How to write a research plan: Step-by-step guide

Last updated

30 January 2024

Reviewed by

Short on time? Get an AI generated summary of this article instead

Today’s businesses and institutions rely on data and analytics to inform their product and service decisions. These metrics influence how organizations stay competitive and inspire innovation. However, gathering data and insights requires carefully constructed research, and every research project needs a roadmap. This is where a research plan comes into play.

Read this step-by-step guide for writing a detailed research plan that can apply to any project, whether it’s scientific, educational, or business-related.

  • What is a research plan?

A research plan is a documented overview of a project in its entirety, from end to end. It details the research efforts, participants, and methods needed, along with any anticipated results. It also outlines the project’s goals and mission, creating layers of steps to achieve those goals within a specified timeline.

Without a research plan, you and your team are flying blind, potentially wasting time and resources to pursue research without structured guidance.

The principal investigator, or PI, is responsible for facilitating the research oversight. They will create the research plan and inform team members and stakeholders of every detail relating to the project. The PI will also use the research plan to inform decision-making throughout the project.

  • Why do you need a research plan?

Create a research plan before starting any official research to maximize every effort in pursuing and collecting the research data. Crucially, the plan will model the activities needed at each phase of the research project .

Like any roadmap, a research plan serves as a valuable tool providing direction for those involved in the project—both internally and externally. It will keep you and your immediate team organized and task-focused while also providing necessary definitions and timelines so you can execute your project initiatives with full understanding and transparency.

External stakeholders appreciate a working research plan because it’s a great communication tool, documenting progress and changing dynamics as they arise. Any participants of your planned research sessions will be informed about the purpose of your study, while the exercises will be based on the key messaging outlined in the official plan.

Here are some of the benefits of creating a research plan document for every project:

Project organization and structure

Well-informed participants

All stakeholders and teams align in support of the project

Clearly defined project definitions and purposes

Distractions are eliminated, prioritizing task focus

Timely management of individual task schedules and roles

Costly reworks are avoided

  • What should a research plan include?

The different aspects of your research plan will depend on the nature of the project. However, most official research plan documents will include the core elements below. Each aims to define the problem statement , devising an official plan for seeking a solution.

Specific project goals and individual objectives

Ideal strategies or methods for reaching those goals

Required resources

Descriptions of the target audience, sample sizes , demographics, and scopes

Key performance indicators (KPIs)

Project background

Research and testing support

Preliminary studies and progress reporting mechanisms

Cost estimates and change order processes

Depending on the research project’s size and scope, your research plan could be brief—perhaps only a few pages of documented plans. Alternatively, it could be a fully comprehensive report. Either way, it’s an essential first step in dictating your project’s facilitation in the most efficient and effective way.

  • How to write a research plan for your project

When you start writing your research plan, aim to be detailed about each step, requirement, and idea. The more time you spend curating your research plan, the more precise your research execution efforts will be.

Account for every potential scenario, and be sure to address each and every aspect of the research.

Consider following this flow to develop a great research plan for your project:

Define your project’s purpose

Start by defining your project’s purpose. Identify what your project aims to accomplish and what you are researching. Remember to use clear language.

Thinking about the project’s purpose will help you set realistic goals and inform how you divide tasks and assign responsibilities. These individual tasks will be your stepping stones to reach your overarching goal.

Additionally, you’ll want to identify the specific problem, the usability metrics needed, and the intended solutions.

Know the following three things about your project’s purpose before you outline anything else:

What you’re doing

Why you’re doing it

What you expect from it

Identify individual objectives

With your overarching project objectives in place, you can identify any individual goals or steps needed to reach those objectives. Break them down into phases or steps. You can work backward from the project goal and identify every process required to facilitate it.

Be mindful to identify each unique task so that you can assign responsibilities to various team members. At this point in your research plan development, you’ll also want to assign priority to those smaller, more manageable steps and phases that require more immediate or dedicated attention.

Select research methods

Once you have outlined your goals, objectives, steps, and tasks, it’s time to drill down on selecting research methods . You’ll want to leverage specific research strategies and processes. When you know what methods will help you reach your goals, you and your teams will have direction to perform and execute your assigned tasks.

Research methods might include any of the following:

User interviews : this is a qualitative research method where researchers engage with participants in one-on-one or group conversations. The aim is to gather insights into their experiences, preferences, and opinions to uncover patterns, trends, and data.

Field studies : this approach allows for a contextual understanding of behaviors, interactions, and processes in real-world settings. It involves the researcher immersing themselves in the field, conducting observations, interviews, or experiments to gather in-depth insights.

Card sorting : participants categorize information by sorting content cards into groups based on their perceived similarities. You might use this process to gain insights into participants’ mental models and preferences when navigating or organizing information on websites, apps, or other systems.

Focus groups : use organized discussions among select groups of participants to provide relevant views and experiences about a particular topic.

Diary studies : ask participants to record their experiences, thoughts, and activities in a diary over a specified period. This method provides a deeper understanding of user experiences, uncovers patterns, and identifies areas for improvement.

Five-second testing: participants are shown a design, such as a web page or interface, for just five seconds. They then answer questions about their initial impressions and recall, allowing you to evaluate the design’s effectiveness.

Surveys : get feedback from participant groups with structured surveys. You can use online forms, telephone interviews, or paper questionnaires to reveal trends, patterns, and correlations.

Tree testing : tree testing involves researching web assets through the lens of findability and navigability. Participants are given a textual representation of the site’s hierarchy (the “tree”) and asked to locate specific information or complete tasks by selecting paths.

Usability testing : ask participants to interact with a product, website, or application to evaluate its ease of use. This method enables you to uncover areas for improvement in digital key feature functionality by observing participants using the product.

Live website testing: research and collect analytics that outlines the design, usability, and performance efficiencies of a website in real time.

There are no limits to the number of research methods you could use within your project. Just make sure your research methods help you determine the following:

What do you plan to do with the research findings?

What decisions will this research inform? How can your stakeholders leverage the research data and results?

Recruit participants and allocate tasks

Next, identify the participants needed to complete the research and the resources required to complete the tasks. Different people will be proficient at different tasks, and having a task allocation plan will allow everything to run smoothly.

Prepare a thorough project summary

Every well-designed research plan will feature a project summary. This official summary will guide your research alongside its communications or messaging. You’ll use the summary while recruiting participants and during stakeholder meetings. It can also be useful when conducting field studies.

Ensure this summary includes all the elements of your research project . Separate the steps into an easily explainable piece of text that includes the following:

An introduction: the message you’ll deliver to participants about the interview, pre-planned questioning, and testing tasks.

Interview questions: prepare questions you intend to ask participants as part of your research study, guiding the sessions from start to finish.

An exit message: draft messaging your teams will use to conclude testing or survey sessions. These should include the next steps and express gratitude for the participant’s time.

Create a realistic timeline

While your project might already have a deadline or a results timeline in place, you’ll need to consider the time needed to execute it effectively.

Realistically outline the time needed to properly execute each supporting phase of research and implementation. And, as you evaluate the necessary schedules, be sure to include additional time for achieving each milestone in case any changes or unexpected delays arise.

For this part of your research plan, you might find it helpful to create visuals to ensure your research team and stakeholders fully understand the information.

Determine how to present your results

A research plan must also describe how you intend to present your results. Depending on the nature of your project and its goals, you might dedicate one team member (the PI) or assume responsibility for communicating the findings yourself.

In this part of the research plan, you’ll articulate how you’ll share the results. Detail any materials you’ll use, such as:

Presentations and slides

A project report booklet

A project findings pamphlet

Documents with key takeaways and statistics

Graphic visuals to support your findings

  • Format your research plan

As you create your research plan, you can enjoy a little creative freedom. A plan can assume many forms, so format it how you see fit. Determine the best layout based on your specific project, intended communications, and the preferences of your teams and stakeholders.

Find format inspiration among the following layouts:

Written outlines

Narrative storytelling

Visual mapping

Graphic timelines

Remember, the research plan format you choose will be subject to change and adaptation as your research and findings unfold. However, your final format should ideally outline questions, problems, opportunities, and expectations.

  • Research plan example

Imagine you’ve been tasked with finding out how to get more customers to order takeout from an online food delivery platform. The goal is to improve satisfaction and retain existing customers. You set out to discover why more people aren’t ordering and what it is they do want to order or experience. 

You identify the need for a research project that helps you understand what drives customer loyalty . But before you jump in and start calling past customers, you need to develop a research plan—the roadmap that provides focus, clarity, and realistic details to the project.

Here’s an example outline of a research plan you might put together:

Project title

Project members involved in the research plan

Purpose of the project (provide a summary of the research plan’s intent)

Objective 1 (provide a short description for each objective)

Objective 2

Objective 3

Proposed timeline

Audience (detail the group you want to research, such as customers or non-customers)

Budget (how much you think it might cost to do the research)

Risk factors/contingencies (any potential risk factors that may impact the project’s success)

Remember, your research plan doesn’t have to reinvent the wheel—it just needs to fit your project’s unique needs and aims.

Customizing a research plan template

Some companies offer research plan templates to help get you started. However, it may make more sense to develop your own customized plan template. Be sure to include the core elements of a great research plan with your template layout, including the following:

Introductions to participants and stakeholders

Background problems and needs statement

Significance, ethics, and purpose

Research methods, questions, and designs

Preliminary beliefs and expectations

Implications and intended outcomes

Realistic timelines for each phase

Conclusion and presentations

How many pages should a research plan be?

Generally, a research plan can vary in length between 500 to 1,500 words. This is roughly three pages of content. More substantial projects will be 2,000 to 3,500 words, taking up four to seven pages of planning documents.

What is the difference between a research plan and a research proposal?

A research plan is a roadmap to success for research teams. A research proposal, on the other hand, is a dissertation aimed at convincing or earning the support of others. Both are relevant in creating a guide to follow to complete a project goal.

What are the seven steps to developing a research plan?

While each research project is different, it’s best to follow these seven general steps to create your research plan:

Defining the problem

Identifying goals

Choosing research methods

Recruiting participants

Preparing the brief or summary

Establishing task timelines

Defining how you will present the findings

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 6 February 2023

Last updated: 6 October 2023

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 9 March 2023

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

plan a research

Users report unexpectedly high data usage, especially during streaming sessions.

plan a research

Users find it hard to navigate from the home page to relevant playlists in the app.

plan a research

It would be great to have a sleep timer feature, especially for bedtime listening.

plan a research

I need better filters to find the songs or artists I’m looking for.

Log in or sign up

Get started for free

FLEET LIBRARY | Research Guides

Rhode island school of design, create a research plan: research plan.

  • Research Plan
  • Literature Review
  • Ulrich's Global Serials Directory
  • Related Guides

A research plan is a framework that shows how you intend to approach your topic. The plan can take many forms: a written outline, a narrative, a visual/concept map or timeline. It's a document that will change and develop as you conduct your research. Components of a research plan

1. Research conceptualization - introduces your research question

2. Research methodology - describes your approach to the research question

3. Literature review, critical evaluation and synthesis - systematic approach to locating,

    reviewing and evaluating the work (text, exhibitions, critiques, etc) relating to your topic

4. Communication - geared toward an intended audience, shows evidence of your inquiry

Research conceptualization refers to the ability to identify specific research questions, problems or opportunities that are worthy of inquiry. Research conceptualization also includes the skills and discipline that go beyond the initial moment of conception, and which enable the researcher to formulate and develop an idea into something researchable ( Newbury 373).

Research methodology refers to the knowledge and skills required to select and apply appropriate methods to carry through the research project ( Newbury 374) .

Method describes a single mode of proceeding; methodology describes the overall process.

Method - a way of doing anything especially according to a defined and regular plan; a mode of procedure in any activity

Methodology - the study of the direction and implications of empirical research, or the sustainability of techniques employed in it; a method or body of methods used in a particular field of study or activity *Browse a list of research methodology books  or this guide on Art & Design Research

Literature Review, critical evaluation & synthesis

A literature review is a systematic approach to locating, reviewing, and evaluating the published work and work in progress of scholars, researchers, and practitioners on a given topic.

Critical evaluation and synthesis is the ability to handle (or process) existing sources. It includes knowledge of the sources of literature and contextual research field within which the person is working ( Newbury 373).

Literature reviews are done for many reasons and situations. Here's a short list:

to learn about a field of study

to understand current knowledge on a subject

to formulate questions & identify a research problem

to focus the purpose of one's research

to contribute new knowledge to a field

personal knowledge

intellectual curiosity

to prepare for architectural program writing

academic degrees

grant applications

proposal writing

academic research

planning

funding

Sources to consult while conducting a literature review:

Online catalogs of local, regional, national, and special libraries

meta-catalogs such as worldcat , Art Discovery Group , europeana , world digital library or RIBA

subject-specific online article databases (such as the Avery Index, JSTOR, Project Muse)

digital institutional repositories such as Digital Commons @RISD ; see Registry of Open Access Repositories

Open Access Resources recommended by RISD Research LIbrarians

works cited in scholarly books and articles

print bibliographies

the internet-locate major nonprofit, research institutes, museum, university, and government websites

search google scholar to locate grey literature & referenced citations

trade and scholarly publishers

fellow scholars and peers

Communication                              

Communication refers to the ability to

  • structure a coherent line of inquiry
  • communicate your findings to your intended audience
  • make skilled use of visual material to express ideas for presentations, writing, and the creation of exhibitions ( Newbury 374)

Research plan framework: Newbury, Darren. "Research Training in the Creative Arts and Design." The Routledge Companion to Research in the Arts . Ed. Michael Biggs and Henrik Karlsson. New York: Routledge, 2010. 368-87. Print.

About the author

Except where otherwise noted, this guide is subject to a Creative Commons Attribution license

source document

  Routledge Companion to Research in the Arts

  • Next: Literature Review >>
  • Last Updated: Sep 20, 2023 5:05 PM
  • URL: https://risd.libguides.com/researchplan

plan a research

Illustration by James Round

How to plan a research project

Whether for a paper or a thesis, define your question, review the work of others – and leave yourself open to discovery.

by Brooke Harrington   + BIO

is professor of sociology at Dartmouth College in New Hampshire. Her research has won international awards both for scholarly quality and impact on public life. She has published dozens of articles and three books, most recently the bestseller Capital without Borders (2016), now translated into five languages.

