• Who’s Teaching What
  • Subject Updates
  • MEng program
  • Opportunities
  • Minor in Computer Science
  • Resources for Current Students
  • Program objectives and accreditation
  • Graduate program requirements

Admission process

  • Degree programs
  • Graduate research
  • EECS Graduate Funding
  • Resources for current students
  • Student profiles
  • Instructors
  • DEI data and documents
  • Recruitment and outreach
  • Community and resources
  • Get involved / self-education
  • Rising Stars in EECS
  • Graduate Application Assistance Program (GAAP)
  • MIT Summer Research Program (MSRP)
  • Sloan-MIT University Center for Exemplary Mentoring (UCEM)
  • Electrical Engineering
  • Computer Science
  • Artificial Intelligence + Decision-making
  • AI and Society
  • AI for Healthcare and Life Sciences
  • Artificial Intelligence and Machine Learning
  • Biological and Medical Devices and Systems
  • Communications Systems
  • Computational Biology
  • Computational Fabrication and Manufacturing
  • Computer Architecture
  • Educational Technology
  • Electronic, Magnetic, Optical and Quantum Materials and Devices
  • Graphics and Vision
  • Human-Computer Interaction
  • Information Science and Systems
  • Integrated Circuits and Systems
  • Nanoscale Materials, Devices, and Systems
  • Natural Language and Speech Processing
  • Optics + Photonics
  • Optimization and Game Theory
  • Programming Languages and Software Engineering
  • Quantum Computing, Communication, and Sensing
  • Security and Cryptography
  • Signal Processing
  • Systems and Networking
  • Systems Theory, Control, and Autonomy
  • Theory of Computation
  • Departmental History
  • Departmental Organization
  • Visiting Committee
  • Graduate programs
  • Past Terms' Subject Updates and WTW
  • Subject numbering
  • FAQ about Fall 2024 Changes
  • 2022 Curriculum Transition
  • 6-1: Electrical Science and Engineering
  • 6-2: Electrical Engineering and Computer Science
  • 6-3: Computer Science and Engineering
  • 6-4: Artificial Intelligence and Decision Making
  • 6-5: Electrical Engineering with Computing
  • 6-7: Computer Science and Molecular Biology
  • 6-9: Computation and Cognition
  • 11-6: Urban Science and Planning with Computer Science
  • 6-14: Computer Science, Economics, and Data Science
  • Requirements
  • Application, Acceptance, and Deferral
  • Thesis Proposal
  • MEng Thesis
  • UROP and SuperUROP
  • Study Abroad
  • USAGE Members, 2023-24
  • 6-A Industrial Program
  • Degree Audits and Departmental Petitions
  • Space on Campus
  • Resources for International Students
  • Resources for Incoming Double Majors
  • Resources for Advisors
  • Graduate Admissions FAQs
  • Graduate Admissions Information Letter
  • What faculty members are looking for in a grad school statement of objectives.
  • Conditions of Appointment as a Teaching Assistant or Fellow
  • RA Appointments
  • Fellowship Appointments
  • Materials and Forms for Graduate Students
  • Subject Updates Fall 2024
  • Subject Updates Spring 2024
  • Subject Updates Fall 2023
  • Subject Updates Spring 2023
  • Subject Updates Fall 2022
  • Subject Updates Spring 2022
  • Subject Updates Fall 2021

phd in engineering mit

Thriving Stars helps answer the question, “What is a PhD degree and why do you want one?” Check out this story for a number of perspectives from EECS faculty leaders, EECS alumni and current graduate students working on their PhD degree: Thriving Stars tackles the question—what’s a PhD degree all about anyway??

phd in engineering mit

The EECS Department is the largest in the School of Engineering with about 700 graduate students in the doctoral program. [Application is for the doctoral program only — there is no terminal masters degree, but all PhD students earn a masters degree as they work towards PhD.  A Masters of Engineering is only available for qualified MIT EECS undergraduates.] 

The application website (see link below) is available on September 15, 2024, for students who wish to apply for graduate admission in September 2025. The deadline for submitting completed applications is December 15, 2024.

Applicants to the MIT EECS graduate program should apply using the   EECS online admissions site . 

Questions not answered by the  FAQs ? Send inquiries to  [email protected] .

Need more information? Read  this graduate admissions information letter .

For information on our faculty and what they’re currently working on, take a look at our Faculty Interests Guide.

For more information about writing a statement of objectives, see this article from the MIT EECS Communication Lab .

 alt=

  • Undergraduate
  • Postdoctoral Programs
  • Future Engineers
  • Professional Education
  • Open Access
  • Global Experiences
  • Student Activities
  • Leadership Development
  • Graduate Student Fellowships
  • Aeronautics and Astronautics
  • Biological Engineering
  • Chemical Engineering
  • Civil and Environmental Engineering
  • Electrical Engineering and Computer Science
  • Institute for Medical Engineering and Science
  • Materials Science and Engineering
  • Mechanical Engineering
  • Nuclear Science and Engineering
  • Industry Collaborations
  • Engineering in Action
  • In The News
  • Video Features
  • Newsletter: The Infinite
  • Ask an Engineer
  • Facts and Figures
  • Diversity, Equity & Inclusion
  • Staff Spotlights
  • Commencement 2024

The MIT School of Engineering’s mission is to educate the next generation of engineering leaders, to create new knowledge, and to serve society.

Two MIT films nominated for New England Emmy Awards

Two films produced by MIT were honored with Emmy nominations by the National Academy of Television Arts & Sciences Boston/New Englan ...

New computer vision method speeds screening of electroni ...

Boosting the performance of solar cells, transistors, LEDs, and batteries will require better electronic materials, made from novel comp ...

  • MIT researchers introduce generative AI for databases
  • MIT engineers find a way to protect microbes from extreme conditions
  • Studying astrophysically relevant plasma physics
  • Signal processing: How did we get to where we’re going?
  • Summer 2024 reading from MIT

Video Spotlight

Mit faculty founders initiative supports biotech entrepreneurs.

Twelve researchers participated in the 2023-24 MIT-Royalty Pharma Prize Competition, designed to support female biotech pioneers. The competition is part of the MIT Faculty Founder Initiative, which was launched in 2020 by the MIT School of Engineering and the Martin Trust Center for MIT Entrepreneurship.

Engineering In Action

Helping nonexperts build advanced generative ai models, dean anantha chandrakasan receives honorary degree from the national technical university of athens, making steel with electricity, “pathways to invention” documentary debuts on pbs, streaming, unlocking mrna’s cancer-fighting potential.

Sign up for our monthly newsletter and get School of Engineering updates in your inbox.

Learn how you can support the School of Engineering, our programs, and our students.

90% of students do online psets

130,000 sq ft of maker spaces (with more to come)

30,000 active alumni-based companies

 alt=

MIT CCSE

MIT Doctoral Program in Computational Science and Engineering

  • CSE PhD Overview
  • Dept-CSE PhD Overview
  • CSE Doctoral Theses
  • Program Overview and Curriculum
  • For New CCSE Students
  • Terms of Reference

MIT Doctoral Program in Computational Science and Engineering (CSE PhD)

Program overview.

The standalone doctoral program in Computational Science and Engineering ( PhD in CSE)  enables students to specialize at the doctoral level in fundamental, methodological aspects of computational science via focused coursework and a thesis. The emphasis of thesis research activities is the development and analysis of broadly applicable computational approaches that advance the state of the art.

Students are awarded the Doctor of Philosophy in Computational Science and Engineering upon successful completion of the program requirements and defense of a thesis describing significant contributions to the CSE field. Program requirements include a course of study comprising nine graduate subjects and a graduate seminar. Core and concentration subjects cover six “ways of thinking” fundamental to CSE: (i) discretization and numerical methods for partial differential equations; (ii) optimization methods; (iii) statistics and data-driven modeling; (iv) high-performance computing and/or algorithms; (v) mathematical foundations (e.g., functional analysis, probability); and (vi) modeling (i.e., a subject that treats mathematical modeling in any science or engineering discipline). Subjects taken as part of an MIT SM program can be counted toward the coursework requirement provided they satisfy core, concentration, or elective requirements as set forth  here ; consultation and approval by the program director(s) and/or administrator regarding the application of such courses toward program credit is always required.

Students applying to this program are expected to have a degree in CSE, applied mathematics, or another field that prepares them for an advanced degree in CSE. More information about the application process, requirements, and relevant deadlines can be found on the  Admissions section .

MIT Department of Biological Engineering

Search form.

