although this is the first section of your lab report, this should be the last section you write. Rather than trying to follow your entire report based on your abstract, it is easier if you write ...

  20. Example of a well-written lab report

    Example of a well-written lab report. Return to Laboratory report Instruction main page Example of a poorly written lab report ... As the null hypothesis (that males' time to mount is not significantly affected by color of the female) was not rejected, males evidently used those other traits in seeking a mate. The male behavior of mounting ...

  21. Science: Lab report

    A science lab report is a structured way of communicating the outcomes of your practical work. The structure of a typical lab report includes the following sections: Introduction - Why you conducted the practical work, and indicate your aim, hypothesis or research question. Method - How you conducted the practical work and how any data processed.

  22. LabCheck : Improving your lab report

    Improving your Introduction. successfully establishes the scientific concept of the lab. To establish the scientific concept for the lab you need to do two things: 1. state what the lab is about, that is, what scientific concept (theory, principle, procedure, etc.) you are supposed to be learning about by doing the lab.

  23. These are the Top 10 Emerging Technologies of 2024

    The World Economic Forum's Top 10 Emerging Technologies of 2024 report lists this year's most impactful emerging technologies. The list includes ways artificial intelligence is accelerating scientific research with a focus on applications in health, communication, infrastructure and sustainability.