Edited by Sam Haselby

Need to know

‘When curiosity turns to serious matters, it’s called research.’ – From Aphorisms (1880-1905) by Marie von Ebner-Eschenbach

Planning research projects is a time-honoured intellectual exercise: one that requires both creativity and sharp analytical skills. The purpose of this Guide is to make the process systematic and easy to understand. While there is a great deal of freedom and discovery involved – from the topics you choose, to the data and methods you apply – there are also some norms and constraints that obtain, no matter what your academic level or field of study. For those in high school through to doctoral students, and from art history to archaeology, research planning involves broadly similar steps, including: formulating a question, developing an argument or predictions based on previous research, then selecting the information needed to answer your question.

Some of this might sound self-evident but, as you’ll find, research requires a different way of approaching and using information than most of us are accustomed to in everyday life. That is why I include orienting yourself to knowledge-creation as an initial step in the process. This is a crucial and underappreciated phase in education, akin to making the transition from salaried employment to entrepreneurship: suddenly, you’re on your own, and that requires a new way of thinking about your work.

What follows is a distillation of what I’ve learned about this process over 27 years as a professional social scientist. It reflects the skills that my own professors imparted in the sociology doctoral programme at Harvard, as well as what I learned later on as a research supervisor for Ivy League PhD and MA students, and then as the author of award-winning scholarly books and articles. It can be adapted to the demands of both short projects (such as course term papers) and long ones, such as a thesis.

At its simplest, research planning involves the four distinct steps outlined below: orienting yourself to knowledge-creation; defining your research question; reviewing previous research on your question; and then choosing relevant data to formulate your own answers. Because the focus of this Guide is on planning a research project, as opposed to conducting a research project, this section won’t delve into the details of data-collection or analysis; those steps happen after you plan the project. In addition, the topic is vast: year-long doctoral courses are devoted to data and analysis. Instead, the fourth part of this section will outline some basic strategies you could use in planning a data-selection and analysis process appropriate to your research question.

Step 1: Orient yourself

Planning and conducting research requires you to make a transition, from thinking like a consumer of information to thinking like a producer of information. That sounds simple, but it’s actually a complex task. As a practical matter, this means putting aside the mindset of a student, which treats knowledge as something created by other people. As students, we are often passive receivers of knowledge: asked to do a specified set of readings, then graded on how well we reproduce what we’ve read.

Researchers, however, must take on an active role as knowledge producers . Doing research requires more of you than reading and absorbing what other people have written: you have to engage in a dialogue with it. That includes arguing with previous knowledge and perhaps trying to show that ideas we have accepted as given are actually wrong or incomplete. For example, rather than simply taking in the claims of an author you read, you’ll need to draw out the implications of those claims: if what the author is saying is true, what else does that suggest must be true? What predictions could you make based on the author’s claims?

In other words, rather than treating a reading as a source of truth – even if it comes from a revered source, such as Plato or Marie Curie – this orientation step asks you to treat the claims you read as provisional and subject to interrogation. That is one of the great pieces of wisdom that science and philosophy can teach us: that the biggest advances in human understanding have been made not by being correct about trivial things, but by being wrong in an interesting way . For example, Albert Einstein was wrong about quantum mechanics, but his arguments about it with his fellow physicist Niels Bohr have led to some of the biggest breakthroughs in science, even a century later.

Step 2: Define your research question

Students often give this step cursory attention, but experienced researchers know that formulating a good question is sometimes the most difficult part of the research planning process. That is because the precise language of the question frames the rest of the project. It’s therefore important to pose the question carefully, in a way that’s both possible to answer and likely to yield interesting results. Of course, you must choose a question that interests you, but that’s only the beginning of what’s likely to be an iterative process: most researchers come back to this step repeatedly, modifying their questions in light of previous research, resource limitations and other considerations.

Researchers face limits in terms of time and money. They, like everyone else, have to pose research questions that they can plausibly answer given the constraints they face. For example, it would be inadvisable to frame a project around the question ‘What are the roots of the Arab-Israeli conflict?’ if you have only a week to develop an answer and no background on that topic. That’s not to limit your imagination: you can come up with any question you’d like. But it typically does require some creativity to frame a question that you can answer well – that is, by investigating thoroughly and providing new insights – within the limits you face.

In addition to being interesting to you, and feasible within your resource constraints, the third and most important characteristic of a ‘good’ research topic is whether it allows you to create new knowledge. It might turn out that your question has already been asked and answered to your satisfaction: if so, you’ll find out in the next step of this process. On the other hand, you might come up with a research question that hasn’t been addressed previously. Before you get too excited about breaking uncharted ground, consider this: a lot of potentially researchable questions haven’t been studied for good reason ; they might have answers that are trivial or of very limited interest. This could include questions such as ‘Why does the area of a circle equal π r²?’ or ‘Did winter conditions affect Napoleon’s plans to invade Russia?’ Of course, you might be able to make the argument that a seemingly trivial question is actually vitally important, but you must be prepared to back that up with convincing evidence. The exercise in the ‘Learn More’ section below will help you think through some of these issues.

Finally, scholarly research questions must in some way lead to new and distinctive insights. For example, lots of people have studied gender roles in sports teams; what can you ask that hasn’t been asked before? Reinventing the wheel is the number-one no-no in this endeavour. That’s why the next step is so important: reviewing previous research on your topic. Depending on what you find in that step, you might need to revise your research question; iterating between your question and the existing literature is a normal process. But don’t worry: it doesn’t go on forever. In fact, the iterations taper off – and your research question stabilises – as you develop a firm grasp of the current state of knowledge on your topic.

Step 3: Review previous research

In academic research, from articles to books, it’s common to find a section called a ‘literature review’. The purpose of that section is to describe the state of the art in knowledge on the research question that a project has posed. It demonstrates that researchers have thoroughly and systematically reviewed the relevant findings of previous studies on their topic, and that they have something novel to contribute.

Your own research project should include something like this, even if it’s a high-school term paper. In the research planning process, you’ll want to list at least half a dozen bullet points stating the major findings on your topic by other people. In relation to those findings, you should be able to specify where your project could provide new and necessary insights. There are two basic rhetorical positions one can take in framing the novelty-plus-importance argument required of academic research:

  • Position 1 requires you to build on or extend a set of existing ideas; that means saying something like: ‘Person A has argued that X is true about gender; this implies Y, which has not yet been tested. My project will test Y, and if I find evidence to support it, that will change the way we understand gender.’
  • Position 2 is to argue that there is a gap in existing knowledge, either because previous research has reached conflicting conclusions or has failed to consider something important. For example, one could say that research on middle schoolers and gender has been limited by being conducted primarily in coeducational environments, and that findings might differ dramatically if research were conducted in more schools where the student body was all-male or all-female.

Your overall goal in this step of the process is to show that your research will be part of a larger conversation: that is, how your project flows from what’s already known, and how it advances, extends or challenges that existing body of knowledge. That will be the contribution of your project, and it constitutes the motivation for your research.

Two things are worth mentioning about your search for sources of relevant previous research. First, you needn’t look only at studies on your precise topic. For example, if you want to study gender-identity formation in schools, you shouldn’t restrict yourself to studies of schools; the empirical setting (schools) is secondary to the larger social process that interests you (how people form gender identity). That process occurs in many different settings, so cast a wide net. Second, be sure to use legitimate sources – meaning publications that have been through some sort of vetting process, whether that involves peer review (as with academic journal articles you might find via Google Scholar) or editorial review (as you’d find in well-known mass media publications, such as The Economist or The Washington Post ). What you’ll want to avoid is using unvetted sources such as personal blogs or Wikipedia. Why? Because anybody can write anything in those forums, and there is no way to know – unless you’re already an expert – if the claims you find there are accurate. Often, they’re not.

Step 4: Choose your data and methods

Whatever your research question is, eventually you’ll need to consider which data source and analytical strategy are most likely to provide the answers you’re seeking. One starting point is to consider whether your question would be best addressed by qualitative data (such as interviews, observations or historical records), quantitative data (such as surveys or census records) or some combination of both. Your ideas about data sources will, in turn, suggest options for analytical methods.

You might need to collect your own data, or you might find everything you need readily available in an existing dataset someone else has created. A great place to start is with a research librarian: university libraries always have them and, at public universities, those librarians can work with the public, including people who aren’t affiliated with the university. If you don’t happen to have a public university and its library close at hand, an ordinary public library can still be a good place to start: the librarians are often well versed in accessing data sources that might be relevant to your study, such as the census, or historical archives, or the Survey of Consumer Finances.

Because your task at this point is to plan research, rather than conduct it, the purpose of this step is not to commit you irrevocably to a course of action. Instead, your goal here is to think through a feasible approach to answering your research question. You’ll need to find out, for example, whether the data you want exist; if not, do you have a realistic chance of gathering the data yourself, or would it be better to modify your research question? In terms of analysis, would your strategy require you to apply statistical methods? If so, do you have those skills? If not, do you have time to learn them, or money to hire a research assistant to run the analysis for you?

Please be aware that qualitative methods in particular are not the casual undertaking they might appear to be. Many people make the mistake of thinking that only quantitative data and methods are scientific and systematic, while qualitative methods are just a fancy way of saying: ‘I talked to some people, read some old newspapers, and drew my own conclusions.’ Nothing could be further from the truth. In the final section of this guide, you’ll find some links to resources that will provide more insight on standards and procedures governing qualitative research, but suffice it to say: there are rules about what constitutes legitimate evidence and valid analytical procedure for qualitative data, just as there are for quantitative data.

Circle back and consider revising your initial plans

As you work through these four steps in planning your project, it’s perfectly normal to circle back and revise. Research planning is rarely a linear process. It’s also common for new and unexpected avenues to suggest themselves. As the sociologist Thorstein Veblen wrote in 1908 : ‘The outcome of any serious research can only be to make two questions grow where only one grew before.’ That’s as true of research planning as it is of a completed project. Try to enjoy the horizons that open up for you in this process, rather than becoming overwhelmed; the four steps, along with the two exercises that follow, will help you focus your plan and make it manageable.

Key points – How to plan a research project

  • Planning a research project is essential no matter your academic level or field of study. There is no one ‘best’ way to design research, but there are certain guidelines that can be helpfully applied across disciplines.
  • Orient yourself to knowledge-creation. Make the shift from being a consumer of information to being a producer of information.
  • Define your research question. Your question frames the rest of your project, sets the scope, and determines the kinds of answers you can find.
  • Review previous research on your question. Survey the existing body of relevant knowledge to ensure that your research will be part of a larger conversation.
  • Choose your data and methods. For instance, will you be collecting qualitative data, via interviews, or numerical data, via surveys?
  • Circle back and consider revising your initial plans. Expect your research question in particular to undergo multiple rounds of refinement as you learn more about your topic.

Good research questions tend to beget more questions. This can be frustrating for those who want to get down to business right away. Try to make room for the unexpected: this is usually how knowledge advances. Many of the most significant discoveries in human history have been made by people who were looking for something else entirely. There are ways to structure your research planning process without over-constraining yourself; the two exercises below are a start, and you can find further methods in the Links and Books section.

The following exercise provides a structured process for advancing your research project planning. After completing it, you’ll be able to do the following:

  • describe clearly and concisely the question you’ve chosen to study
  • summarise the state of the art in knowledge about the question, and where your project could contribute new insight
  • identify the best strategy for gathering and analysing relevant data

In other words, the following provides a systematic means to establish the building blocks of your research project.

Exercise 1: Definition of research question and sources

This exercise prompts you to select and clarify your general interest area, develop a research question, and investigate sources of information. The annotated bibliography will also help you refine your research question so that you can begin the second assignment, a description of the phenomenon you wish to study.

Jot down a few bullet points in response to these two questions, with the understanding that you’ll probably go back and modify your answers as you begin reading other studies relevant to your topic:

  • What will be the general topic of your paper?
  • What will be the specific topic of your paper?

b) Research question(s)

Use the following guidelines to frame a research question – or questions – that will drive your analysis. As with Part 1 above, you’ll probably find it necessary to change or refine your research question(s) as you complete future assignments.

  • Your question should be phrased so that it can’t be answered with a simple ‘yes’ or ‘no’.
  • Your question should have more than one plausible answer.
  • Your question should draw relationships between two or more concepts; framing the question in terms of How? or What? often works better than asking Why ?

c) Annotated bibliography

Most or all of your background information should come from two sources: scholarly books and journals, or reputable mass media sources. You might be able to access journal articles electronically through your library, using search engines such as JSTOR and Google Scholar. This can save you a great deal of time compared with going to the library in person to search periodicals. General news sources, such as those accessible through LexisNexis, are acceptable, but should be cited sparingly, since they don’t carry the same level of credibility as scholarly sources. As discussed above, unvetted sources such as blogs and Wikipedia should be avoided, because the quality of the information they provide is unreliable and often misleading.

To create an annotated bibliography, provide the following information for at least 10 sources relevant to your specific topic, using the format suggested below.

Name of author(s):
Publication date:
Title of book, chapter, or article:
If a chapter or article, title of journal or book where they appear:
Brief description of this work, including main findings and methods ( c 75 words):
Summary of how this work contributes to your project ( c 75 words):
Brief description of the implications of this work ( c 25 words):
Identify any gap or controversy in knowledge this work points up, and how your project could address those problems ( c 50 words):

Exercise 2: Towards an analysis

Develop a short statement ( c 250 words) about the kind of data that would be useful to address your research question, and how you’d analyse it. Some questions to consider in writing this statement include:

  • What are the central concepts or variables in your project? Offer a brief definition of each.
  • Do any data sources exist on those concepts or variables, or would you need to collect data?
  • Of the analytical strategies you could apply to that data, which would be the most appropriate to answer your question? Which would be the most feasible for you? Consider at least two methods, noting their advantages or disadvantages for your project.

Links & books

One of the best texts ever written about planning and executing research comes from a source that might be unexpected: a 60-year-old work on urban planning by a self-trained scholar. The classic book The Death and Life of Great American Cities (1961) by Jane Jacobs (available complete and free of charge via this link ) is worth reading in its entirety just for the pleasure of it. But the final 20 pages – a concluding chapter titled ‘The Kind of Problem a City Is’ – are really about the process of thinking through and investigating a problem. Highly recommended as a window into the craft of research.