  • DEI Collaborative
  • DEI Current Efforts
  • DEI Newsletter
  • Learning Resources
  • Faculty Directory
  • Staff Directory
  • Open Faculty Positions
  • Prospective Undergraduate
  • Major Degree Requirements
  • Minor Programs
  • Undergraduate Thesis
  • Research Prize
  • BE Student Life
  • Career Resources
  • Master's Degree
  • Graduate PhD Application
  • Application Assistance Program
  • Graduate FAQ
  • Graduate Life
  • Meet The Graduate Students
  • PhD Course Requirements
  • Advisor Selection
  • Thesis Committee
  • PhD Oral Exam
  • PhD Dissertation Requirements
  • BE Graduate Student Board
  • Teaching Assistant Award Winners
  • BE Communication Lab
  • Research Areas
  • Wishnok Prize
  • BATS Resources
  • BATS Archive
  • For Undergraduate Students
  • Professional Development
  • For Post Docs
  • Covid-19 Resources
  • Laboratory Safety
  • Faculty & Instructors

Prospective Graduate

Overview of the Biological Engineering (BE) PhD Program

MIT Biological Engineering’s mission is to generate and communicate new knowledge in the application of engineering principles in biological systems and to educate leaders in our discipline. We focus at the interface of engineering and biology by combining quantitative, physical, and integrative engineering principles with modern life sciences research to lead the field in the positive impacts of our research and effectiveness of our training programs. MIT BE offers a graduate PhD degree, and only accepts PhD applications through the annual Departmental process for admission fall term of the following year. Our program is an excellent match for ambitious applicants with extraordinary qualifications who want to advance the intellectual boundaries of biological engineering and make positive impacts on society through the creative and rigorous application of research in biological engineering.

PhD-level training in BE prepares students to conduct research that will:

  • Explain how biological systems function in terms of biological/chemical/physical mechanisms, and how they respond when perturbed by endogenous, environmental, and therapeutic factors
  • Engineer innovative technologies based on this understanding and apply technologies to address societal needs across all sectors including, but not limited to, biomedicine
  • Establish new biology-based paradigms for solving problems in areas of science and engineering that have not historically been impacted by biological approaches

In addition, PhD-level training in BE prepares students to translate this research for positive impact in the world by developing skills to:

  • Explain technical subject matter clearly, accurately, and in a compelling and contextual manner for a range of audiences
  • Engage collaboratively in diverse teams to contribute biological engineering expertise needed for multidisciplinary projects
  • Exercise intellectual and operational leadership to advance on goals in technically and organizationally complex scenarios
  • Exhibit integrity and ethical judgment in the design of research and the application of research results

Degree Requirements

BE PhD students complete two core courses in the first year, supplemented with four additional electives ( Course Requirements ). Individual students pace their own progress through elective coursework in consultation with their academic advisor.

In addition to the course requirements, students present an oral thesis qualifying exam to be completed by the end of the fall term in their third year.

BE PhD students complete research rotations in the fall and winter of their first year and select a BE Faculty member as a research and thesis advisor. Students carry out thesis research with the guidance and support of their faculty advisor and a thesis committee formed by the student. Technical communication is an important part of the BE PhD curriculum. Students gain and practice scientific communication skills through one or more terms of teaching experience at the graduate or undergraduate level and research-focused activities including poster and oral presentations at Departmental events including our retreat, the Bioengineering and Toxicology Seminar (BATS) series, and culminating in delivery of a written PhD thesis and oral defense of their thesis work.

For More Information

  • Graduate application
  • Graduate student FAQs  
  • BE Application Assistance Program  
  • Graduate student life
  • Graduate student handbook
  • Meet the graduate students

Please contact [email protected] for additional information regarding BE educational programs.

Ph.D. CEP Program

phd in engineering mit

The Doctor of Philosophy in Chemical Engineering Practice is a relatively new degree program built on existing strengths within the Department’s research activities, the unique resources of the David H. Koch School of Chemical Engineering Practice, and the world class resources of the Sloan School of Management. It is designed to prepare students for a fast launch into positions of leadership in industry and provides them with a foundation for completing an M.B.A. degree. It is a fixed-term degree program, requiring four calendar years; the first year is spent in course work and the Practice School, the middle two years are spent in research, and the final year is spent in the Sloan School of Management.

Ph.D. CEP Program Elements

The Ph.D. CEP program has 5 clearly-identifiable elements which will be completed by the student. There are aspects of the program which are designed to help the students integrate the material contained in the individual pieces of the program.

  • Element 1 – Core Chemical Engineering Graduate Subjects
  • Element 2 – The School of Chemical Engineering Practice (CEP)
  • Element 3 – Research Project
  • Element 4 – 1st Year of the MIT Sloan MBA
  • Element 5 – Integrative Perspective Paper (Capstone Paper)

The degree requires that you complete:

  • The core curriculum, as well as the departmental biology requirement
  • Practice School requirements, including a one-semester industrial internship (culminating in an M.S.CEP degree)
  • Written and oral qualifying examinations
  • Thesis describing original research
  • Coursework at the Sloan School of Management
  • Capstone paper, combining technical experience with business training, appended to the thesis

For incoming, first-year graduate students, academic advisors are members of the Committee for Graduate Students. When you select a research topic and begin your thesis, the research supervisor becomes your academic advisor. In general, students choose research advisors at the end of their first Fall semester at MIT. Should you wish to choose a research advisor from a department other than Chemical Engineering, you will also need to choose a co-advisor from the Chemical Engineering faculty.

Prior to Registration Day (Fall and Spring semesters), your subject selection must first be approved by your advisor before the Graduate Officer can authorize registration on Registration Day. Advisor approval should also be obtained for any subsequent subject add/drop actions during the term (no additional authorization by the Graduate Officer is required).

Program Admission

Students interested in the Ph.D.CEP program should direct their applications to the Chemical Engineering Graduate Admissions Committee during the regular admission cycle. Applications for Ph.D.CEP will only be considered for September matriculation. Applications will be reviewed by both MIT Sloan and Chemical Engineering and they must receive approval of both for admission to the Ph.D.CEP program. The Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) is required of applicants whose first language is not English. Unofficial (self-reported) GRE general exam scores are recommended for PhDCEP applicants.

An interview at MIT in late February will be part of the application process in most cases. Applicants will be interviewed over the phone.

The traditional Ph.D./Sc.D. program and the new Ph.D.CEP program are separate and distinct paths to the doctoral degree in the Chemical Engineering Department at MIT. The Ph.D.CEP program will be limited to 10 or fewer students per year. Because the focus and educational goals of the Ph.D.CEP are substantially different from those of the traditional Ph.D./Sc.D. program, the two programs are expected to appeal to two different populations of applicants. Applicants for graduate study should submit only one application, and indicate for which program they wish to be considered. Applications made to both programs are deemed inconsistent, and therefore discouraged. Applicants are expected to consider carefully the offerings of each program in relation to their own goals and aspirations, and to choose a program accordingly. Transfer between programs will not be permitted except as outlined earlier.

You can obtain the information that you will need to apply to MIT’s graduate programs from the MIT Graduate Admissions web site.

For more information about admission to the Ph.D.CEP program, please contact:

Melanie Charette Academic Administrator Student Office Department of Chemical Engineering Massachusetts Institute of Technology Room 66-366 77 Massachusetts Avenue Cambridge, MA 02139 Email: [email protected]

For general information about the Ph.D.CEP Graduate Program, please contact:

Tuition & Financial Aid

Students accepted into the PhDCEP program will be supported via Chemical Engineering Department fellowships during the first calendar year; they will be awarded research or teaching assistantships during the entire period of participation in the thesis research project. During the final year of the program, PhDCEP students will pay tuition and living expense costs from their own resources, or from graduate student loans available through MIT and other third-party sources. It is important to note that the tuition costs for this final year will be somewhat larger than the standard MIT graduate tuition because enrollment in the MIT Sloan MBA program requires a premium tuition payment. Get more information from Student Financial Services >>

  • Opportunities
  • Support Oceans At MIT

Oceans at MIT

  • Undergraduate Opportunities at MIT
  • Undergraduate Opportunities at WHOI
  • MIT-WHOI Joint Program

Graduate Study at MIT

Pursue advanced ocean-related study in Master’s and PhD programs offered across MIT in these departments:

Earth, Atmospheric, and Planetary Sciences

  • Atmospheric Science
  • Biological Oceanography
  • Chemical Oceanography
  • Marine Geology and Geophysics
  • Physical Oceanography

Department of Mechanical Engineering

  • Ocean Engineering
  • Naval Architecture & Marine Engineering
  • Naval Construction and Marine Engineering
  • Applied Ocean Science and Engineering

Department of Civil and Environmental Engineering

  • Environmental Chemistry
  • Environmental Fluid Mechanics and Coastal Engineering
  • Environmental Microbiology
  • Hydrology and Hydroclimatology

Department of Biology

  • Microbial Science and Engineering
  • MIT Sloan School of Management
  • MBA with a Certificate in Sustainability
  • PAOC in EAPS
  • Ocean Engineering in MechE
  • Parsons Laboratory in CEE

EAPS is housed in the Green Building overlooking the Charles River.