Jacobs’s text references an essay on advancing human knowledge by the mathematician Warren Weaver. At the time, Weaver was director of the Rockefeller Foundation, in charge of funding basic research in the natural and medical sciences. Although the essay is titled ‘A Quarter Century in the Natural Sciences’ (1960) and appears at first blush to be merely a summation of one man’s career, it turns out to be something much bigger and more interesting: a meditation on the history of human beings seeking answers to big questions about the world. Weaver goes back to the 17th century to trace the origins of systematic research thinking, with enthusiasm and vivid anecdotes that make the process come alive. The essay is worth reading in its entirety, and is available free of charge via this link .

For those seeking a more in-depth, professional-level discussion of the logic of research design, the political scientist Harvey Starr provides insight in a compact format in the article ‘Cumulation from Proper Specification: Theory, Logic, Research Design, and “Nice” Laws’ (2005). Starr reviews the ‘research triad’, consisting of the interlinked considerations of formulating a question, selecting relevant theories and applying appropriate methods. The full text of the article, published in the scholarly journal Conflict Management and Peace Science , is available, free of charge, via this link .

Finally, the book Getting What You Came For (1992) by Robert Peters is not only an outstanding guide for anyone contemplating graduate school – from the application process onward – but it also includes several excellent chapters on planning and executing research, applicable across a wide variety of subject areas. It was an invaluable resource for me 25 years ago, and it remains in print with good reason; I recommend it to all my students, particularly Chapter 16 (‘The Thesis Topic: Finding It’), Chapter 17 (‘The Thesis Proposal’) and Chapter 18 (‘The Thesis: Writing It’).

A steep road with a 1:4 gradient warning sign, flanked by greenery and hills under a clear blue sky.

Emotion regulation

How to take the high road

When someone provokes you, it’s easy to react without thinking. Learn to slow down and respond in ways you’ll be proud of

by Alissa Hebbeln & Russell Kolts

A coastal scene with a stone wall on the left, sandy beach below, and calm sea extending to the horizon. The sun is partially obscured by clouds, casting rays over the water. A distant ship is visible on the horizon.

Goals and motivation

How to do mental time travel

Feeling overwhelmed by the present moment? Find a connection to the longer view and a wiser perspective on what matters

by Richard Fisher

Three people sit on a bench facing a forest fire on a hill at night, with a fire truck nearby. The flames illuminate the trees, creating a dramatic and intense scene.

How to cope with climate anxiety

It’s normal to feel troubled by the climate crisis. These practices can help keep your response manageable and constructive

by Lucia Tecuta

We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Logo

  • A Research Guide
  • Research Paper Guide

How to Write a Research Plan

  • Research plan definition
  • Purpose of a research plan
  • Research plan structure
  • Step-by-step writing guide

Tips for creating a research plan

  • Research plan examples

Research plan: definition and significance

What is the purpose of a research plan.

  • Bridging gaps in the existing knowledge related to their subject.
  • Reinforcing established research about their subject.
  • Introducing insights that contribute to subject understanding.

Research plan structure & template

Introduction.

  • What is the existing knowledge about the subject?
  • What gaps remain unanswered?
  • How will your research enrich understanding, practice, and policy?

Literature review

Expected results.

  • Express how your research can challenge established theories in your field.
  • Highlight how your work lays the groundwork for future research endeavors.
  • Emphasize how your work can potentially address real-world problems.

5 Steps to crafting an effective research plan

Step 1: define the project purpose, step 2: select the research method, step 3: manage the task and timeline, step 4: write a summary, step 5: plan the result presentation.

  • Brainstorm Collaboratively: Initiate a collective brainstorming session with peers or experts. Outline the essential questions that warrant exploration and answers within your research.
  • Prioritize and Feasibility: Evaluate the list of questions and prioritize those that are achievable and important. Focus on questions that can realistically be addressed.
  • Define Key Terminology: Define technical terms pertinent to your research, fostering a shared understanding. Ensure that terms like “church” or “unreached people group” are well-defined to prevent ambiguity.
  • Organize your approach: Once well-acquainted with your institution’s regulations, organize each aspect of your research by these guidelines. Allocate appropriate word counts for different sections and components of your research paper.

Research plan example

aside icon

  • Writing a Research Paper
  • Research Paper Title
  • Research Paper Sources
  • Research Paper Problem Statement
  • Research Paper Thesis Statement
  • Hypothesis for a Research Paper
  • Research Question
  • Research Paper Outline
  • Research Paper Summary
  • Research Paper Prospectus
  • Research Paper Proposal
  • Research Paper Format
  • Research Paper Styles
  • AMA Style Research Paper
  • MLA Style Research Paper
  • Chicago Style Research Paper
  • APA Style Research Paper
  • Research Paper Structure
  • Research Paper Cover Page
  • Research Paper Abstract
  • Research Paper Introduction
  • Research Paper Body Paragraph
  • Research Paper Literature Review
  • Research Paper Background
  • Research Paper Methods Section
  • Research Paper Results Section
  • Research Paper Discussion Section
  • Research Paper Conclusion
  • Research Paper Appendix
  • Research Paper Bibliography
  • APA Reference Page
  • Annotated Bibliography
  • Bibliography vs Works Cited vs References Page
  • Research Paper Types
  • What is Qualitative Research

service-1

Receive paper in 3 Hours!

  • Choose the number of pages.
  • Select your deadline.
  • Complete your order.

Number of Pages

550 words (double spaced)

Deadline: 10 days left

By clicking "Log In", you agree to our terms of service and privacy policy . We'll occasionally send you account related and promo emails.

Sign Up for your FREE account

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Research Design | Types, Guide & Examples

What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on November 20, 2023 by Pritha Bhandari.

A research design is a strategy for answering your   research question  using empirical data. Creating a research design means making decisions about:

  • Your overall research objectives and approach
  • Whether you’ll rely on primary research or secondary research
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative approach Quantitative approach
and describe frequencies, averages, and correlations about relationships between variables

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

plan a research

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types.

  • Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships
  • Descriptive and correlational designs allow you to measure variables and describe relationships between them.
Type of design Purpose and characteristics
Experimental relationships effect on a
Quasi-experimental )
Correlational
Descriptive

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Type of design Purpose and characteristics
Grounded theory
Phenomenology

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

  • Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling Non-probability sampling

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

Questionnaires Interviews
)

Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Quantitative observation

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

Field Examples of data collection methods
Media & communication Collecting a sample of texts (e.g., speeches, articles, or social media posts) for data on cultural norms and narratives
Psychology Using technologies like neuroimaging, eye-tracking, or computer-based tasks to collect data on things like attention, emotional response, or reaction time
Education Using tests or assignments to collect data on knowledge and skills
Physical sciences Using scientific instruments to collect data on things like weight, blood pressure, or chemical composition

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

Reliability Validity
) )

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

Approach Characteristics
Thematic analysis
Discourse analysis

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved July 8, 2024, from https://www.scribbr.com/methodology/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, what is your plagiarism score.

Banner

Performing Academic Research: Creating a research plan

  • The research process
  • Creating a research plan
  • Primary and secondary sources
  • Academic vs. non-academic information
  • Evaluating information: The PAARC test

What is a research plan?

When doing research, it pays to plan ahead. If you take some time to really think about your topic and how you're going to look for sources, you can save yourself hours in the long run. A well thought out research plan will help you find relevant books, ebooks, journal articles, encyclopedia articles, dictionary entries and more much more easily than if you just jumped right in to a database and hoped for the best. It's an easy and helpful way to organize your thinking about a topic, which will help you find what you need.

To help you with creating your research plan, we've set out the following steps:

Step one - Write down your topic

Start by writing out your topic, either on a piece of paper or in a notebook or typed out on your computer. Writing out your topic will help you visualize the parts of your topic, which will be helpful as you build your research plan.

For example, let's say our topic is:

How effective is social media in influencing the youth vote?

Write your topic out like we have here and take a moment to think about the topic and what it is really asking. If what you write out the first time turns out to not be the question you want to ask, try writing it down again with a different wording. Keep doing this until you're confident you've captured the topic you really want to explore.

Step two - Identify your core concepts

Next, take a look at your topic and try to identify what we call its  core concepts . The core concepts of a topic are the words that represent the major ideas that you'll explore with your topic.

Think of it this way: what would be the words in your topic that you would absolutely need to be able to identify your topic? Any words that you absolutely need are your core concepts. Any other words are just there to help contextualize those concepts in a sentence.

When identifying core concepts, it can help to circle or highlight them in your topic sentence. For our example, that would look like this:

Here, we've highlighted social media , youth and vote . These are the three major ideas that we'll be looking at with this topic. They are the "who" (youth) and the "what" (social media and voting) of your topic. All of the other words in your sentence simply relate to these three core concepts and help contextualize them in a sentence. Those words are helpful when you're trying to express a topic to someone else, but, when you're search for sources using a computer, all you need are the essential, core concepts. Anything else will simple get in the way of getting good results.

Step three - Find synonyms

Next, you need to think of synonyms for your core concepts, or other ways that you might express those words. This is critically important when you're doing any type of computer-based searching.

Here's why:

Different people will express the same idea different ways using different words, yet everyone can still get their point across. For example, while you might call a bicycle a "bike" or a "velocipede" (no, really, it's a real word), you're still able to understand that all of those words refer to "a vehicle having two wheels held one behind the other in a frame, typically propelled by a seated rider using pedals, and steered by means of handlebars at the front" (OED Online).

However, computers aren't very good at making those kinds of connections. For the most part, they will only search for the specific word you give them. For example, if you type "bike" into a database search box, you'll only find sources that use the word "bike". You won't find the sources that use "bicycle" even if those sources are appropriate to your topic. By finding and using different synonyms for your core concepts in your search, you increase your chances for finding more material on your topic.

Here's what it would look like to find the synonyms for the three core concepts in our example:

Social Media: social network, social networks, social networking, Facebook, Twitter, Instagram, Snapchat, Tumblr

Youth: young adult, young adults, teen, teens, teenager, teenagers, adolescent, adolescents, adolescence

Vote: voting, voter, voters, political, politics

Step four - Apply truncation

Now you have all these different words to express your core concepts, which is great. But it will be a real pain to type out five or six different ways to say the same word each time you do a search, right? Well, you're in luck! There is a technique called "truncation" that will save you time and effort when performing searches.

To use truncation, start by identifying the common "root" for your synonyms. This is the word, or even just part of a word , that many of your synonyms have in common. For example, from the synonyms we found above:

social network, social networking = social network

young adult, young adults = young adult

teen, teenage, teenager, teens, teenagers = teen

adolescence, adolescent, adolescents = adolescen

vote, voter, voters, voting = vot

political, politics = politic

"vote," "voter" and "voting" in the above list all share the same root as "vot." Everything that comes after the "t" is really just a matter of variations in spelling.

In some case, a word just won't have a "root", or maybe that "root" is actually the entire word. For example, from the synonyms we found above:

social media = social media

Facebook = Facebook

youth = youth

There's just no other way to say "youth" that means a teenager. While "Youthful," shares the same root with "Youth", it doesn't mean the same thing. The same goes for "social media." Finally, because "Facebook" is a proper name of a specific thing, you don't truncate it, either. This would apply to the name of any specific social media site.

Once you've identified your root words, you can apply what is called the truncation symbol , which is a special character that computers recoqnize as telling them "find me any word that starts with this root, no matter what the ending." By applying this special symbol, you can type just the root word into a database and it will retrieve all the variations in spelling for that word, doing some of your work for you. Most of the time, the truncation symbol is a " * ", although it can sometimes be a " $ " or a " ? ". Most databases will tell you which symbol to use.

For our example words, the roots with their truncation symbols would look like this:

social network*

social media

young adult*

Note that, because there's no other way to say "youth," "social media," or "Facebook we've left off the truncation symbols. If we put a "*" at the end, the computer would find references to words like "Youthful," or "social mediation," which we don't really apply to our topic.

Step five - Use Boolean operators and nesting

Now that you have your list of truncated terms, it's time to put them all together into a search phrase. To do this, you'll need to use two techniques: Boolean operators and nesting .

Boolean operators are three words that computers identify as having special functions when searching. These words are:

  • AND - Putting "and" between two words tells the computer to give you all the results in a database that use both of those words. Use it whenever you need to combine two or more concepts.
  • OR - Putting "or" between two words tells the computer to give you all the results in a database that use at least one of the words, as well as results that use both. Use it whenever you need to list synonyms for the same concept.
  • NOT - Putting "not" before a word tells the computer to eliminate any result that uses the following word from the list of results. It is the trickiest of the three Boolean operators and the one that you will likely use least often. Only use it when you receive a large amount of off-topic results as a way to get rid of the off-topic entries.

Nesting is the technique of using multiple search boxes to control the way a search is run. By combining multiple search boxes together, you force the computer to do a series of mini-searches and combine the results of those mini-searches to create the results for your final search. It's similar to brackets in a mathematical equation. To solve an equation with brackets, you have to do the calculations inside of the bracket before you can complete what is outside the bracket. Nesting is asking the computer to do the same thing with your search.

If we apply Boolean operators and nesting to our example list of truncated terms, we'll get something that looks like this:

social media OR social network* OR Facebook OR Twitter OR Instagram OR Snapchat OR Tumblr

AND Young adult* OR youth OR teen* OR adolescen*

AND vot* OR politic*

In the above example, we've used "or" to combine "social media," "social network*," "Facebook," "Twitter," "Instagram," "Snapchat," and "Tumblr" in one search box (represented here by a black rectangle), used "or" again to combine "young adult*," "youth," "teen*" and "adolescen*" in a second search box. and used "or" again to combine "vot*," and "politic*" in a third search box. This creates three mini-searches, one that will find any result that uses any of the different ways to say "social media," one that will find any result that uses any of the different ways to say "youth," and one that will find any result that uses any of the different ways to say "vote." Finally, we combine the three boxes with "and," so that the final search will find any result that makes reference to at least one of the ways to say "social media," at least one of the ways to say "youth" and at least one of the ways to say "vote." By doing all of this, we've maximized our chances at getting a solid set of on-topic sources to work with.

  • << Previous: The research process
  • Next: Primary and secondary sources >>
  • Last Updated: Feb 26, 2024 11:05 AM
  • URL: https://libguides.marianopolis.edu/research

Creative Commons License

How to Write a Research Plan

Academic Writing Service

Your answers to these questions form your research strategy. Most likely, you’ve addressed some of these issues in your proposal. But you are further along now, and you can flesh out your answers. With your instructor’s help, you should make some basic decisions about what information to collect and what methods to use in analyzing it. You will probably develop this research strategy gradually and, if you are like the rest of us, you will make some changes, large and small, along the way. Still, it is useful to devise a general plan early, even though you will modify it as you progress. Develop a tentative research plan early in the project. Write it down and share it with your instructor. The more concrete and detailed the plan, the better the feedback you’ll get.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code.

This research plan does not need to be elaborate or time-consuming. Like your working bibliography, it is provisional, a work in progress. Still, it is helpful to write it down since it will clarify a number of issues for you and your professor.

Writing a Research Plan

To write out your research plan, begin by restating your main thesis question and any secondary ones. They may have changed a bit since your original proposal. If these questions bear on a particular theory or analytic perspective, state that briefly. In the social sciences, for example, two or three prominent theories might offer different predictions about your subject. If so, then you might want to explore these differences in your thesis and explain why some theories work better (or worse) in this particular case. Likewise, in the humanities, you might consider how different theories offer different insights and contrasting perspectives on the particular novel or film you are studying. If you intend to explore these differences, state your goal clearly in the research plan so you can discuss it later with your professor. Next, turn to the heart of this exercise, your proposed research strategy. Try to explain your basic approach, the materials you will use, and your method of analysis. You may not know all of these elements yet, but do the best you can. Briefly say how and why you think they will help answer your main questions.

Be concrete. What data will you collect? Which poems will you read? Which paintings will you compare? Which historical cases will you examine? If you plan to use case studies, say whether you have already selected them or settled on the criteria for choosing them. Have you decided which documents and secondary sources are most important? Do you have easy access to the data, documents, or other materials you need? Are they reliable sources—the best information you can get on the subject? Give the answers if you have them, or say plainly that you don’t know so your instructor can help. You should also discuss whether your research requires any special skills and, of course, whether you have them. You can—and should—tailor your work to fit your skills.

If you expect to challenge other approaches—an important element of some theses—which ones will you take on, and why? This last point can be put another way: Your project will be informed by some theoretical traditions and research perspectives and not others. Your research will be stronger if you clarify your own perspective and show how it usefully informs your work. Later, you may also enter the jousts and explain why your approach is superior to the alternatives, in this particular study and perhaps more generally. Your research plan should state these issues clearly so you can discuss them candidly and think them through.

If you plan to conduct tests, experiments, or surveys, discuss them, too. They are common research tools in many fields, from psychology and education to public health. Now is the time to spell out the details—the ones you have nailed down tight and the ones that are still rattling around, unresolved. It’s important to bring up the right questions here, even if you don’t have all the answers yet. Raising these questions directly is the best way to get the answers. What kinds of tests or experiments do you plan, and how will you measure the results? How will you recruit your test subjects, and how many will be included in your sample? What test instruments or observational techniques will you use? How reliable and valid are they? Your instructor can be a great source of feedback here.

Your research plan should say:

  • What materials you will use
  • What methods you will use to investigate them
  • Whether your work follow a particular approach or theory

There are also ethical issues to consider. They crop up in any research involving humans or animals. You need to think carefully about them, underscore potential problems, and discuss them with your professor. You also need to clear this research in advance with the appropriate authorities at your school, such as the committee that reviews proposals for research on human subjects.

Not all these issues and questions will bear on your particular project. But some do, and you should wrestle with them as you begin research. Even if your answers are tentative, you will still gain from writing them down and sharing them with your instructor. That’s how you will get the most comprehensive advice, the most pointed recommendations. If some of these issues puzzle you, or if you have already encountered some obstacles, share them, too, so you can either resolve the problems or find ways to work around them.

Remember, your research plan is simply a working product, designed to guide your ongoing inquiry. It’s not a final paper for a grade; it’s a step toward your final paper. Your goal in sketching it out now is to understand these issues better and get feedback from faculty early in the project. It may be a pain to write it out, but it’s a minor sting compared to major surgery later.

Checklist for Conducting Research

  • Familiarize yourself with major questions and debates about your topic.
  • Is appropriate to your topic;
  • Addresses the main questions you propose in your thesis;
  • Relies on materials to which you have access;
  • Can be accomplished within the time available;
  • Uses skills you have or can acquire.
  • Divide your topic into smaller projects and do research on each in turn.
  • Write informally as you do research; do not postpone this prewriting until all your research is complete.

Back to How To Write A Research Paper .

ORDER HIGH QUALITY CUSTOM PAPER

plan a research

Grad Coach

How To Write A Research Proposal

A Straightforward How-To Guide (With Examples)

By: Derek Jansen (MBA) | Reviewed By: Dr. Eunice Rautenbach | August 2019 (Updated April 2023)

Writing up a strong research proposal for a dissertation or thesis is much like a marriage proposal. It’s a task that calls on you to win somebody over and persuade them that what you’re planning is a great idea. An idea they’re happy to say ‘yes’ to. This means that your dissertation proposal needs to be   persuasive ,   attractive   and well-planned. In this post, I’ll show you how to write a winning dissertation proposal, from scratch.

Before you start:

– Understand exactly what a research proposal is – Ask yourself these 4 questions

The 5 essential ingredients:

  • The title/topic
  • The introduction chapter
  • The scope/delimitations
  • Preliminary literature review
  • Design/ methodology
  • Practical considerations and risks 

What Is A Research Proposal?

The research proposal is literally that: a written document that communicates what you propose to research, in a concise format. It’s where you put all that stuff that’s spinning around in your head down on to paper, in a logical, convincing fashion.

Convincing   is the keyword here, as your research proposal needs to convince the assessor that your research is   clearly articulated   (i.e., a clear research question) ,   worth doing   (i.e., is unique and valuable enough to justify the effort), and   doable   within the restrictions you’ll face (time limits, budget, skill limits, etc.). If your proposal does not address these three criteria, your research won’t be approved, no matter how “exciting” the research idea might be.

PS – if you’re completely new to proposal writing, we’ve got a detailed walkthrough video covering two successful research proposals here . 

Free Webinar: How To Write A Research Proposal

How do I know I’m ready?

Before starting the writing process, you need to   ask yourself 4 important questions .  If you can’t answer them succinctly and confidently, you’re not ready – you need to go back and think more deeply about your dissertation topic .

You should be able to answer the following 4 questions before starting your dissertation or thesis research proposal:

  • WHAT is my main research question? (the topic)
  • WHO cares and why is this important? (the justification)
  • WHAT data would I need to answer this question, and how will I analyse it? (the research design)
  • HOW will I manage the completion of this research, within the given timelines? (project and risk management)

If you can’t answer these questions clearly and concisely,   you’re not yet ready   to write your research proposal – revisit our   post on choosing a topic .

If you can, that’s great – it’s time to start writing up your dissertation proposal. Next, I’ll discuss what needs to go into your research proposal, and how to structure it all into an intuitive, convincing document with a linear narrative.

The 5 Essential Ingredients

Research proposals can vary in style between institutions and disciplines, but here I’ll share with you a   handy 5-section structure   you can use. These 5 sections directly address the core questions we spoke about earlier, ensuring that you present a convincing proposal. If your institution already provides a proposal template, there will likely be substantial overlap with this, so you’ll still get value from reading on.

For each section discussed below, make sure you use headers and sub-headers (ideally, numbered headers) to help the reader navigate through your document, and to support them when they need to revisit a previous section. Don’t just present an endless wall of text, paragraph after paragraph after paragraph…

Top Tip:   Use MS Word Styles to format headings. This will allow you to be clear about whether a sub-heading is level 2, 3, or 4. Additionally, you can view your document in ‘outline view’ which will show you only your headings. This makes it much easier to check your structure, shift things around and make decisions about where a section needs to sit. You can also generate a 100% accurate table of contents using Word’s automatic functionality.

plan a research

Ingredient #1 – Topic/Title Header

Your research proposal’s title should be your main research question in its simplest form, possibly with a sub-heading providing basic details on the specifics of the study. For example:

“Compliance with equality legislation in the charity sector: a study of the ‘reasonable adjustments’ made in three London care homes”

As you can see, this title provides a clear indication of what the research is about, in broad terms. It paints a high-level picture for the first-time reader, which gives them a taste of what to expect.   Always aim for a clear, concise title . Don’t feel the need to capture every detail of your research in your title – your proposal will fill in the gaps.

Need a helping hand?

plan a research

Ingredient #2 – Introduction

In this section of your research proposal, you’ll expand on what you’ve communicated in the title, by providing a few paragraphs which offer more detail about your research topic. Importantly, the focus here is the   topic   – what will you research and why is that worth researching? This is not the place to discuss methodology, practicalities, etc. – you’ll do that later.

You should cover the following:

  • An overview of the   broad area   you’ll be researching – introduce the reader to key concepts and language
  • An explanation of the   specific (narrower) area   you’ll be focusing, and why you’ll be focusing there
  • Your research   aims   and   objectives
  • Your   research question (s) and sub-questions (if applicable)

Importantly, you should aim to use short sentences and plain language – don’t babble on with extensive jargon, acronyms and complex language. Assume that the reader is an intelligent layman – not a subject area specialist (even if they are). Remember that the   best writing is writing that can be easily understood   and digested. Keep it simple.

The introduction section serves to expand on the  research topic – what will you study and why is that worth dedicating time and effort to?

Note that some universities may want some extra bits and pieces in your introduction section. For example, personal development objectives, a structural outline, etc. Check your brief to see if there are any other details they expect in your proposal, and make sure you find a place for these.

Ingredient #3 – Scope

Next, you’ll need to specify what the scope of your research will be – this is also known as the delimitations . In other words, you need to make it clear what you will be covering and, more importantly, what you won’t be covering in your research. Simply put, this is about ring fencing your research topic so that you have a laser-sharp focus.

All too often, students feel the need to go broad and try to address as many issues as possible, in the interest of producing comprehensive research. Whilst this is admirable, it’s a mistake. By tightly refining your scope, you’ll enable yourself to   go deep   with your research, which is what you need to earn good marks. If your scope is too broad, you’re likely going to land up with superficial research (which won’t earn marks), so don’t be afraid to narrow things down.

Ingredient #4 – Literature Review

In this section of your research proposal, you need to provide a (relatively) brief discussion of the existing literature. Naturally, this will not be as comprehensive as the literature review in your actual dissertation, but it will lay the foundation for that. In fact, if you put in the effort at this stage, you’ll make your life a lot easier when it’s time to write your actual literature review chapter.

There are a few things you need to achieve in this section:

  • Demonstrate that you’ve done your reading and are   familiar with the current state of the research   in your topic area.
  • Show that   there’s a clear gap   for your specific research – i.e., show that your topic is sufficiently unique and will add value to the existing research.
  • Show how the existing research has shaped your thinking regarding   research design . For example, you might use scales or questionnaires from previous studies.

When you write up your literature review, keep these three objectives front of mind, especially number two (revealing the gap in the literature), so that your literature review has a   clear purpose and direction . Everything you write should be contributing towards one (or more) of these objectives in some way. If it doesn’t, you need to ask yourself whether it’s truly needed.

Top Tip:  Don’t fall into the trap of just describing the main pieces of literature, for example, “A says this, B says that, C also says that…” and so on. Merely describing the literature provides no value. Instead, you need to   synthesise   it, and use it to address the three objectives above.

 If you put in the effort at the proposal stage, you’ll make your life a lot easier when its time to write your actual literature review chapter.

Ingredient #5 – Research Methodology

Now that you’ve clearly explained both your intended research topic (in the introduction) and the existing research it will draw on (in the literature review section), it’s time to get practical and explain exactly how you’ll be carrying out your own research. In other words, your research methodology.

In this section, you’ll need to   answer two critical questions :

  • How   will you design your research? I.e., what research methodology will you adopt, what will your sample be, how will you collect data, etc.
  • Why   have you chosen this design? I.e., why does this approach suit your specific research aims, objectives and questions?

In other words, this is not just about explaining WHAT you’ll be doing, it’s also about explaining WHY. In fact, the   justification is the most important part , because that justification is how you demonstrate a good understanding of research design (which is what assessors want to see).

Some essential design choices you need to cover in your research proposal include:

  • Your intended research philosophy (e.g., positivism, interpretivism or pragmatism )
  • What methodological approach you’ll be taking (e.g., qualitative , quantitative or mixed )
  • The details of your sample (e.g., sample size, who they are, who they represent, etc.)
  • What data you plan to collect (i.e. data about what, in what form?)
  • How you plan to collect it (e.g., surveys , interviews , focus groups, etc.)
  • How you plan to analyse it (e.g., regression analysis, thematic analysis , etc.)
  • Ethical adherence (i.e., does this research satisfy all ethical requirements of your institution, or does it need further approval?)

This list is not exhaustive – these are just some core attributes of research design. Check with your institution what level of detail they expect. The “ research onion ” by Saunders et al (2009) provides a good summary of the various design choices you ultimately need to make – you can   read more about that here .

Don’t forget the practicalities…

In addition to the technical aspects, you will need to address the   practical   side of the project. In other words, you need to explain   what resources you’ll need   (e.g., time, money, access to equipment or software, etc.) and how you intend to secure these resources. You need to show that your project is feasible, so any “make or break” type resources need to already be secured. The success or failure of your project cannot depend on some resource which you’re not yet sure you have access to.

Another part of the practicalities discussion is   project and risk management . In other words, you need to show that you have a clear project plan to tackle your research with. Some key questions to address:

  • What are the timelines for each phase of your project?
  • Are the time allocations reasonable?
  • What happens if something takes longer than anticipated (risk management)?
  • What happens if you don’t get the response rate you expect?

A good way to demonstrate that you’ve thought this through is to include a Gantt chart and a risk register (in the appendix if word count is a problem). With these two tools, you can show that you’ve got a clear, feasible plan, and you’ve thought about and accounted for the potential risks.

Gantt chart

Tip – Be honest about the potential difficulties – but show that you are anticipating solutions and workarounds. This is much more impressive to an assessor than an unrealistically optimistic proposal which does not anticipate any challenges whatsoever.