Our Community

  • Alumni Impact Stories
  • Community Recognition
  • Faculty Awards & Honors
  • Researchers & Postdocs Association (RPA^3)
  • Student Groups
  • DEI Dashboard (Internal)
  • Environment, Health, and Safety
  • Wright Brothers Wind Tunnel
  • Professors Emeriti
  • Autonomous Systems & Decision-Making
  • Computational Science & Engineering
  • Earth & Space Sciences
  • Human-System Collaboration
  • Systems Design & Engineering
  • Transportation & Exploration
  • Vehicle Design & Engineering

Undergraduate Program

  • Undergraduate Degrees & Requirements
  • Apply (via MIT Admissions)
  • Objectives & Outcomes
  • Research Opportunities
  • Work, Internships, & Extracurricular Activities

Graduate Program

Graduate degrees & requirements.

  • Graduate Fields
  • For Prospective Students
  • For Current Students
  • View Thesis Archive (via DSpace)

Certificate in Aerospace Innovation

Academics & resources.

  • Academic Calendar (via MIT Registrar)
  • AeroAstro Communication Lab
  • Resources & Support
  • Special Course Listings
  • Subject Listing (via MIT Course Catalog Bulletin)
  • Subject Evaluation (via MIT Registrar)
  • News & Impact
  • Public Events
  • Department Events (Log-in Required)
  • Department Resources

phd in engineering mit

Graduate study in the Department of Aeronautics and Astronautics includes graduate-level subjects in Course 16 and others at MIT, and research work culminating in a thesis. Degrees are awarded at the master’s and doctoral levels. The range of subject matter is described under  Graduate Fields of Study . Departmental research centers’ websites offer information on research interests. Detailed information may be obtained from the Department Academic Programs Office or from individual faculty members. For more information about MIT AeroAstro graduate degree programs, email [email protected] .

Master of Science (SM)

The Master of Science (SM) degree is a two-year graduate program with beginning research or design experience represented by the SM thesis. This degree prepares the graduate for an advanced position in the aerospace field, and provides a solid foundation for future doctoral study. The  general requirements for the Master of Science degree  are cited in the section on General Degree Requirements for graduate students. The specific departmental requirements include at least 66 graduate subject units, typically in subjects relevant to the candidate’s area of technical interest. Of the 66 units, at least 21 units must be in departmental subjects. To be credited toward the degree, graduate subjects must carry a grade of B or better. In addition, a 24-unit thesis is required beyond the 66 units of coursework. Full-time students normally must be in residence one full academic year. Special students admitted to the SM program in this department must enroll in and satisfactorily complete at least two graduate subjects while in residence (i.e., after being admitted as a degree candidate) regardless of the number of subjects completed before admission to the program. Students holding research assistantships typically require a longer period of residence. In addition, the department’s SM program requires one graduate-level mathematics subject. The requirement is satisfied only by graduate-level subjects on the list approved by the department graduate committee. The specific choice of math subjects is arranged individually by each student in consultation with their faculty advisor.

SM Requirements

  • English evaluation Test (for non-native English-speakers if not previously satisfied at MIT)
  • Technical writing requirement if not previously satisfied at MIT
  • Math requirem ent
  • 66 subject units, not including thesis units, in graduate subjects in the candidate’s area of technical interest
  • Within the 66 subject units, a minimum of 21 units from AeroAstro subjects
  • Classes taken on a pass/fail basis do not count towards degree requirements
  • Minimum cumulative grade point average of 4.0
  • Term-by-term thesis (16THG) registration and progress evaluation
  • Acceptable thesis. View SM Thesis Archive (via DSpace).

Doctoral Degree (Ph.D. or Sc.D.)

AeroAstro offers Doctor of Philosophy (Ph.D.) and Doctor of Science (Sc.D.) doctoral degrees that emphasize in-depth study, with a significant research project in a focused area. The admission process for the department’s doctoral program is described previously in this section under Admission Requirements. The doctoral degree is awarded after completion of an individual course of study, submission, and defense of a thesis proposal, and submission and defense of a thesis embodying an original research contribution. The general requirements for this degree are given in the section on  General Degree Requirements . Program requirements are outlined in a booklet titled  The Doctoral Program [PDF] . After successful admission to the doctoral program, the doctoral candidate selects a field of study and research in consultation with the thesis supervisor and forms a doctoral thesis committee, which assists in the formulation of the candidate’s research and study programs and monitors his or her progress. Demonstrated competence for original research at the forefront of aerospace engineering is the final and main criterion for granting the doctoral degree. The candidate’s thesis serves in part to demonstrate such competence and, upon completion, is defended orally in a presentation to the faculty of the department, who may then recommend that the degree be awarded.

Doctoral Program Objectives & Outcomes

AeroAstro’s doctoral program objectives are:

  • to produce original research and technologies critical to the engineering of aerospace vehicles, information, and systems.
  • to educate future leaders in aerospace research and technology.

Upon graduation, our doctoral students will have:

  • a strong foundation in analytical skills and reasoning
  • the ability to solve challenging, engineering problems
  • an understanding of the importance and strategic value of their research
  • the ability to communicate their research with context and clarity

These degrees, for which the requirements are identical, are for students who wish to carry out original research in a focused field, and already hold a master’s degree. AeroAstro offers doctoral degrees in 13 fields. A description of general MIT doctoral requirements appears in the MIT Course Catalogue .

Ph.D./Sc.D. Requirements

  • Qualifying Field Evaluation, completed within three terms of entering the department. (See below for more information.)
  • Completion of Research Process and Communication (RPC) Course
  • Formation of a thesis committee and first meeting confirmed by filing a virtual Doctoral Record Card within 2 regular terms of admission to the doctoral program.
  • Completion of the major concentration with a minimum of 60 units and completion of the minor concentration with a minimum of 30 units, as approved by the student’s thesis committee
  • Math requireme nt
  • Minimum cumulative 4.4 grade point average
  • Thesis proposal and defense within 3 regular terms of admission into the doctoral program.
  • Successful thesis submission and defense within 4 regular terms of passing the thesis proposal defense. View the doctoral thesis archive (via DSpace.)

See the AeroAstro Doctoral Program Guide for additional guidelines and the PhD Quick Guide for a complete overview.

Doctoral Qualifying Field Evaluation

A student seeking entrance to the department’s doctoral program must complete a course-based evaluation in their chosen field of study . Information about the doctoral program and the doctoral qualifying process can be found in the department’s Doctoral Program Guide .

Field Evaluation Process Timeline

DateAction/Process
July 1The will be made available on the Department website for future planning purposes. This is the finalized list (with possible course additions being the only change from that published the previous Fall) for the class of students that will initiate the FE process in September.
Mid-AugustAll students are welcome to attend the information seminar on the Field Evaluation Process provided by the Graduate Program Administrator and the Chair of the GC. 
Early September Fall Registration Day: Initiation Forms are due to the Graduate Program Administrator from students who are in the 3 semester of their graduate program.
Late December/Early JanuaryFall Grade Deadline: Completion Forms are due to the Graduate Program Administrator, including PhD advisor signature, grades, and cumulative GPA.
Mid-JanuaryCompletion/Outcome of the Field Evaluation is confirmed for all participating students.
FebruaryPhD Orientation session for all students who pass the FE. Students who have yet to initiate the exam check-in with their advisors on progress towards their FE course completion.
MayField Exams will be held for students who need to take them.

Thesis proposal and defense examples

The following are a few examples of successfully written and defended thesis proposals by doctoral candidates within AeroAstro. These may be downloaded and examined as part of your preparation for the Thesis Proposal Defense, a required part of our doctoral program.

  • Xun Huan – A Bayesian Approach to Optimal Sequential Experimental Design Using Approximate Dynamic Programming – 2013 – Proposal – Defense
  • Ashley Carlton – Scientific Imagers as High-Energy Radiation Sensors – 2017 – Proposal – Defense
  • Maria de Soria Santacruz Pich – Electromagnetic Ion Cyclotron Waves for RBR Applications – 2013 – Proposal – Defense

Interdisciplinary Programs

The department participates in several interdisciplinary fields at the graduate level, which are of special importance for aeronautics and astronautics in both research and the curriculum.