Final Touches: Read And Simplify

The final step is to edit and proofread your proposal – very carefully. It sounds obvious, but all too often poor editing and proofreading ruin a good proposal. Nothing is more off-putting for an assessor than a poorly edited, typo-strewn document. It sends the message that you either do not pay attention to detail, or just don’t care. Neither of these are good messages. Put the effort into editing and proofreading your proposal (or pay someone to do it for you) – it will pay dividends.

When you’re editing, watch out for ‘academese’. Many students can speak simply, passionately and clearly about their dissertation topic – but become incomprehensible the moment they turn the laptop on. You are not required to write in any kind of special, formal, complex language when you write academic work. Sure, there may be technical terms, jargon specific to your discipline, shorthand terms and so on. But, apart from those,   keep your written language very close to natural spoken language   – just as you would speak in the classroom. Imagine that you are explaining your project plans to your classmates or a family member. Remember, write for the intelligent layman, not the subject matter experts. Plain-language, concise writing is what wins hearts and minds – and marks!

Let’s Recap: Research Proposal 101

And there you have it – how to write your dissertation or thesis research proposal, from the title page to the final proof. Here’s a quick recap of the key takeaways:

  • The purpose of the research proposal is to   convince   – therefore, you need to make a clear, concise argument of why your research is both worth doing and doable.
  • Make sure you can ask the critical what, who, and how questions of your research   before   you put pen to paper.
  • Title – provides the first taste of your research, in broad terms
  • Introduction – explains what you’ll be researching in more detail
  • Scope – explains the boundaries of your research
  • Literature review – explains how your research fits into the existing research and why it’s unique and valuable
  • Research methodology – explains and justifies how you will carry out your own research

Hopefully, this post has helped you better understand how to write up a winning research proposal. If you enjoyed it, be sure to check out the rest of the Grad Coach Blog . If your university doesn’t provide any template for your proposal, you might want to try out our free research proposal template .

Literature Review Course

Psst… there’s more!

This post is an extract from our bestselling short course, Research Proposal Bootcamp . If you want to work smart, you don't want to miss this .

You Might Also Like:

How to write the discussion chapter

30 Comments

Mazwakhe Mkhulisi

Thank you so much for the valuable insight that you have given, especially on the research proposal. That is what I have managed to cover. I still need to go back to the other parts as I got disturbed while still listening to Derek’s audio on you-tube. I am inspired. I will definitely continue with Grad-coach guidance on You-tube.

Derek Jansen

Thanks for the kind words :). All the best with your proposal.

NAVEEN ANANTHARAMAN

First of all, thanks a lot for making such a wonderful presentation. The video was really useful and gave me a very clear insight of how a research proposal has to be written. I shall try implementing these ideas in my RP.

Once again, I thank you for this content.

Bonginkosi Mshengu

I found reading your outline on writing research proposal very beneficial. I wish there was a way of submitting my draft proposal to you guys for critiquing before I submit to the institution.

Hi Bonginkosi

Thank you for the kind words. Yes, we do provide a review service. The best starting point is to have a chat with one of our coaches here: https://gradcoach.com/book/new/ .

Erick Omondi

Hello team GRADCOACH, may God bless you so much. I was totally green in research. Am so happy for your free superb tutorials and resources. Once again thank you so much Derek and his team.

You’re welcome, Erick. Good luck with your research proposal 🙂

ivy

thank you for the information. its precise and on point.

Nighat Nighat Ahsan

Really a remarkable piece of writing and great source of guidance for the researchers. GOD BLESS YOU for your guidance. Regards

Delfina Celeste Danca Rangel

Thanks so much for your guidance. It is easy and comprehensive the way you explain the steps for a winning research proposal.

Desiré Forku

Thank you guys so much for the rich post. I enjoyed and learn from every word in it. My problem now is how to get into your platform wherein I can always seek help on things related to my research work ? Secondly, I wish to find out if there is a way I can send my tentative proposal to you guys for examination before I take to my supervisor Once again thanks very much for the insights

Thanks for your kind words, Desire.

If you are based in a country where Grad Coach’s paid services are available, you can book a consultation by clicking the “Book” button in the top right.

Best of luck with your studies.

Adolph

May God bless you team for the wonderful work you are doing,

If I have a topic, Can I submit it to you so that you can draft a proposal for me?? As I am expecting to go for masters degree in the near future.

Thanks for your comment. We definitely cannot draft a proposal for you, as that would constitute academic misconduct. The proposal needs to be your own work. We can coach you through the process, but it needs to be your own work and your own writing.

Best of luck with your research!

kenate Akuma

I found a lot of many essential concepts from your material. it is real a road map to write a research proposal. so thanks a lot. If there is any update material on your hand on MBA please forward to me.

Ahmed Khalil

GradCoach is a professional website that presents support and helps for MBA student like me through the useful online information on the page and with my 1-on-1 online coaching with the amazing and professional PhD Kerryen.

Thank you Kerryen so much for the support and help 🙂

I really recommend dealing with such a reliable services provider like Gradcoah and a coach like Kerryen.

PINTON OFOSU

Hi, Am happy for your service and effort to help students and researchers, Please, i have been given an assignment on research for strategic development, the task one is to formulate a research proposal to support the strategic development of a business area, my issue here is how to go about it, especially the topic or title and introduction. Please, i would like to know if you could help me and how much is the charge.

Marcos A. López Figueroa

This content is practical, valuable, and just great!

Thank you very much!

Eric Rwigamba

Hi Derek, Thank you for the valuable presentation. It is very helpful especially for beginners like me. I am just starting my PhD.

Hussein EGIELEMAI

This is quite instructive and research proposal made simple. Can I have a research proposal template?

Mathew Yokie Musa

Great! Thanks for rescuing me, because I had no former knowledge in this topic. But with this piece of information, I am now secured. Thank you once more.

Chulekazi Bula

I enjoyed listening to your video on how to write a proposal. I think I will be able to write a winning proposal with your advice. I wish you were to be my supervisor.

Mohammad Ajmal Shirzad

Dear Derek Jansen,

Thank you for your great content. I couldn’t learn these topics in MBA, but now I learned from GradCoach. Really appreciate your efforts….

From Afghanistan!

Mulugeta Yilma

I have got very essential inputs for startup of my dissertation proposal. Well organized properly communicated with video presentation. Thank you for the presentation.

Siphesihle Macu

Wow, this is absolutely amazing guys. Thank you so much for the fruitful presentation, you’ve made my research much easier.

HAWANATU JULLIANA JOSEPH

this helps me a lot. thank you all so much for impacting in us. may god richly bless you all

June Pretzer

How I wish I’d learn about Grad Coach earlier. I’ve been stumbling around writing and rewriting! Now I have concise clear directions on how to put this thing together. Thank you!

Jas

Fantastic!! Thank You for this very concise yet comprehensive guidance.

Fikiru Bekele

Even if I am poor in English I would like to thank you very much.

Rachel Offeibea Nyarko

Thank you very much, this is very insightful.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Creating a Research Plan

Creating a Research Plan for a Science Project Before starting work on a science project, a research plan should be created. While many researchers merely do this “in their head”, it should be formally contained within a document. The research plan describes many aspects of the project. It will help both the researchers and mentors understand the overall approach that is planned for the project. The contents of this web page should serve as a guide for creating a research plan.

A written research plan should contain a description of the following. 1. The goals of the project 2. The hypothesis 3. The factors that will be studied 4. The responses (results) that will be observed 5. How the data will be analyzed and interpreted 6. The materials and equipment that will be used 7. The experimental methods (procedure) that will be used 8. The facilities where the work will be done 9. How the research plan might change 10. Summary

11. A bibliography that includes at least five major references.

NOTE : Steps 1-5 are focused on setting up the overall ideas and objectives. Steps 6-8 are focused on the specifics of the experimentation, such as what, how, and where the experimentation will be performed. Steps 9-11 are important for anyone looking over the project, but are particularly important if you are applying for pre-approval because it gives those reviewing the application a better sense of how well the planning was done.

The Goals of the Project A description of the goals of the project should be a general discussion of the project. What will be studied? Why is it of interest? What do you hope to learn? This will set the stage for the rest of the research plan.

The Hypothesis Here is where the scientific hypothesis is laid out. A proposal is made about the factors to be studied and how they might affect the responses of interest. For example, a hypothesis about the growth of maple tree saplings might start with: “We believe that recently-sprouted maple tree saplings will have their growth stunted by excessive exposure to ultraviolet light.” From here, the hypothesis is discussed in enough detail for the reader to understand exactly what is being proposed about the state of the natural world that you hope to either prove or disprove.

The Factors That Will Be Studied In this section, you will spell out which factors will be studied in your research project as well as those that will be held constant. The factors that you study are the ones that you vary in a controlled fashion in order to explore the hypothesis. The factors that are held constant are factors that you do not want to affect the outcome of your experiment. A perfect example of these two kinds of factors at work would be growing plants in a greenhouse. The factors that are varied (for example, adding nutrients to the soil) will have the best chance of being the ones that affect the plants’ growth. By using a greenhouse, the factors that you do not wish to affect the outcome of your experiment (such as exposure of the plants to wind, rain, or animals) will not have a chance to affect the outcome.

The Responses (Results) That Will Be Observed The response is the result you observe as the output of your experiments. An observation may be qualitative (for example, a change of color) or quantitative (for example, a change in height determined by a measurement). In a chemical experiment the product of the reaction is the response. A botanical experiment might have the change in height of the plant or the number of leaves on the plant at the end of the growing period as the response. Mention should be made if you plan to get assistance in measuring your response by using an outside expert in the field of study.

How the Data Will Be Analyzed and Interpreted This section should discuss how the responses (results) will be treated in order to make conclusions about your work. How will the data be compared in order to make a conclusion? Will an average response be calculated? Standard deviation? Will a visual examination of the experiments be used as the basis of the data analysis? Include any details that will help the reader understand how the responses that were observed will be turned into understandable conclusions about your project.

The Materials and Equipment That Will Be Used In this part, the materials (expendables) and equipment that will be used for the science project are discussed. Will the materials be collected from nature? Will they be purchased from a scientific supply house? Will you use special glassware that is provided by your school? Describe the materials and equipment in enough detail so that someone can understand how they will be used in your science project.

The Experimental Methods (Procedure) That Will Be Used This section will cover how you will carry out your experiments. You will describe the methods (procedures) that you will use during your experiments. For example, a chemistry project might involve running a reaction and measuring the yield of a chemical that you make. The description would include how the chemical reaction will be run in special glassware and how the work up will isolate the product. You would also describe how the yield will be measured, such as weighing the resultant product on a balance. At the end of this section of the research plan, the reader should understand the general work flow of your experiments and how they will be run.

The Facilities Where the Work Will be Done Describe where the experiments will be done. Your home? Your school? A special laboratory? Give enough detail for the reader to understand where you will work on your science project.

How the Research Plan Might Change A research plan is just that, a plan! Plans don’t always proceed exactly as you envisioned them. If you have thought about changes that might need to be made as you are running your experiments, mention them here. This will indicate that you have thought about your work in great depth and are prepared to adjust accordingly.

Summary For this section, provide a general summary of your research plan. Tell the reader what you hope to accomplish and how you will do it.

Bibliography

Provide at least five major references that relate to the project.  This helps reviewers to understand better the depth of research that has been done in preparation for doing the research project.

2024 Fair results!

What a great fair!  The 2024 NHSEE fair was held on March 14, and we’re already looking forward to the 2025 fair – we hope you are too.

You can see the complete list of awards here. Besides the trophies and medals, we awarded a number of Special Awards provided by companies and associations that love helping students get and stay excited by science, and scholarships to the New Hampshire Academy of Science (NHAS) summer program .  Check out the list!

In the meantime, start thinking of an amazing project for 2025, how you can help a student with one, or how you can help the NHSEE 2025 fair. Judge, volunteer, sponsor? Let us know!

See the results here - Who won? We are ISEF Affiliated! Mentors Available -->

Our Sponsors

plan a research

 

Educational resources and simple solutions for your research journey

plan a research

How to Plan a Research Project

plan a research

One of the most significant skills of an academician is the knowing how to plan a research project and execute it successfully. This process is often quite stressful, since the skills required for planning and management are not taught in most research groups or academic institutions, and need to be consciously acquired as one proceeds in their career. Over time the challenges that an academician faces while planning a research project keep increasing as the nature of tasks that need to be managed keep multiplying. Planning a research project effectively is the most crucial step as it has direct implications on the overall quality of the project, but it is not easy. If you are looking for some tips on how to plan a research project successfully, then this article will help you out.

1. Define a clear problem statement: As a researcher, you are probably quite familiar with the process of identifying gaps in the existing knowledge base when planning a research project. What you also need to acknowledge right at the beginning is that finding the answers to fill in all those gaps may not necessarily be within the scope of your current project. When you start to plan a research project with this clear understanding, you have the opportunity to ask only relevant questions and define a clear, concise and simple problem statement. Along with this, it is also important to know that the problem statement might keep changing over the course of your project and you need to be flexible enough to modify it as required. If you want know how to plan a research project that has attainable goals, then having a clear and well-defined problem statement is the first step toward it.

2. Set pragmatic goals: Nobody knows more than you how tumultuous and unpredictable a researcher’s journey can be. Additionally, it is always challenging to plan a research project and then ensure it stays on track when multiple variables are involved, which often pose as roadblocks to your project. You can work your way through this by being cautious and pragmatic while setting goals. When planning a research project, consider all the external variables that are beyond your control, and keep troubleshooting strategies ready before beginning your project. This will ensure that your objectives are achieved with minimum hassle. So the next time you find yourself wondering how to plan a research project efficiently, focus on goal setting.

how to plan a research project

3. Define your timelines: If you often find yourself stuck with how to plan research projects, you’re probably not managing your time well .  So once you have decided the overall objectives and plan for a research project, define the timelines next.  You will need to consider the limited availability of time and resources when planning a research project, as well as the possibility that you may need to revisit and refine your problem statement and objectives routinely throughout the course of this project. Thus, when planning a research project, know that you may not always be realistically possible to adhere to your originally defined timeline. In order to avoid unnecessary delays in your project and to execute the research project successfully, you can break down your objectives into mini-goals that are attainable in a shorter duration. Having weekly or bi-weekly timelines instead of monthly timelines will make it easier to introduce modifications and keep your project on track.