Aeronautics, Astronautics, and Statistics

The Interdisciplinary Doctoral Program in Statistics provides training in statistics, including classical statistics and probability as well as computation and data analysis, to students who wish to integrate these valuable skills into their primary academic program. The program is administered jointly by the departments of Aeronautics and Astronautics, Economics, Mathematics, Mechanical Engineering, Physics, and Political Science, and the Statistics and Data Science Center within the Institute for Data, Systems, and Society. It is open to current doctoral students in participating departments. For more information, including department-specific requirements, see the  full program description  under Interdisciplinary Graduate Programs.

Air Transportation

For students interested in a career in flight transportation, a program is available that incorporates a broader graduate education in disciplines such as economics, management, and operations research than is normally pursued by candidates for degrees in engineering. Graduate research emphasizes one of the four areas of flight transportation: airport planning and design, air traffic control, air transportation systems analysis, and airline economics and management, with subjects selected appropriately from those available in the departments of Aeronautics and Astronautics, Civil and Environmental Engineering, Economics, and the interdepartmental Master of Science in Transportation (MST) program. Doctoral students may pursue a Ph.D. with specialization in air transportation in the Department of Aeronautics and Astronautics or in the interdepartmental Ph.D. program in transportation or in the Ph.D. program of the Operations Research Center (see the section on Graduate Programs in Operations Research under Research and Study).

Biomedical Engineering

The department offers opportunities for students interested in biomedical instrumentation and physiological control systems where the disciplines involved in aeronautics and astronautics are applied to biology and medicine. Graduate study combining aerospace engineering with biomedical engineering may be pursued through the Bioastronautics program offered as part of the Medical Engineering and Medical Physics Ph.D. program in the Institute for Medical Engineering and Science (IMES) via the Harvard-MIT Program in Health Sciences and Technology (HST). Students wishing to pursue a degree through HST must apply to that graduate program. At the master’s degree level, students in the department may specialize in biomedical engineering research, emphasizing space life sciences and life support, instrumentation and control, or in human factors engineering and in instrumentation and statistics. Most biomedical engineering research in the Department of Aeronautics and Astronautics is conducted in the Human Systems Laboratory.

Today, the aerospace sector has returned to its original roots of innovation and entrepreneurship, driven not exclusively by large government or corporate entities, but by small and mid-size firms. These are experimenting with, and launching electric Vertical Takeoff and Landing and electric Short Takeoff and Landing (eVTOL and eSTOL) vehicles, cutting-edge CubeSat missions, and new drone-enabled services that offer data analytics in agriculture, renewable energy and in other sectors. Students in Aerospace Engineering and related fields have expressed a strong desire to hear from and learn about how to launch their own ventures and initiatives in aerospace. Responding to this need, AeroAstro is proud to launch a new Certificate in Aerospace Innovation in collaboration with the Martin Trust Center for MIT Entrepreneurship. To learn more, please visit the website for Certificate in Aerospace Innovation .

Computational Science and Engineering (SM or Ph.D.)

The  Master of Science in Computational Science and Engineering (CSE SM)  is an interdisciplinary program for students interested in the development, analysis, and application of computational approaches to science and engineering. The curriculum is designed with a common core serving all science and engineering disciplines and an elective component focusing on specific disciplinary topics. Current MIT graduate students may pursue the CSE SM as a standalone degree or as leading to the CSE Ph.D. program described below. The  Doctoral Program in Computational Science and Engineering (CSE Ph.D.)  allows students to specialize at the doctoral level in a computation-related field of their choice through focused coursework and a thesis through a number of participating host departments. The CSE Ph.D. program is administered jointly by the Center for Computational Science and Engineering (CCSE) and the host departments; the emphasis of thesis research activities is the development of new computational methods and/or the innovative application of computational techniques to important problems in engineering and science. For more information,  see the program descriptions  under Interdisciplinary Graduate Programs.

Joint Program with the Woods Hole Oceanographic Institution

The  Joint Program with the Woods Hole Oceanographic Institution (WHOI)  is intended for students whose primary career objective is oceanography or oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as an academic advisor; thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in their home department. The  program is described in more detail  under Interdisciplinary Graduate Programs.

Leaders for Global Operations

The 24-month  Leaders for Global Operations (LGO)  program combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field. During the two-year program, students complete a six-month internship at one of LGO’s partner companies, where they conduct research that forms the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of eight engineering programs, some of which have optional or required LGO tracks. After graduation, alumni lead strategic initiatives in high-tech, operations, and manufacturing companies.

System Design and Management

The  System Design and Management (SDM)  program is a partnership among industry, government, and the university for educating technically grounded leaders of 21st-century enterprises. Jointly sponsored by the School of Engineering and the Sloan School of Management, it is MIT’s first degree program to be offered with a distance learning option in addition to a full-time in-residence option.

Technology and Policy

The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The  Technology and Policy Program (TPP)  curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, quantitative methods, and social science. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. See the  program description  under the Institute for Data, Systems, and Society.

  • Skip to Content
  • Bulletin Home

MIT Bulletin

  • Degree Charts >
  • Aeronautics and Astronautics Fields (PhD)
  • Around Campus
  • Academic Program
  • Administration
  • Arts at MIT
  • Campus Media
  • Fraternities, Sororities, and Independent Living Groups
  • Medical Services
  • Priscilla King Gray Public Service Center
  • Religious Organizations
  • Student Government
  • Work/​Life and Family Resources
  • Advising and Support
  • Digital Learning
  • Disability and Access Services
  • Information Systems and Technology
  • Student Financial Services
  • Writing and Communication Center
  • Major Course of Study
  • General Institute Requirements
  • Independent Activites Period
  • Undergraduate Research Opportunities Program
  • First-​Year Advising Seminars
  • Interphase EDGE/​x
  • Edgerton Center
  • Grading Options
  • Study at Other Universities
  • Internships Abroad
  • Career Advising and Professional Development
  • Teacher Licensure and Education
  • ROTC Programs
  • Financial Aid
  • Medical Requirements
  • Graduate Study at MIT
  • General Degree Requirements
  • Other Institutions
  • Registration
  • Term Regulations and Examination Policies
  • Academic Performance and Grades
  • Policies and Procedures
  • Privacy of Student Records
  • Abdul Latif Jameel Poverty Action Lab
  • Art, Culture, and Technology Program
  • Broad Institute of MIT and Harvard
  • Center for Archaeological Materials
  • Center for Bits and Atoms
  • Center for Clinical and Translational Research
  • Center for Collective Intelligence
  • Center for Computational Science and Engineering
  • Center for Constructive Communication
  • Center for Energy and Environmental Policy Research
  • Center for Environmental Health Sciences
  • Center for Global Change Science
  • Center for International Studies
  • Center for Real Estate
  • Center for Transportation &​ Logistics
  • Computer Science and Artificial Intelligence Laboratory
  • Concrete Sustainability Hub
  • D-​Lab
  • Deshpande Center for Technological Innovation
  • Division of Comparative Medicine
  • Haystack Observatory
  • Initiative on the Digital Economy
  • Institute for Medical Engineering and Science
  • Institute for Soldier Nanotechnologies
  • Institute for Work and Employment Research
  • Internet Policy Research Initiative
  • Joint Program on the Science and Policy of Global Change
  • Knight Science Journalism Program
  • Koch Institute for Integrative Cancer Research
  • Laboratory for Financial Engineering
  • Laboratory for Information and Decision Systems
  • Laboratory for Manufacturing and Productivity
  • Laboratory for Nuclear Science
  • Legatum Center for Development and Entrepreneurship
  • Lincoln Laboratory
  • Martin Trust Center for MIT Entrepreneurship
  • Materials Research Laboratory
  • McGovern Institute for Brain Research
  • Microsystems Technology Laboratories
  • MIT Center for Art, Science &​ Technology
  • MIT Energy Initiative
  • MIT Environmental Solutions Initiative
  • MIT Kavli Institute for Astrophysics and Space Research
  • MIT Media Lab
  • MIT Office of Innovation
  • MIT Open Learning
  • MIT Portugal Program
  • MIT Professional Education
  • MIT Sea Grant College Program
  • Nuclear Reactor Laboratory
  • Operations Research Center
  • Picower Institute for Learning and Memory
  • Plasma Science and Fusion Center
  • Research Laboratory of Electronics
  • Simons Center for the Social Brain
  • Singapore-​MIT Alliance for Research and Technology Centre
  • Sociotechnical Systems Research Center
  • Whitehead Institute for Biomedical Research
  • Women's and Gender Studies Program
  • Architecture (Course 4)
  • Art and Design (Course 4-​B)
  • Art, Culture, and Technology (SM)
  • Media Arts and Sciences
  • Planning (Course 11)
  • Urban Science and Planning with Computer Science (Course 11-​6)
  • Aerospace Engineering (Course 16)
  • Engineering (Course 16-​ENG)
  • Biological Engineering (Course 20)
  • Chemical Engineering (Course 10)
  • Chemical-​Biological Engineering (Course 10-​B)
  • Chemical Engineering (Course 10-​C)
  • Engineering (Course 10-​ENG)
  • Engineering (Course 1-​ENG)
  • Electrical Engineering and Computer Science (Course 6-​2)
  • Electrical Science and Engineering (Course 6-​1)
  • Computation and Cognition (Course 6-​9)
  • Computer Science and Engineering (Course 6-​3)
  • Computer Science and Molecular Biology (Course 6-​7)
  • Electrical Engineering and Computer Science (MEng)
  • Computer Science and Molecular Biology (MEng)
  • Health Sciences and Technology
  • Archaeology and Materials (Course 3-​C)
  • Materials Science and Engineering (Course 3)
  • Materials Science and Engineering (Course 3-​A)
  • Materials Science and Engineering (PhD)
  • Mechanical Engineering (Course 2)
  • Mechanical and Ocean Engineering (Course 2-​OE)
  • Engineering (Course 2-​A)
  • Nuclear Science and Engineering (Course 22)
  • Engineering (Course 22-​ENG)
  • Anthropology (Course 21A)
  • Comparative Media Studies (CMS)
  • Writing (Course 21W)
  • Economics (Course 14-​1)
  • Mathematical Economics (Course 14-​2)
  • Data, Economics, and Design of Policy (MASc)
  • Economics (PhD)
  • Global Studies and Languages (Course 21G)
  • History (Course 21H)
  • Linguistics and Philosophy (Course 24-​2)
  • Philosophy (Course 24-​1)
  • Linguistics (SM)
  • Literature (Course 21L)
  • Music (Course 21M-​1)
  • Theater Arts (Course 21M-​2)
  • Political Science (Course 17)
  • Science, Technology, and Society/​Second Major (STS)
  • Business Analytics (Course 15-​2)
  • Finance (Course 15-​3)
  • Management (Course 15-​1)
  • Biology (Course 7)
  • Chemistry and Biology (Course 5-​7)
  • Brain and Cognitive Sciences (Course 9)
  • Chemistry (Course 5)
  • Earth, Atmospheric and Planetary Sciences (Course 12)
  • Mathematics (Course 18)
  • Mathematics with Computer Science (Course 18-​C)
  • Physics (Course 8)
  • Department of Electrical Engineering and Computer Science
  • Institute for Data, Systems, and Society
  • Chemistry and Biology
  • Climate System Science and Engineering
  • Computation and Cognition
  • Computer Science and Molecular Biology
  • Computer Science, Economics, and Data Science
  • Humanities and Engineering
  • Humanities and Science
  • Urban Science and Planning with Computer Science
  • African and African Diaspora Studies
  • American Studies
  • Ancient and Medieval Studies
  • Applied International Studies
  • Asian and Asian Diaspora Studies
  • Biomedical Engineering
  • Energy Studies
  • Entrepreneurship and Innovation
  • Environment and Sustainability
  • Latin American and Latino/​a Studies
  • Middle Eastern Studies
  • Polymers and Soft Matter
  • Public Policy
  • Russian and Eurasian Studies
  • Statistics and Data Science
  • Women's and Gender Studies
  • Advanced Urbanism
  • Computational and Systems Biology
  • Computational Science and Engineering
  • Design and Management (IDM &​ SDM)
  • Joint Program with Woods Hole Oceanographic Institution
  • Leaders for Global Operations
  • Microbiology
  • Music Technology and Computation
  • Operations Research
  • Real Estate Development
  • Social and Engineering Systems
  • Supply Chain Management
  • Technology and Policy
  • Transportation
  • School of Architecture and Planning
  • School of Engineering
  • Artificial Intelligence and Decision Making (Course 6-​4)
  • Biological Engineering (PhD)
  • Nuclear Science and Engineering (PhD)
  • School of Humanities, Arts, and Social Sciences
  • Humanities (Course 21)
  • Humanities and Engineering (Course 21E)
  • Humanities and Science (Course 21S)
  • Sloan School of Management
  • School of Science
  • Brain and Cognitive Sciences (PhD)
  • Earth, Atmospheric and Planetary Sciences Fields (PhD)
  • Interdisciplinary Programs (SB)
  • Climate System Science and Engineering (Course 1-​12)
  • Computer Science, Economics, and Data Science (Course 6-​14)
  • Interdisciplinary Programs (Graduate)
  • Computation and Cognition (MEng)
  • Computational Science and Engineering (SM)
  • Computational Science and Engineering (PhD)
  • Computer Science, Economics, and Data Science (MEng)
  • Leaders for Global Operations (MBA/​SM and SM)
  • Music Technology and Computation (SM and MASc)
  • Real Estate Development (SM)
  • Statistics (PhD)
  • Supply Chain Management (MEng and MASc)
  • Technology and Policy (SM)
  • Transportation (SM)
  • Aeronautics and Astronautics (Course 16)
  • Aerospace Studies (AS)
  • Civil and Environmental Engineering (Course 1)
  • Comparative Media Studies /​ Writing (CMS)
  • Comparative Media Studies /​ Writing (Course 21W)
  • Computational and Systems Biology (CSB)
  • Computational Science and Engineering (CSE)
  • Concourse (CC)
  • Data, Systems, and Society (IDS)
  • Earth, Atmospheric, and Planetary Sciences (Course 12)
  • Economics (Course 14)
  • Edgerton Center (EC)
  • Electrical Engineering and Computer Science (Course 6)
  • Engineering Management (EM)
  • Experimental Study Group (ES)
  • Global Languages (Course 21G)
  • Health Sciences and Technology (HST)
  • Linguistics and Philosophy (Course 24)
  • Management (Course 15)
  • Media Arts and Sciences (MAS)
  • Military Science (MS)
  • Music and Theater Arts (Course 21M)
  • Naval Science (NS)
  • Science, Technology, and Society (STS)
  • Special Programs
  • Supply Chain Management (SCM)
  • Urban Studies and Planning (Course 11)
  • Women's and Gender Studies (WGS)

Doctor of Philosophy in Aeronautics and Astronautics Fields

Department of Aeronautics and Astronautics

Program Requirements

Major Field of Study60
At least five subjects in a proposed field of study
Minor Program of Study30
Technical subjects (usually three) related to AeroAstro and sufficiently different from the major field
Math Requirement24
Two graduate-level Department of Mathematics subjects, or subjects from the approved math requirements list
Doctoral Research and Communication Seminar3
Graduate Thesis 168
Total Units285

Note: Students in this program can choose to receive the doctor of philosophy or the doctor of science in aeronautics and astronautics or in another departmental field of specialization. Students receiving veterans benefits must select the degree they wish to receive prior to program certification with the Veterans Administration. 

, which is updated annually. The subjects used to fulfill the math requirement can also be part of the major or minor field of study, but must total 24 units.

MIT Academic Bulletin

Print this page.

The PDF includes all information on this page and its related tabs. Subject (course) information includes any changes approved for the current academic year.

ISO Home

Computational Science and Engineering PhD

Computational Science and Engineering PhD

77 Massachusetts Avenue Building 35-434B Cambridge MA, 02139

617-253-3725 [email protected]

Website: Computational Science and Engineering PhD

Application Opens: September 15

Deadline: December 1 at 11:59 PM Eastern Time

Fee: $75.00

Note: Applicants interested in Computer Science must apply to through the Electrical Engineering and Computer Science PhD program .

Terms of Enrollment

Fall Term (September)

Standalone Program:

  • Doctor of Philosophy (PhD) in Computational Science and Engineering

Joint Program:

  • Doctor of Philosophy (PhD) in Civil Engineering and Computation
  • Doctor of Philosophy (PhD) in Environmental Engineering and Computation
  • Doctor of Philosophy (PhD) in Mechanical Engineering and Computation
  • Doctor of Philosophy (PhD) in Computational Materials Science and Engineering
  • Doctor of Philosophy (PhD) in Chemical Engineering and Computation
  • Doctor of Philosophy (PhD) in Computational Earth, Atmospheric and Planetary Sciences
  • Doctor of Philosophy (PhD) in Aerospace Engineering and Computational Science
  • Doctor of Philosophy (PhD) in Mathematics and Computational Science
  • Doctor of Philosophy (PhD) in Nuclear Engineering and Computation
  • Doctor of Philosophy (PhD) in Computational Nuclear Science and Engineering

Affiliated Departments

  • Aeronautics and Astronautics
  • Chemical Engineering
  • Civil and Environmental Engineering
  • Earth, Atmospheric, and Planetary Studies
  • Materials Science and Engineering
  • Mathematics
  • Mechanical Engineering
  • Nuclear Science and Engineering

Standardized Tests

Graduate Record Examination (GRE)

  • General test not required for Fall 2024 admission cycle
  • Institute code: 3514
  • Department code: 0000

International English Language Testing System (IELTS)

  • Minimum score required: 7
  • Electronic scores send to: MIT Graduate Admissions

TOEFL exam may be accepted in special cases. Waivers are not offered.