R Discovery is a literature search and research reading platform that accelerates your research discovery journey by keeping you updated on the latest, most relevant scholarly content. With 250M+ research articles sourced from trusted aggregators like CrossRef, Unpaywall, PubMed, PubMed Central, Open Alex and top publishing houses like Springer Nature, JAMA, IOP, Taylor & Francis, NEJM, BMJ, Karger, SAGE, Emerald Publishing and more, R Discovery puts a world of research at your fingertips.  

Try R Discovery Prime FREE for 1 week or upgrade at just US$72 a year to access premium features that let you listen to research on the go, read in your language, collaborate with peers, auto sync with reference managers, and much more. Choose a simpler, smarter way to find and read research – Download the app and start your free 7-day trial today !  

Related Posts

graphical abstract

How to Make a Graphical Abstract for Your Research Paper (with Examples)

Simple random sampling

Simple Random Sampling: Definition, Methods, and Examples

Labmonk

How to Plan and Conduct a Research Project: 12 Simple Steps

Well! For planning and conduction we have to go through following steps.

2. Discussing with others: We should discuss with others (e.g., friends, lab mates, seniors, teachers and colleagues) about what they are mostly considering, what is sparking interest in us and whatever question arises we should freely discuss with others as their suggestions and comments will help us in refining our focus.

Now-a-days many things are available online from internet. Websites like  Google ,  PubMed ,  Scopus ,  Science Direct  and others are some of the best learning sources and provides latest information of research. We can search many related topics and finalize a plan.

Well!  Research proposal  is the detailed explanation of the whole project that we are going to conduct. It is like a formal need. It should include your thinking about the research problem, all discussions with your guide and all initial findings on the topic.

Early identification of the signs of procrastination will give you the best chance of minimizing any negative effects. Once you suspect that you are procrastinating, it can be helpful to review what you are expecting of yourself, and check that those expectations are realistic. This is where planning is vital. After a research plan is made it is a better idea to show it to some other people of our team or our teachers/guides, who can help us in finding out some missing tasks, or some mistakes.

Leave a Comment Cancel reply

Basic Steps in the Research Process

The following steps outline a simple and effective strategy for writing a research paper. Depending on your familiarity with the topic and the challenges you encounter along the way, you may need to rearrange these steps.

Step 1: Identify and develop your topic

Selecting a topic can be the most challenging part of a research assignment. Since this is the very first step in writing a paper, it is vital that it be done correctly. Here are some tips for selecting a topic:

  • Select a topic within the parameters set by the assignment. Many times your instructor will give you clear guidelines as to what you can and cannot write about. Failure to work within these guidelines may result in your proposed paper being deemed unacceptable by your instructor.
  • Select a topic of personal interest to you and learn more about it. The research for and writing of a paper will be more enjoyable if you are writing about something that you find interesting.
  • Select a topic for which you can find a manageable amount of information. Do a preliminary search of information sources to determine whether existing sources will meet your needs. If you find too much information, you may need to narrow your topic; if you find too little, you may need to broaden your topic.
  • Be original. Your instructor reads hundreds of research papers every year, and many of them are on the same topics (topics in the news at the time, controversial issues, subjects for which there is ample and easily accessed information). Stand out from your classmates by selecting an interesting and off-the-beaten-path topic.
  • Still can't come up with a topic to write about? See your instructor for advice.

Once you have identified your topic, it may help to state it as a question. For example, if you are interested in finding out about the epidemic of obesity in the American population, you might pose the question "What are the causes of obesity in America ?" By posing your subject as a question you can more easily identify the main concepts or keywords to be used in your research.

Step 2 : Do a preliminary search for information

Before beginning your research in earnest, do a preliminary search to determine whether there is enough information out there for your needs and to set the context of your research. Look up your keywords in the appropriate titles in the library's Reference collection (such as encyclopedias and dictionaries) and in other sources such as our catalog of books, periodical databases, and Internet search engines. Additional background information may be found in your lecture notes, textbooks, and reserve readings. You may find it necessary to adjust the focus of your topic in light of the resources available to you.

Step 3: Locate materials

With the direction of your research now clear to you, you can begin locating material on your topic. There are a number of places you can look for information:

If you are looking for books, do a subject search in One Search . A Keyword search can be performed if the subject search doesn't yield enough information. Print or write down the citation information (author, title,etc.) and the location (call number and collection) of the item(s). Note the circulation status. When you locate the book on the shelf, look at the books located nearby; similar items are always shelved in the same area. The Aleph catalog also indexes the library's audio-visual holdings.

Use the library's  electronic periodical databases  to find magazine and newspaper articles. Choose the databases and formats best suited to your particular topic; ask at the librarian at the Reference Desk if you need help figuring out which database best meets your needs. Many of the articles in the databases are available in full-text format.

Use search engines ( Google ,  Yahoo , etc.) and subject directories to locate materials on the Internet. Check the  Internet Resources  section of the NHCC Library web site for helpful subject links.

Step 4: Evaluate your sources

See the  CARS Checklist for Information Quality   for tips on evaluating the authority and quality of the information you have located. Your instructor expects that you will provide credible, truthful, and reliable information and you have every right to expect that the sources you use are providing the same. This step is especially important when using Internet resources, many of which are regarded as less than reliable.

Step 5: Make notes

Consult the resources you have chosen and note the information that will be useful in your paper. Be sure to document all the sources you consult, even if you there is a chance you may not use that particular source. The author, title, publisher, URL, and other information will be needed later when creating a bibliography.

Step 6: Write your paper

Begin by organizing the information you have collected. The next step is the rough draft, wherein you get your ideas on paper in an unfinished fashion. This step will help you organize your ideas and determine the form your final paper will take. After this, you will revise the draft as many times as you think necessary to create a final product to turn in to your instructor.

Step 7: Cite your sources properly

Give credit where credit is due; cite your sources.

Citing or documenting the sources used in your research serves two purposes: it gives proper credit to the authors of the materials used, and it allows those who are reading your work to duplicate your research and locate the sources that you have listed as references. The  MLA  and the  APA  Styles are two popular citation formats.

Failure to cite your sources properly is plagiarism. Plagiarism is avoidable!

Step 8: Proofread

The final step in the process is to proofread the paper you have created. Read through the text and check for any errors in spelling, grammar, and punctuation. Make sure the sources you used are cited properly. Make sure the message that you want to get across to the reader has been thoroughly stated.

Additional research tips:

  • Work from the general to the specific -- find background information first, then use more specific sources.
  • Don't forget print sources -- many times print materials are more easily accessed and every bit as helpful as online resources.
  • The library has books on the topic of writing research papers at call number area LB 2369.
  • If you have questions about the assignment, ask your instructor.
  • If you have any questions about finding information in the library, ask the librarian.

Contact Information

Craig larson.

Librarian 763-424-0733 [email protected] Zoom:  myzoom   Available by appointment

Get Started

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Pharmacol Pharmacother
  • v.4(2); Apr-Jun 2013

The critical steps for successful research: The research proposal and scientific writing: (A report on the pre-conference workshop held in conjunction with the 64 th annual conference of the Indian Pharmaceutical Congress-2012)

Pitchai balakumar.

Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong. Kedah Darul Aman, Malaysia

Mohammed Naseeruddin Inamdar

1 Department of Pharmacology, Al-Ameen College of Pharmacy, Bengaluru, Karnataka, India

Gowraganahalli Jagadeesh

2 Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, USA

An interactive workshop on ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing’ was conducted in conjunction with the 64 th Annual Conference of the Indian Pharmaceutical Congress-2012 at Chennai, India. In essence, research is performed to enlighten our understanding of a contemporary issue relevant to the needs of society. To accomplish this, a researcher begins search for a novel topic based on purpose, creativity, critical thinking, and logic. This leads to the fundamental pieces of the research endeavor: Question, objective, hypothesis, experimental tools to test the hypothesis, methodology, and data analysis. When correctly performed, research should produce new knowledge. The four cornerstones of good research are the well-formulated protocol or proposal that is well executed, analyzed, discussed and concluded. This recent workshop educated researchers in the critical steps involved in the development of a scientific idea to its successful execution and eventual publication.

INTRODUCTION

Creativity and critical thinking are of particular importance in scientific research. Basically, research is original investigation undertaken to gain knowledge and understand concepts in major subject areas of specialization, and includes the generation of ideas and information leading to new or substantially improved scientific insights with relevance to the needs of society. Hence, the primary objective of research is to produce new knowledge. Research is both theoretical and empirical. It is theoretical because the starting point of scientific research is the conceptualization of a research topic and development of a research question and hypothesis. Research is empirical (practical) because all of the planned studies involve a series of observations, measurements, and analyses of data that are all based on proper experimental design.[ 1 – 9 ]

The subject of this report is to inform readers of the proceedings from a recent workshop organized by the 64 th Annual conference of the ‘ Indian Pharmaceutical Congress ’ at SRM University, Chennai, India, from 05 to 06 December 2012. The objectives of the workshop titled ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing,’ were to assist participants in developing a strong fundamental understanding of how best to develop a research or study protocol, and communicate those research findings in a conference setting or scientific journal. Completing any research project requires meticulous planning, experimental design and execution, and compilation and publication of findings in the form of a research paper. All of these are often unfamiliar to naïve researchers; thus, the purpose of this workshop was to teach participants to master the critical steps involved in the development of an idea to its execution and eventual publication of the results (See the last section for a list of learning objectives).

THE STRUCTURE OF THE WORKSHOP

The two-day workshop was formatted to include key lectures and interactive breakout sessions that focused on protocol development in six subject areas of the pharmaceutical sciences. This was followed by sessions on scientific writing. DAY 1 taught the basic concepts of scientific research, including: (1) how to formulate a topic for research and to describe the what, why , and how of the protocol, (2) biomedical literature search and review, (3) study designs, statistical concepts, and result analyses, and (4) publication ethics. DAY 2 educated the attendees on the basic elements and logistics of writing a scientific paper and thesis, and preparation of poster as well as oral presentations.

The final phase of the workshop was the ‘Panel Discussion,’ including ‘Feedback/Comments’ by participants. There were thirteen distinguished speakers from India and abroad. Approximately 120 post-graduate and pre-doctoral students, young faculty members, and scientists representing industries attended the workshop from different parts of the country. All participants received a printed copy of the workshop manual and supporting materials on statistical analyses of data.

THE BASIC CONCEPTS OF RESEARCH: THE KEY TO GETTING STARTED IN RESEARCH

A research project generally comprises four key components: (1) writing a protocol, (2) performing experiments, (3) tabulating and analyzing data, and (4) writing a thesis or manuscript for publication.

Fundamentals in the research process

A protocol, whether experimental or clinical, serves as a navigator that evolves from a basic outline of the study plan to become a qualified research or grant proposal. It provides the structural support for the research. Dr. G. Jagadeesh (US FDA), the first speaker of the session, spoke on ‘ Fundamentals in research process and cornerstones of a research project .’ He discussed at length the developmental and structural processes in preparing a research protocol. A systematic and step-by-step approach is necessary in planning a study. Without a well-designed protocol, there would be a little chance for successful completion of a research project or an experiment.

Research topic

The first and the foremost difficult task in research is to identify a topic for investigation. The research topic is the keystone of the entire scientific enterprise. It begins the project, drives the entire study, and is crucial for moving the project forward. It dictates the remaining elements of the study [ Table 1 ] and thus, it should not be too narrow or too broad or unfocused. Because of these potential pitfalls, it is essential that a good or novel scientific idea be based on a sound concept. Creativity, critical thinking, and logic are required to generate new concepts and ideas in solving a research problem. Creativity involves critical thinking and is associated with generating many ideas. Critical thinking is analytical, judgmental, and involves evaluating choices before making a decision.[ 4 ] Thus, critical thinking is convergent type thinking that narrows and refines those divergent ideas and finally settles to one idea for an in-depth study. The idea on which a research project is built should be novel, appropriate to achieve within the existing conditions, and useful to the society at large. Therefore, creativity and critical thinking assist biomedical scientists in research that results in funding support, novel discovery, and publication.[ 1 , 4 ]

Elements of a study protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g001.jpg

Research question

The next most crucial aspect of a study protocol is identifying a research question. It should be a thought-provoking question. The question sets the framework. It emerges from the title, findings/results, and problems observed in previous studies. Thus, mastering the literature, attendance at conferences, and discussion in journal clubs/seminars are sources for developing research questions. Consider the following example in developing related research questions from the research topic.

Hepatoprotective activity of Terminalia arjuna and Apium graveolens on paracetamol-induced liver damage in albino rats.

How is paracetamol metabolized in the body? Does it involve P450 enzymes? How does paracetamol cause liver injury? What are the mechanisms by which drugs can alleviate liver damage? What biochemical parameters are indicative of liver injury? What major endogenous inflammatory molecules are involved in paracetamol-induced liver damage?

A research question is broken down into more precise objectives. The objectives lead to more precise methods and definition of key terms. The objectives should be SMART-Specific, Measurable, Achievable, Realistic, Time-framed,[ 10 ] and should cover the entire breadth of the project. The objectives are sometimes organized into hierarchies: Primary, secondary, and exploratory; or simply general and specific. Study the following example:

To evaluate the safety and tolerability of single oral doses of compound X in normal volunteers.

To assess the pharmacokinetic profile of compound X following single oral doses.

To evaluate the incidence of peripheral edema reported as an adverse event.

The objectives and research questions are then formulated into a workable or testable hypothesis. The latter forces us to think carefully about what comparisons will be needed to answer the research question, and establishes the format for applying statistical tests to interpret the results. The hypothesis should link a process to an existing or postulated biologic pathway. A hypothesis is written in a form that can yield measurable results. Studies that utilize statistics to compare groups of data should have a hypothesis. Consider the following example:

  • The hepatoprotective activity of Terminalia arjuna is superior to that of Apium graveolens against paracetamol-induced liver damage in albino rats.

All biological research, including discovery science, is hypothesis-driven. However, not all studies need be conducted with a hypothesis. For example, descriptive studies (e.g., describing characteristics of a plant, or a chemical compound) do not need a hypothesis.[ 1 ]

Relevance of the study

Another important section to be included in the protocol is ‘significance of the study.’ Its purpose is to justify the need for the research that is being proposed (e.g., development of a vaccine for a disease). In summary, the proposed study should demonstrate that it represents an advancement in understanding and that the eventual results will be meaningful, contribute to the field, and possibly even impact society.