Financial Support

The CCSE PhD is an interdisciplinary program that collaborates with eight affiliated departments. As financial support may vary by department, CCSE graduate students are encouraged to contact their home department for more information.

Application Requirements

  • Online application (including Subjects Taken section)
  • Statement of objectives (limited to one page)
  • Three letters of recommendation
  • Transcripts
  • English proficiency exam scores
  • CV or resume
  • GRE scores (not required for Fall 2023 admission cycle)

Special Instructions

The Computational Science and Engineering (CSE) PhD program allows students to specialize at the doctoral level in a computation-related field of their choice through focused coursework and a doctoral thesis. Applications from candidates who have a strong foundation in core disciplinary areas of mathematics, engineering, physics, or related fields are strongly encouraged.

Applicants interested in Computer Science: Please explore the offerings of the  Department of Electrical Engineering and Computer Science.

This site uses cookies to give you the best possible experience. By browsing our website, you agree to our use of cookies.

If you require further information, please visit the Privacy Policy page.

Smart. Open. Grounded. Inventive. Read our Ideas Made to Matter.

Which program is right for you?

MIT Sloan Campus life

Through intellectual rigor and experiential learning, this full-time, two-year MBA program develops leaders who make a difference in the world.

A rigorous, hands-on program that prepares adaptive problem solvers for premier finance careers.

A 12-month program focused on applying the tools of modern data science, optimization and machine learning to solve real-world business problems.

Earn your MBA and SM in engineering with this transformative two-year program.

Combine an international MBA with a deep dive into management science. A special opportunity for partner and affiliate schools only.

A doctoral program that produces outstanding scholars who are leading in their fields of research.

Bring a business perspective to your technical and quantitative expertise with a bachelor’s degree in management, business analytics, or finance.

A joint program for mid-career professionals that integrates engineering and systems thinking. Earn your master’s degree in engineering and management.

An interdisciplinary program that combines engineering, management, and design, leading to a master’s degree in engineering and management.

Executive Programs

A full-time MBA program for mid-career leaders eager to dedicate one year of discovery for a lifetime of impact.

This 20-month MBA program equips experienced executives to enhance their impact on their organizations and the world.

Non-degree programs for senior executives and high-potential managers.

A non-degree, customizable program for mid-career professionals.

Undergraduate

Shape your mind, then shape markets.

At the intersection of economics, strategy, and accounting, 15-3 Finance looks at how to keep markets and organizations operating efficiently. With the 15-3 Finance major or minor, you’ll be prepared for a career in finance, from managerial finance to corporate finance to algorithmic trading to emerging finance technologies. Learn to apply the tools of finance to industry with lab and communications subjects, and focus on certain areas or explore topics that complement finance with restricted electives. 

Course Requirements & Roadmaps

phd in engineering mit

Deadlines + Important Dates

  • 08/26/24 – Fall Registration Opens
  • 09/03/24 - Fall Registration Day
  • 09/04/24 – First Day of Classes 
  • 09/06/24 – Registration Deadline
  • 10/04/24 – Add Date: Last day to ADD subjects to registration
  • 11/20/24 – Drop Date: Last day to DROP subjects from registration
  • 12/02/24 – Pre-Registration for IAP & Spring Term
  • 12/11/24 – Last Day of Classes
  • 12/116/24 – 12/20/24 – Final Exam Period
  • 01/06/24 – Spring Pre-Registration Deadline

For all important Institute dates please refer to the  MIT Academic Calendar .

15-3 Finance FAQs

What are the elective choices for the 15-3 major and minor.

Find the  elective choices for the 15-3 major and minor here . 

Contact the Undergraduate Team

Meet the team.

Scott Alessandro

Scott Alessandro

Senior Director, Undergraduate Programs

Rianna Allen-Charles

Rianna Allen-Charles

Associate Director, Sloan Undergraduate Programs

Karyn E Glemaud-Anis

Karyn E Glemaud-Anis

Assistant Director, Undergraduate Programs

Mechanical Engineering

  • Graduate study in Mechanical Engineering
  • Ph.D. programs

Ph.D. in Mechanical Engineering

The Doctor of Philosophy in Mechanical Engineering prepares students for careers in research and academia. Our collaborative faculty are investigating a diverse range of research areas like additive manufacturing, air quality, cellular biomechanics, computational design, DNA origami, energy conversion and storage, nanoscale manufacturing, soft robotics, transdermal drug delivery, transport phenomena, machine learning, and artificial intelligence.

Interested? Visit our research pages for more information, including faculty areas of expertise and research videos.

  • Other Ph.D. programs

I’d like more information.

View the  degree requirements  in the handbook.

Doctor of Philosophy in Mechanical Engineering

Students typically complete the Ph.D. degree requirements in three to five years. Early in the program, students focus on course-work that enhances their knowledge as they prepare to conduct research.

Within one year, students must pass the departmental qualifying exam, an oral exam that tests research skills and knowledge of a core mechanical engineering subject area.

Student research forms the core of the Ph.D. program. Research involves active student-directed inquiry into an engineering problem, culminating in a written thesis and oral defense.

Ph.D. Financial Support

The majority of full-time Ph.D. students accepted through the standard application process receive fellowships that cover full tuition, the technology fee, and a stipend for living expenses for up to five years, as long as sufficient progress is made toward degree completion. These awards are sufficient to cover all expenses for the year (including summers). Students are required to pay for health insurance, the transportation fee, the activity fee, books, and course supplies. Off-campus housing is available within walking distance of campus. At least one year of residency is required for the Ph.D. We offer two ways to enter the Ph.D. program.

Ph.D. student Edgar Mendoza in the lab.

Advanced entry Ph.D.

The advanced entry Ph.D. is for students with an M.S. in an engineering discipline or equivalent field.

Direct Ph.D.

The direct Ph.D. is for students entering the program with a B.S. in an engineering discipline or equivalent field.

For a comprehensive overview of the programs, including degree requirements, please consult the most recent handbook

Ph.D. candidate Remesh Shrestha, co-advised by Professors Sheng Shen and Maarten de Boer, explains his research to create polymer nanowires that have high thermal conductivity:

Other Ph.D. programs and partnerships

Apply here (by these deadlines).

For spring 2023

For fall 2022

The application for fall entry opens in October.

More information

Ph.D. employment stats

Ph.D. enrollment and completion stats [pdf]

  • Career Paths
  • Diversity, Equity, and Inclusion
  • DMSE Job Opportunities
  • Our Faculty
  • Computing and Data Science
  • Energy and the Environment
  • Health and Medicine
  • Manufacturing
  • Transportation and Infrastructure
  • Archaeological Materials
  • Semiconductors
  • Soft Matter
  • Characterization
  • Computation and Design
  • Device Fabrication
  • Synthesis and Processing
  • Impact Stories
  • Research Facilities
  • Majors, Minors, and Concentration
  • Opportunities For First-Year Students
  • Opportunities for DMSE Undergraduates
  • DMSE Breakerspace
  • Wulff Lecture
  • Application Assistance and Resources
  • Doctoral Degree and Requirements
  • Master’s Degree and Requirements
  • Interdisciplinary Graduate Programs
  • Funding Opportunities
  • Postdoctoral Program
  • MITx Online
  • Newsletter Archive
  • FORGE Initiative

How to increase the rate of plastics recycling

phd in engineering mit

While recycling systems and bottle deposits have become increasingly widespread in the U.S., actual rates of recycling are “abysmal,” according to a team of MIT researchers who studied the rates for recycling of PET, the plastic commonly used in beverage bottles. However, their findings suggest some ways to change this. The present rate of recycling for PET, or polyethylene terephthalate, bottles nationwide is about 24 percent and has remained stagnant for a decade, the researchers say. But their study indicates that with a nationwide bottle deposit program, the rates could increase to 82 percent, with nearly two-thirds of all PET bottles being recycled into new bottles, at a net cost of just a penny a bottle when demand is robust. At the same time, they say, policies would be needed to ensure a sufficient demand for the recycled material. The findings are being published today in the  Journal of Industrial Ecology , in a  paper  by MIT professor of materials science and engineering Elsa Olivetti, graduate students Basuhi Ravi and Karan Bhuwalka, and research scientist Richard Roth. The team looked at PET bottle collection and recycling rates in different states as well as other nations with and without bottle deposit policies, and with or without curbside recycling programs, as well as the inputs and outputs of various recycling companies and methods. The researchers say this study is the first to look in detail at the interplay between public policies and the end-to-end realities of the packaging production and recycling market. They found that bottle deposit programs are highly effective in the areas where they are in place, but at present there is not nearly enough collection of used bottles to meet the targets set by the packaging industry. Their analysis suggests that a uniform nationwide bottle deposit policy could achieve the levels of recycling that have been mandated by proposed legislation and corporate commitments. The recycling of PET is highly successful in terms of quality, with new products made from all-recycled material virtually matching the qualities of virgin material. And brands have shown that new bottles can be safely made with 100 percent postconsumer waste. But the team found that collection of the material is a crucial bottleneck that leaves processing plants unable to meet their needs. However, with the right policies in place, “one can be optimistic,” says Olivetti, who is the Jerry McAfee Professor in Engineering and the associate dean of the School of Engineering. “A message that we have found in a number of cases in the recycling space is that if you do the right work to support policies that think about both the demand but also the supply,” then significant improvements are possible, she says. “You have to think about the response and the behavior of multiple actors in the system holistically to be viable,” she says. “We are optimistic, but there are many ways to be pessimistic if we’re not thinking about that in a holistic way.” For example, the study found that it is important to consider the needs of existing municipal waste-recovery facilities. While expanded bottle deposit programs are essential to increase recycling rates and provide the feedstock to companies recycling PET into new products, the current facilities that process material from curbside recycling programs will lose revenue from PET bottles, which are a relatively high-value product compared to the other materials in the recycled waste stream. These companies would lose a source of their income if the bottles are collected through deposit programs, leaving them with only the lower-value mixed plastics. The researchers developed economic models based on rates of collection found in the states with deposit programs, recycled-content requirements, and other policies, and used these models to extrapolate to the nation as a whole. Overall, they found that the supply needs of packaging producers could be met through a nationwide bottle deposit system with a 10-cent deposit per bottle — at a net cost of about 1 cent per bottle produced when demand is strong. This need not be a federal program, but rather one where the implementation would be left up to the individual states, Olivetti says. Other countries have been much more successful in implementing deposit systems that result in very high participation rates. Several European countries manage to collect more than 90 percent of PET bottles for recycling, for example. But in the U.S., less than 29 percent are collected, and after losses in the recycling chain about 24 percent actually get recycled, the researchers found. Whereas 73 percent of Americans have access to curbside recycling, presently only 10 states have bottle deposit systems in place. Yet the demand is there so far. “There is a market for this material,” says Olivetti. While bottles collected through mixed-waste collection can still be recycled to some extent, those collected through deposit systems tend to be much cleaner and require less processing, and so are more economical to recycle into new bottles, or into textiles. To be effective, policies need to not just focus on increasing rates of recycling, but on the whole cycle of supply and demand and the different players involved, Olivetti says. Safeguards would need to be in place to protect existing recycling facilities from the lost revenues they would suffer as a result of bottle deposits, perhaps in the form of subsidies funded by fees on the bottle producers, to avoid putting these essential parts of the processing chain out of business. And other policies may be needed to ensure the continued market for the material that gets collected, including recycled content requirements and extended producer responsibility regulations, the team found. At this stage, it’s important to focus on the specific waste streams that can most effectively be recycled, and PET, along with many metals, clearly fit that category. “When we start to think about mixed plastic streams, that’s much more challenging from an environmental perspective,” she says. “Recycling systems need to be pursuing extended producers’ responsibility, or specifically thinking about materials designed more effectively toward recycled content,” she says. It’s also important to address “what the right metrics are to design for sustainably managed materials streams,” she says. “It could be energy use, could be circularity [for example, making old bottles into new bottles], could be around waste reduction, and making sure those are all aligned. That’s another kind of policy coordination that’s needed.”

Related Stories

phd in engineering mit

  • DACA/Undocumented
  • First Generation, Low Income
  • International Students
  • Students of Color
  • Students with disabilities
  • Undergraduate Students
  • Master’s Students
  • PhD Students
  • Faculty/Staff
  • Family/Supporters
  • Career Fairs
  • Post jobs, internships, and fellowships
  • Build your brand at MIT
  • Recruiting Guidelines and Resources
  • Connect with Us
  • Career Advising
  • Distinguished Fellowships
  • Employer Relations
  • Graduate Student Professional Development
  • Prehealth Advising
  • Student Leadership Opportunities
  • Academia & Education
  • Architecture, Planning, & Design
  • Arts, Communications, & Media
  • Business, Finance, & Fintech
  • Computing & Computer Technology
  • Data Science
  • Energy, Environment, & Sustainability
  • Life Sciences, Biotech, & Pharma
  • Manufacturing & Transportation
  • Health & Medical Professions
  • Social Impact, Policy, & Law
  • Getting Started & Handshake 101
  • Exploring careers
  • Networking & Informational Interviews
  • Connecting with employers
  • Resumes, cover letters, portfolios, & CVs
  • Finding a Job or Internship
  • Post-Graduate and Summer Outcomes
  • Professional Development Competencies
  • Preparing for Graduate & Professional Schools
  • Preparing for Medical / Health Profession Schools
  • Interviewing
  • New jobs & career transitions
  • Career Prep and Development Programs
  • Fall Career Fair
  • Employer Events
  • Outside Events for Career and Professional Development
  • Events Calendar
  • Career Services Workshop Requests
  • Early Career Advisory Board
  • Peer Career Advisors
  • Student Staff
  • Mission, Vision, Values and Diversity Commitments
  • News and Reports

AI/ML Engineering Intern (Masters/PhD) – US Person Required

  • Share This: Share AI/ML Engineering Intern (Masters/PhD) – US Person Required on Facebook Share AI/ML Engineering Intern (Masters/PhD) – US Person Required on LinkedIn Share AI/ML Engineering Intern (Masters/PhD) – US Person Required on X

Join a team recognized for leadership, innovation and diversity

When you join Honeywell, you become a member of our global team of thinkers, innovators, dreamers, and doers who make the things that make the future. That means changing the way we fly, fueling jets in an eco-friendly way, keeping buildings smart and safe and even making it possible to breathe on Mars.

Working at Honeywell isn’t just about developing cool things. That’s why our employees enjoy access to dynamic career opportunities across different fields and industries.

Are you ready to help us make the future?

ABOUT THE ROLE: Join a team that designs, develops, and integrates highly complex software applications within Honeywell. You will be an active and integral member of a team to achieve the completion of goals. You will also generate innovative solutions in work situations; trying different and novel ways to deal with problems and opportunities. Use your skill set to provide value added software features to our products for our customers. Accelerate innovation and growth, teaming with the world’s most talented engineers. We invite you to discover for yourself why a career with Honeywell is the opportunity you’ve been looking for!

Through hands-on learning experiences, global exposure, networking, and professional development opportunities, Honeywell interns will shape the future. You’ll have the opportunity to work alongside industry experts, lead initiatives that refine technical skills, and have unparalleled mentorship and growth opportunities that will elevate your career. #Futureshaper

WHAT YOU WILL LEARN: • Model, build and test AI software to ensure it can take large swatch of data and achieve desired results • Use Python, JavaScript and C++ to create a faster, more capable AI • Evaluate statistics, data and algorithms to increase productivity of assets, people and processes in industrial applications/use cases • Work with team of machine-learning and data engineers to develop seamless AI and integration • Stay current on AI knowledge, trends, and regulations • Collect, organize, and present progress with team leadership and stakeholders

IMAGES

  1. School of Engineering welcomes new faculty

    phd in engineering mit

  2. mit phd chemical engineering

    phd in engineering mit

  3. The tenured engineers of 2020

    phd in engineering mit

  4. MIT graduate engineering, business, science programs ranked highly by U

    phd in engineering mit

  5. Mit Phd Chemical Engineering

    phd in engineering mit

  6. Guide To Graduate Study In Mechanical Engineering

    phd in engineering mit

VIDEO

  1. Studying a PhD in Electronic and Electrical Engineering

  2. PhD Admission 2023

  3. Study the Master’s in Project Management and Data Science

  4. Lecturers’ Insights: Mechanical Engineering at EIT

  5. MIT School of Bio-engineering Sciences & Research

  6. 4: Introduction to Philosophy of Engineering I

COMMENTS

  1. MIT School of Engineering

    Graduate study is not for the faint-hearted, but the rewards match the risks. When it is your job to generate knowledge, you need to go where no one has gone before. And, we'll give you what you need to get there. From the day they step on campus, our grad students are not afraid to go after the hardest problems.

  2. Doctoral Degrees

    A doctoral degree requires the satisfactory completion of an approved program of advanced study and original research of high quality. Please note that the Doctor of Philosophy (PhD) and Doctor of Science (ScD) degrees are awarded interchangeably by all departments in the School of Engineering and the School of Science, except in the fields of biology, cognitive science, neuroscience, medical ...