Biomedical literature

A literature search may be defined as the process of examining published sources of information on a research or review topic, thesis, grant application, chemical, drug, disease, or clinical trial, etc. The quantity of information available in print or electronically (e.g., the internet) is immense and growing with time. A researcher should be familiar with the right kinds of databases and search engines to extract the needed information.[ 3 , 6 ]

Dr. P. Balakumar (Institute of Pharmacy, Rajendra Institute of Technology and Sciences, Sirsa, Haryana; currently, Faculty of Pharmacy, AIMST University, Malaysia) spoke on ‘ Biomedical literature: Searching, reviewing and referencing .’ He schematically explained the basis of scientific literature, designing a literature review, and searching literature. After an introduction to the genesis and diverse sources of scientific literature searches, the use of PubMed, one of the premier databases used for biomedical literature searches world-wide, was illustrated with examples and screenshots. Several companion databases and search engines are also used for finding information related to health sciences, and they include Embase, Web of Science, SciFinder, The Cochrane Library, International Pharmaceutical Abstracts, Scopus, and Google Scholar.[ 3 ] Literature searches using alternative interfaces for PubMed such as GoPubMed, Quertle, PubFocus, Pubget, and BibliMed were discussed. The participants were additionally informed of databases on chemistry, drugs and drug targets, clinical trials, toxicology, and laboratory animals (reviewed in ref[ 3 ]).

Referencing and bibliography are essential in scientific writing and publication.[ 7 ] Referencing systems are broadly classified into two major types, such as Parenthetical and Notation systems. Parenthetical referencing is also known as Harvard style of referencing, while Vancouver referencing style and ‘Footnote’ or ‘Endnote’ are placed under Notation referencing systems. The participants were educated on each referencing system with examples.

Bibliography management

Dr. Raj Rajasekaran (University of California at San Diego, CA, USA) enlightened the audience on ‘ bibliography management ’ using reference management software programs such as Reference Manager ® , Endnote ® , and Zotero ® for creating and formatting bibliographies while writing a manuscript for publication. The discussion focused on the use of bibliography management software in avoiding common mistakes such as incomplete references. Important steps in bibliography management, such as creating reference libraries/databases, searching for references using PubMed/Google scholar, selecting and transferring selected references into a library, inserting citations into a research article and formatting bibliographies, were presented. A demonstration of Zotero®, a freely available reference management program, included the salient features of the software, adding references from PubMed using PubMed ID, inserting citations and formatting using different styles.

Writing experimental protocols

The workshop systematically instructed the participants in writing ‘ experimental protocols ’ in six disciplines of Pharmaceutical Sciences.: (1) Pharmaceutical Chemistry (presented by Dr. P. V. Bharatam, NIPER, Mohali, Punjab); (2) Pharmacology (presented by Dr. G. Jagadeesh and Dr. P. Balakumar); (3) Pharmaceutics (presented by Dr. Jayant Khandare, Piramal Life Sciences, Mumbai); (4) Pharmacy Practice (presented by Dr. Shobha Hiremath, Al-Ameen College of Pharmacy, Bengaluru); (5) Pharmacognosy and Phytochemistry (presented by Dr. Salma Khanam, Al-Ameen College of Pharmacy, Bengaluru); and (6) Pharmaceutical Analysis (presented by Dr. Saranjit Singh, NIPER, Mohali, Punjab). The purpose of the research plan is to describe the what (Specific Aims/Objectives), why (Background and Significance), and how (Design and Methods) of the proposal.

The research plan should answer the following questions: (a) what do you intend to do; (b) what has already been done in general, and what have other researchers done in the field; (c) why is this worth doing; (d) how is it innovative; (e) what will this new work add to existing knowledge; and (f) how will the research be accomplished?

In general, the format used by the faculty in all subjects is shown in Table 2 .

Elements of a research protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g002.jpg

Biostatistics

Biostatistics is a key component of biomedical research. Highly reputed journals like The Lancet, BMJ, Journal of the American Medical Association, and many other biomedical journals include biostatisticians on their editorial board or reviewers list. This indicates that a great importance is given for learning and correctly employing appropriate statistical methods in biomedical research. The post-lunch session on day 1 of the workshop was largely committed to discussion on ‘ Basic biostatistics .’ Dr. R. Raveendran (JIPMER, Puducherry) and Dr. Avijit Hazra (PGIMER, Kolkata) reviewed, in parallel sessions, descriptive statistics, probability concepts, sample size calculation, choosing a statistical test, confidence intervals, hypothesis testing and ‘ P ’ values, parametric and non-parametric statistical tests, including analysis of variance (ANOVA), t tests, Chi-square test, type I and type II errors, correlation and regression, and summary statistics. This was followed by a practice and demonstration session. Statistics CD, compiled by Dr. Raveendran, was distributed to the participants before the session began and was demonstrated live. Both speakers worked on a variety of problems that involved both clinical and experimental data. They discussed through examples the experimental designs encountered in a variety of studies and statistical analyses performed for different types of data. For the benefit of readers, we have summarized statistical tests applied frequently for different experimental designs and post-hoc tests [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g003.jpg

Conceptual framework for statistical analyses of data. Of the two kinds of variables, qualitative (categorical) and quantitative (numerical), qualitative variables (nominal or ordinal) are not normally distributed. Numerical data that come from normal distributions are analyzed using parametric tests, if not; the data are analyzed using non-parametric tests. The most popularly used Student's t -test compares the means of two populations, data for this test could be paired or unpaired. One-way analysis of variance (ANOVA) is used to compare the means of three or more independent populations that are normally distributed. Applying t test repeatedly in pair (multiple comparison), to compare the means of more than two populations, will increase the probability of type I error (false positive). In this case, for proper interpretation, we need to adjust the P values. Repeated measures ANOVA is used to compare the population means if more than two observations coming from same subject over time. The null hypothesis is rejected with a ‘ P ’ value of less than 0.05, and the difference in population means is considered to be statistically significant. Subsequently, appropriate post-hoc tests are used for pairwise comparisons of population means. Two-way or three-way ANOVA are considered if two (diet, dose) or three (diet, dose, strain) independent factors, respectively, are analyzed in an experiment (not described in the Figure). Categorical nominal unmatched variables (counts or frequencies) are analyzed by Chi-square test (not shown in the Figure)

Research and publication ethics

The legitimate pursuit of scientific creativity is unfortunately being marred by a simultaneous increase in scientific misconduct. A disproportionate share of allegations involves scientists of many countries, and even from respected laboratories. Misconduct destroys faith in science and scientists and creates a hierarchy of fraudsters. Investigating misconduct also steals valuable time and resources. In spite of these facts, most researchers are not aware of publication ethics.

Day 1 of the workshop ended with a presentation on ‘ research and publication ethics ’ by Dr. M. K. Unnikrishnan (College of Pharmaceutical Sciences, Manipal University, Manipal). He spoke on the essentials of publication ethics that included plagiarism (attempting to take credit of the work of others), self-plagiarism (multiple publications by an author on the same content of work with slightly different wordings), falsification (manipulation of research data and processes and omitting critical data or results), gift authorship (guest authorship), ghostwriting (someone other than the named author (s) makes a major contribution), salami publishing (publishing many papers, with minor differences, from the same study), and sabotage (distracting the research works of others to halt their research completion). Additionally, Dr. Unnikrishnan pointed out the ‘ Ingelfinger rule ’ of stipulating that a scientist must not submit the same original research in two different journals. He also advised the audience that authorship is not just credit for the work but also responsibility for scientific contents of a paper. Although some Indian Universities are instituting preventive measures (e.g., use of plagiarism detecting software, Shodhganga digital archiving of doctoral theses), Dr. Unnikrishnan argued for a great need to sensitize young researchers on the nature and implications of scientific misconduct. Finally, he discussed methods on how editors and peer reviewers should ethically conduct themselves while managing a manuscript for publication.

SCIENTIFIC COMMUNICATION: THE KEY TO SUCCESSFUL SELLING OF FINDINGS

Research outcomes are measured through quality publications. Scientists must not only ‘do’ science but must ‘write’ science. The story of the project must be told in a clear, simple language weaving in previous work done in the field, answering the research question, and addressing the hypothesis set forth at the beginning of the study. Scientific publication is an organic process of planning, researching, drafting, revising, and updating the current knowledge for future perspectives. Writing a research paper is no easier than the research itself. The lectures of Day 2 of the workshop dealt with the basic elements and logistics of writing a scientific paper.

An overview of paper structure and thesis writing

Dr. Amitabh Prakash (Adis, Auckland, New Zealand) spoke on ‘ Learning how to write a good scientific paper .’ His presentation described the essential components of an original research paper and thesis (e.g., introduction, methods, results, and discussion [IMRaD]) and provided guidance on the correct order, in which data should appear within these sections. The characteristics of a good abstract and title and the creation of appropriate key words were discussed. Dr. Prakash suggested that the ‘title of a paper’ might perhaps have a chance to make a good impression, and the title might be either indicative (title that gives the purpose of the study) or declarative (title that gives the study conclusion). He also suggested that an abstract is a succinct summary of a research paper, and it should be specific, clear, and concise, and should have IMRaD structure in brief, followed by key words. Selection of appropriate papers to be cited in the reference list was also discussed. Various unethical authorships were enumerated, and ‘The International Committee of Medical Journal Editors (ICMJE) criteria for authorship’ was explained ( http://www.icmje.org/ethical_1author.html ; also see Table 1 in reference #9). The session highlighted the need for transparency in medical publication and provided a clear description of items that needed to be included in the ‘Disclosures’ section (e.g., sources of funding for the study and potential conflicts of interest of all authors, etc.) and ‘Acknowledgements’ section (e.g., writing assistance and input from all individuals who did not meet the authorship criteria). The final part of the presentation was devoted to thesis writing, and Dr. Prakash provided the audience with a list of common mistakes that are frequently encountered when writing a manuscript.

The backbone of a study is description of results through Text, Tables, and Figures. Dr. S. B. Deshpande (Institute of Medical Sciences, Banaras Hindu University, Varanasi, India) spoke on ‘ Effective Presentation of Results .’ The Results section deals with the observations made by the authors and thus, is not hypothetical. This section is subdivided into three segments, that is, descriptive form of the Text, providing numerical data in Tables, and visualizing the observations in Graphs or Figures. All these are arranged in a sequential order to address the question hypothesized in the Introduction. The description in Text provides clear content of the findings highlighting the observations. It should not be the repetition of facts in tables or graphs. Tables are used to summarize or emphasize descriptive content in the text or to present the numerical data that are unrelated. Illustrations should be used when the evidence bearing on the conclusions of a paper cannot be adequately presented in a written description or in a Table. Tables or Figures should relate to each other logically in sequence and should be clear by themselves. Furthermore, the discussion is based entirely on these observations. Additionally, how the results are applied to further research in the field to advance our understanding of research questions was discussed.

Dr. Peush Sahni (All-India Institute of Medical Sciences, New Delhi) spoke on effectively ‘ structuring the Discussion ’ for a research paper. The Discussion section deals with a systematic interpretation of study results within the available knowledge. He said the section should begin with the most important point relating to the subject studied, focusing on key issues, providing link sentences between paragraphs, and ensuring the flow of text. Points were made to avoid history, not repeat all the results, and provide limitations of the study. The strengths and novel findings of the study should be provided in the discussion, and it should open avenues for future research and new questions. The Discussion section should end with a conclusion stating the summary of key findings. Dr. Sahni gave an example from a published paper for writing a Discussion. In another presentation titled ‘ Writing an effective title and the abstract ,’ Dr. Sahni described the important components of a good title, such as, it should be simple, concise, informative, interesting and eye-catching, accurate and specific about the paper's content, and should state the subject in full indicating study design and animal species. Dr. Sahni explained structured (IMRaD) and unstructured abstracts and discussed a few selected examples with the audience.

Language and style in publication

The next lecture of Dr. Amitabh Prakash on ‘ Language and style in scientific writing: Importance of terseness, shortness and clarity in writing ’ focused on the actual sentence construction, language, grammar and punctuation in scientific manuscripts. His presentation emphasized the importance of brevity and clarity in the writing of manuscripts describing biomedical research. Starting with a guide to the appropriate construction of sentences and paragraphs, attendees were given a brief overview of the correct use of punctuation with interactive examples. Dr. Prakash discussed common errors in grammar and proactively sought audience participation in correcting some examples. Additional discussion was centered on discouraging the use of redundant and expendable words, jargon, and the use of adjectives with incomparable words. The session ended with a discussion of words and phrases that are commonly misused (e.g., data vs . datum, affect vs . effect, among vs . between, dose vs . dosage, and efficacy/efficacious vs . effective/effectiveness) in biomedical research manuscripts.

Working with journals

The appropriateness in selecting the journal for submission and acceptance of the manuscript should be determined by the experience of an author. The corresponding author must have a rationale in choosing the appropriate journal, and this depends upon the scope of the study and the quality of work performed. Dr. Amitabh Prakash spoke on ‘ Working with journals: Selecting a journal, cover letter, peer review process and impact factor ’ by instructing the audience in assessing the true value of a journal, understanding principles involved in the peer review processes, providing tips on making an initial approach to the editorial office, and drafting an appropriate cover letter to accompany the submission. His presentation defined the metrics that are most commonly used to measure journal quality (e.g., impact factor™, Eigenfactor™ score, Article Influence™ score, SCOPUS 2-year citation data, SCImago Journal Rank, h-Index, etc.) and guided attendees on the relative advantages and disadvantages of using each metric. Factors to consider when assessing journal quality were discussed, and the audience was educated on the ‘green’ and ‘gold’ open access publication models. Various peer review models (e.g., double-blind, single-blind, non-blind) were described together with the role of the journal editor in assessing manuscripts and selecting suitable reviewers. A typical checklist sent to referees was shared with the attendees, and clear guidance was provided on the best way to address referee feedback. The session concluded with a discussion of the potential drawbacks of the current peer review system.