  3. Ph.D./Sc.D. Program

    Ph.D./Sc.D. Program. The Doctor of Philosophy and Doctor of Science degrees in Chemical Engineering are identical; students may choose for themselves the appellation they prefer. This traditional, research-based doctoral degree program provides a thorough grounding in the fundamental principles of chemical engineering, as well as an intensive ...

  4. MIT School of Engineering

    MIT School of Engineering Room 1-206 77 Massachusetts Ave. Cambridge, MA 02139-4307 +1-617-253-3291. MIT Directory Accessibility

  5. CSE PhD

    The standalone CSE PhD program is intended for students who plan to pursue research in cross-cutting methodological aspects of computational science. The resulting doctoral degree in Computational Science and Engineering is awarded by CCSE via the the Schwarzman College of Computing. In contrast, the interdisciplinary Dept-CSE PhD program is ...

  6. MIT Doctoral Programs in Computational Science and Engineering

    The standalone CSE PhD program is intended for students who intend to pursue research in cross-cutting methodological aspects of computational science. The resulting doctoral degree in Computational Science and Engineering is awarded by CCSE via the the Schwarzman College of Computing. In contrast, the interdisciplinary CSE PhD program is ...

  7. Doctoral Degree and Requirements

    The core courses define the basis of materials science and engineering as a discipline—what every PhD materials scientist or materials engineer from MIT ought to know. The first-year student seminars and core subjects provide a rigorous, unified foundation for subsequent advanced-level subjects and thesis research. Here are the required subjects:

  8. Graduate programs

    The largest graduate program in MIT's School of Engineering, EECS has about 700 graduate students in the doctoral program at any given time. Those students conduct groundbreaking research across a wide array of fields alongside world-class faculty and research staff, build lifelong mentorship relationships and drive progress in every sector ...

  9. Admission process

    A Masters of Engineering is only available for qualified MIT EECS undergraduates.] The application website (see link below) is available on September 15, 2024, for students who wish to apply for graduate admission in September 2025. The deadline for submitting completed applications is December 15, 2024. Applicants to the MIT EECS graduate ...

  10. Doctoral degree

    MIT offers the degrees of Doctor of Science and Doctor of Philosophy interchangeably in the engineering and science departments (except biology and brain and cognitive sciences) and in the fields of medical engineering and medical physics. ... MIT Office of Graduate Education 77 Massachusetts Avenue Room 3-107 Cambridge, MA 02139-4307. Contact ...

  11. Doctor of Philosophy in Nuclear Science and Engineering < MIT

    Two coordinated graduate subjects, or three undergraduate subjects taken while a graduate student in the department, outside the field of specialization and area of thesis research. 22.94: Research in Nuclear Science and Engineering 3: 24: 22.THG: Graduate Thesis 3: 36: 22.911: Seminar in Nuclear Science and Engineering 4: 3: Total Units: 183

  12. PhD Program

    An interdisciplinary program that combines engineering, management, and design, leading to a master's degree in engineering and management. Executive Programs. MIT Sloan Fellows MBA. ... "MIT Sloan PhD training is a transformative experience. The heart of the process is the student's transition from being a consumer of knowledge to being ...

  13. Electrical Engineering and Computer Science

    Electrical Engineering and Computer Science. 77 Massachusetts Avenue. Building 38-444. Cambridge MA, 02139. 617-253-4603. [email protected]. Website: Electrical Engineering and Computer Science. Apply here.

  14. Mechanical Engineering

    77 Massachusetts Avenue Building 1-112 Cambridge MA, 02139. 617-253-2291 [email protected]. Website: Mechanical Engineering. Apply here. Application Opens:

  15. MIT School of Engineering

    MIT Faculty Founders Initiative Supports Biotech Entrepreneurs Twelve researchers participated in the 2023-24 MIT-Royalty Pharma Prize Competition, designed to support female biotech pioneers. The competition is part of the MIT Faculty Founder Initiative, which was launched in 2020 by the MIT School of Engineering and the Martin Trust Center ...

  16. MIT Doctoral Program in Computational Science and Engineering

    MIT Doctoral Program in Computational Science and Engineering (CSE PhD) Program Overview. The standalone doctoral program in Computational Science and Engineering (PhD in CSE) enables students to specialize at the doctoral level in fundamental, methodological aspects of computational science via focused coursework and a thesis.The emphasis of thesis research activities is the development and ...

  17. Prospective Graduate

    Prospective Graduate. Overview of the Biological Engineering (BE) PhD Program. MIT Biological Engineering's mission is to generate and communicate new knowledge in the application of engineering principles in biological systems and to educate leaders in our discipline. We focus at the interface of engineering and biology by combining ...

  18. Ph.D. CEP Program

    The Doctor of Philosophy in Chemical Engineering Practice is a relatively new degree program built on existing strengths within the Department's research activities, the unique resources of the David H. Koch School of Chemical Engineering Practice, and the world class resources of the Sloan School of Management. It is designed to prepare students for a fast launch into positions of ...

  19. Doctoral Programs in Computational Science and Engineering < MIT

    279-399. 1. A program of study comprising subjects in the selected core areas and the computational concentration must be developed in consultation with the student's doctoral thesis committee and approved by the CCSE graduate officer. Programs Offered by CCSE in Conjunction with Select Departments in the Schools of Engineering and Science.

  20. Graduate Study at MIT

    Graduate Study at MIT. Pursue advanced ocean-related study in Master's and PhD programs offered across MIT in these departments: Earth, Atmospheric, and Planetary Sciences ... Naval Construction and Marine Engineering; MIT-WHOI JP. Applied Ocean Science and Engineering; Learn more. Department of Civil and Environmental Engineering.

  21. Graduate Degrees & Requirements

    Graduate Degrees & Requirements. Graduate study in the Department of Aeronautics and Astronautics includes graduate-level subjects in Course 16 and others at MIT, and research work culminating in a thesis. Degrees are awarded at the master's and doctoral levels. The range of subject matter is described under Graduate Fields of Study.

  22. Doctor of Philosophy in Aeronautics and Astronautics Fields < MIT

    Doctoral Research and Communication Seminar. 3. 16.THG. Graduate Thesis 2. 168. Total Units. 285. Note: Students in this program can choose to receive the doctor of philosophy or the doctor of science in aeronautics and astronautics or in another departmental field of specialization. Students receiving veterans benefits must select the degree ...

  23. PDF Engineering cytokine immunotherapies via cell surface targeting

    Carbon P. Dubbs Professor of Chemical Engineering, MIT Professor of Biological Engineering, MIT Thesis Advisor ... Throughout my PhD, I was able to contribute to and spend time with the biotech community in Boston. The friends and mentors I got to meet over the past 5 years have led to countless laughs, insights, and exciting opportunities. ...

  24. Computational Science and Engineering PhD

    Computational Science and Engineering PhD. 77 Massachusetts Avenue. Building 35-434B. Cambridge MA, 02139. 617-253-3725. [email protected]. Website: Computational Science and Engineering PhD. Apply here.

  25. Deborah F. Woods

    Dr. Deborah F. Woods is a senior staff member in the Applied Space Systems Group at MIT Lincoln Laboratory. She is an active member of the Civil Space Systems and Technology Office where she serves as co-lead of the science team. Woods works at the interface of science and engineering, where she endeavors to connect science mission applications with emerging technical capabilities.

  26. 15-3: Finance

    The mission of the MIT Sloan School of Management is to develop principled, innovative leaders who improve the world and to generate ideas that advance management practice. Find Us MIT Sloan School of Management 100 Main Street Cambridge, MA 02142 617-253-1000

  27. Ph.D. in Mechanical Engineering

    The Doctor of Philosophy in Mechanical Engineering prepares students for careers in research and academia. Our collaborative faculty are investigating a diverse range of research areas like additive manufacturing, air quality, cellular biomechanics, computational design, DNA origami, energy conversion and storage, nanoscale manufacturing, soft robotics, transdermal drug delivery, transport ...

  28. How to increase the rate of plastics recycling

    The findings are being published today in the Journal of Industrial Ecology, in a paper by MIT professor of materials science and engineering Elsa Olivetti, graduate students Basuhi Ravi and Karan Bhuwalka, and research scientist Richard Roth.

  29. AI/ML Engineering Intern (Masters/PhD)

    Share This: Share AI/ML Engineering Intern (Masters/PhD) - US Person Required on Facebook Share AI/ML Engineering Intern (Masters/PhD) - US Person Required on LinkedIn Share AI/ML Engineering Intern (Masters/PhD) - US Person Required on X; Copy Link; Recruitment began on February 14, 2024 ... MA 02139 617-715-5329 [email protected].