Poster and oral presentations at conferences

Posters have become an increasingly popular mode of presentation at conferences, as it can accommodate more papers per meeting, has no time constraint, provides a better presenter-audience interaction, and allows one to select and attend papers of interest. In Figure 2 , we provide instructions, design, and layout in preparing a scientific poster. In the final presentation, Dr. Sahni provided the audience with step-by-step instructions on how to write and format posters for layout, content, font size, color, and graphics. Attendees were given specific guidance on the format of text on slides, the use of color, font type and size, and the use of illustrations and multimedia effects. Moreover, the importance of practical tips while delivering oral or poster presentation was provided to the audience, such as speak slowly and clearly, be informative, maintain eye contact, and listen to the questions from judges/audience carefully before coming up with an answer.

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g004.jpg

Guidelines and design to scientific poster presentation. The objective of scientific posters is to present laboratory work in scientific meetings. A poster is an excellent means of communicating scientific work, because it is a graphic representation of data. Posters should have focus points, and the intended message should be clearly conveyed through simple sections: Text, Tables, and Graphs. Posters should be clear, succinct, striking, and eye-catching. Colors should be used only where necessary. Use one font (Arial or Times New Roman) throughout. Fancy fonts should be avoided. All headings should have font size of 44, and be in bold capital letters. Size of Title may be a bit larger; subheading: Font size of 36, bold and caps. References and Acknowledgments, if any, should have font size of 24. Text should have font size between 24 and 30, in order to be legible from a distance of 3 to 6 feet. Do not use lengthy notes

PANEL DISCUSSION: FEEDBACK AND COMMENTS BY PARTICIPANTS

After all the presentations were made, Dr. Jagadeesh began a panel discussion that included all speakers. The discussion was aimed at what we do currently and could do in the future with respect to ‘developing a research question and then writing an effective thesis proposal/protocol followed by publication.’ Dr. Jagadeesh asked the following questions to the panelists, while receiving questions/suggestions from the participants and panelists.

  • Does a Post-Graduate or Ph.D. student receive adequate training, either through an institutional course, a workshop of the present nature, or from the guide?
  • Are these Post-Graduates self-taught (like most of us who learnt the hard way)?
  • How are these guides trained? How do we train them to become more efficient mentors?
  • Does a Post-Graduate or Ph.D. student struggle to find a method (s) to carry out studies? To what extent do seniors/guides help a post graduate overcome technical difficulties? How difficult is it for a student to find chemicals, reagents, instruments, and technical help in conducting studies?
  • Analyses of data and interpretation: Most students struggle without adequate guidance.
  • Thesis and publications frequently feature inadequate/incorrect statistical analyses and representation of data in tables/graphs. The student, their guide, and the reviewers all share equal responsibility.
  • Who initiates and drafts the research paper? The Post-Graduate or their guide?
  • What kind of assistance does a Post-Graduate get from the guide in finalizing a paper for publication?
  • Does the guide insist that each Post-Graduate thesis yield at least one paper, and each Ph.D. thesis more than two papers, plus a review article?

The panelists and audience expressed a variety of views, but were unable to arrive at a decisive conclusion.

WHAT HAVE THE PARTICIPANTS LEARNED?

At the end of this fast-moving two-day workshop, the participants had opportunities in learning the following topics:

  • Sequential steps in developing a study protocol, from choosing a research topic to developing research questions and a hypothesis.
  • Study protocols on different topics in their subject of specialization
  • Searching and reviewing the literature
  • Appropriate statistical analyses in biomedical research
  • Scientific ethics in publication
  • Writing and understanding the components of a research paper (IMRaD)
  • Recognizing the value of good title, running title, abstract, key words, etc
  • Importance of Tables and Figures in the Results section, and their importance in describing findings
  • Evidence-based Discussion in a research paper
  • Language and style in writing a paper and expert tips on getting it published
  • Presentation of research findings at a conference (oral and poster).

Overall, the workshop was deemed very helpful to participants. The participants rated the quality of workshop from “ satisfied ” to “ very satisfied .” A significant number of participants were of the opinion that the time allotted for each presentation was short and thus, be extended from the present two days to four days with adequate time to ask questions. In addition, a ‘hands-on’ session should be introduced for writing a proposal and manuscript. A large number of attendees expressed their desire to attend a similar workshop, if conducted, in the near future.

ACKNOWLEDGMENT

We gratefully express our gratitude to the Organizing Committee, especially Professors K. Chinnasamy, B. G. Shivananda, N. Udupa, Jerad Suresh, Padma Parekh, A. P. Basavarajappa, Mr. S. V. Veerramani, Mr. J. Jayaseelan, and all volunteers of the SRM University. We thank Dr. Thomas Papoian (US FDA) for helpful comments on the manuscript.

The opinions expressed herein are those of Gowraganahalli Jagadeesh and do not necessarily reflect those of the US Food and Drug Administration

Source of Support: Nil

Conflict of Interest: None declared.

stage indicator - apply for a grant

Write Your Research Plan

In this part, we give you detailed information about writing an effective Research Plan. We start with the importance and parameters of significance and innovation.

We then discuss how to focus the Research Plan, relying on the iterative process described in the Iterative Approach to Application Planning Checklist shown at Draft Specific Aims  and give you advice for filling out the forms.

You'll also learn the importance of having a well-organized, visually appealing application that avoids common missteps and the importance of preparing your just-in-time information early.

While this document is geared toward the basic research project grant, the R01, much of it is useful for other grant types.

Table of Contents

Research plan overview and your approach, craft a title, explain your aims, research strategy instructions, advice for a successful research strategy, graphics and video, significance, innovation, and approach, tracking for your budget, preliminary studies or progress report, referencing publications, review and finalize your research plan, abstract and narrative.

Your application's Research Plan has two sections:

  • Specific Aims —a one-page statement of your objectives for the project.
  • Research Strategy —a description of the rationale for your research and your experiments in 12 pages for an R01.

In your Specific Aims, you note the significance and innovation of your research; then list your two to three concrete objectives, your aims.

Your Research Strategy is the nuts and bolts of your application, where you describe your research rationale and the experiments you will conduct to accomplish each aim. Though how you organize it is largely up to you, NIH expects you to follow these guidelines.

  • Organize using bold headers or an outline or numbering system—or both—that you use consistently throughout.
  • Start each section with the appropriate header: Significance, Innovation, or Approach.
  • Organize the Approach section around your Specific Aims.

Format of Your Research Plan

To write the Research Plan, you don't need the application forms. Write the text in your word processor, turn it into a PDF file, and upload it into the application form when it's final.

Because NIH may return your application if it doesn't meet all requirements, be sure to follow the rules for font, page limits, and more. Read the instructions at NIH’s Format Attachments .

For an R01, the Research Strategy can be up to 12 pages, plus one page for Specific Aims. Don't pad other sections with information that belongs in the Research Plan. NIH is on the lookout and may return your application to you if you try to evade page limits.

Follow Examples

As you read this page, look at our Sample Applications and More  to see some of the different strategies successful PIs use to create an outstanding Research Plan.

Keeping It All In Sync

Writing in a logical sequence will save you time.

Information you put in the Research Plan affects just about every other application part. You'll need to keep everything in sync as your plans evolve during the writing phase.

It's best to consider your writing as an iterative process. As you develop and finalize your experiments, you will go back and check other parts of the application to make sure everything is in sync: the "who, what, when, where, and how (much money)" as well as look again at the scope of your plans.

In that vein, writing in a logical sequence is a good approach that will save you time. We suggest proceeding in the following order:

  • Create a provisional title.
  • Write a draft of your Specific Aims.
  • Start with your Significance and Innovation sections.
  • Then draft the Approach section considering the personnel and skills you'll need for each step.
  • Evaluate your Specific Aims and methods in light of your expected budget (for a new PI, it should be modest, probably under the $250,000 for NIH's modular budget).
  • As you design experiments, reevaluate your hypothesis, aims, and title to make sure they still reflect your plans.
  • Prepare your Abstract (a summary of your Specific Aims).
  • Complete the other forms.

Even the smaller sections of your application need to be well-organized and readable so reviewers can readily grasp the information. If writing is not your forte, get help.

To view writing strategies for successful applications, see our Sample Applications and More . There are many ways to create a great application, so explore your options.

Within the character limit, include the important information to distinguish your project within the research area, your project's goals, and the research problem.

Giving your project a title at the outset can help you stay focused and avoid a meandering Research Plan. So you may want to launch your writing by creating a well-defined title.

NIH gives you a 200 character limit, but don’t feel obliged to use all of that allotment. Instead, we advise you to keep the title as succinct as possible while including the important information to distinguish your project within the research area. Make your title reflect your project's goals, the problem your project addresses, and possibly your approach to studying it. Make your title specific: saying you are studying lymphocyte trafficking is not informative enough.

For examples of strong titles, see our Sample Applications and More .

After you write a preliminary title, check that

  • My title is specific, indicating at least the research area and the goals of my project.
  • It is 200 characters or less.
  • I use as simple language as possible.
  • I state the research problem and, possibly, my approach to studying it.
  • I use a different title for each of my applications. (Note: there are exceptions, for example, for a renewal—see Apply for Renewal  for details.)
  • My title has appropriate keywords.

Later you may want to change your initial title. That's fine—at this point, it's just an aid to keep your plans focused.

Since all your reviewers read your Specific Aims, you want to excite them about your project.

If testing your hypothesis is the destination for your research, your Research Plan is the map that takes you there.

You'll start by writing the smaller part, the Specific Aims. Think of the one-page Specific Aims as a capsule of your Research Plan. Since all your reviewers read your Specific Aims, you want to excite them about your project.

For more on crafting your Specific Aims, see Draft Specific Aims .

Write a Narrative

Use at least half the page to provide the rationale and significance of your planned research. A good way to start is with a sentence that states your project's goals.

For the rest of the narrative, you will describe the significance of your research, and give your rationale for choosing the project. In some cases, you may want to explain why you did not take an alternative route.

Then, briefly describe your aims, and show how they build on your preliminary studies and your previous research. State your hypothesis.

If it is likely your application will be reviewed by a study section with broad expertise, summarize the status of research in your field and explain how your project fits in.

In the narrative part of the Specific Aims of many outstanding applications, people also used their aims to

  • State the technologies they plan to use.
  • Note their expertise to do a specific task or that of collaborators.
  • Describe past accomplishments related to the project.
  • Describe preliminary studies and new and highly relevant findings in the field.
  • Explain their area's biology.
  • Show how the aims relate to one another.
  • Describe expected outcomes for each aim.
  • Explain how they plan to interpret data from the aim’s efforts.
  • Describe how to address potential pitfalls with contingency plans.

Depending on your situation, decide which items are important for you. For example, a new investigator would likely want to highlight preliminary data and qualifications to do the work.

Many people use bold or italics to emphasize items they want to bring to the reviewers' attention, such as the hypothesis or rationale.

Detail Your Aims

After the narrative, enter your aims as bold bullets, or stand-alone or run-on headers.

  • State your plans using strong verbs like identify, define, quantify, establish, determine.
  • Describe each aim in one to three sentences.
  • Consider adding bullets under each aim to refine your objectives.

How focused should your aims be? Look at the example below.

Spot the Sample

Read the Specific Aims of the Application from Drs. Li and Samulski , "Enhance AAV Liver Transduction with Capsid Immune Evasion."

  • Aim 1. Study the effect of adeno-associated virus (AAV) empty particles on AAV capsid antigen cross-presentation in vivo .
  • Aim 2. Investigate AAV capsid antigen presentation following administration of AAV mutants and/or proteasome inhibitors for enhanced liver transduction in vivo .
  • Aim 3. Isolate AAV chimeric capsids with human hepatocyte tropism and the capacity for cytotoxic T lymphocytes (CTL) evasion.

After finishing the draft Specific Aims, check that

  • I keep to the one-page limit.
  • Each of my two or three aims is a narrowly focused, concrete objective I can achieve during the grant.
  • They give a clear picture of how my project can generate knowledge that may improve human health.
  • They show my project's importance to science, how it addresses a critical research opportunity that can move my field forward.
  • My text states how my work is innovative.
  • I describe the biology to the extent needed for my reviewers.
  • I give a rationale for choosing the topic and approach.
  • I tie the project to my preliminary data and other new findings in the field.
  • I explicitly state my hypothesis and why testing it is important.
  • My aims can test my hypothesis and are logical.
  • I can design and lead the execution of two or three sets of experiments that will strive to accomplish each aim.
  • As much as possible, I use language that an educated person without expertise can understand.
  • My text has bullets, bolding, or headers so reviewers can easily spot my aims (and other key items).

For each element listed above, analyze your text and revise it until your Specific Aims hit all the key points you'd like to make.

After the list of aims, some people add a closing paragraph, emphasizing the significance of the work, their collaborators, or whatever else they want to focus reviewers' attention on.

Your Research Strategy is the bigger part of your application's Research Plan (the other part is the Specific Aims—discussed above.)

The Research Strategy is the nuts and bolts of your application, describing the rationale for your research and the experiments you will do to accomplish each aim. It is structured as follows:

  • Significance
  • You can either include this information as a subsection of Approach or integrate it into any or all of the three main sections.
  • If you do the latter, be sure to mark the information clearly, for example, with a bold subhead.
  • Possible other sections, for example, human subjects, vertebrate animals, select agents, and others (these do not count toward the page limit).

Though how you organize your application is largely up to you, NIH does want you to follow these guidelines:

  • Add bold headers or an outlining or numbering system—or both—that you use consistently throughout.
  • Start each of the Research Strategy's sections with a header: Significance, Innovation, and Approach.

For an R01, the Research Strategy is limited to 12 pages for the three main sections and the preliminary studies only. Other items are not included in the page limit.

Find instructions for R01s in the SF 424 Application Guide—go to NIH's SF 424 (R&R) Application and Electronic Submission Information for the generic SF 424 Application Guide or find it in your notice of funding opportunity (NOFO).

For most applications, you need to address Rigor and Reproducibility by describing the experimental design and methods you propose and how they will achieve robust and unbiased results. The requirement applies to research grant, career development, fellowship, and training applications.

If you're responding to an institute-specific program announcement (PA) (not a parent program announcement) or a request for applications (RFA), check the NIH Guide notice, which has additional information you need. Should it differ from the NOFO, go with the NIH Guide .

Also note that your application must meet the initiative's objectives and special requirements. NIAID program staff will check your application, and if it is not responsive to the announcement, your application will be returned to you without a review.

When writing your Research Strategy, your goal is to present a well-organized, visually appealing, and readable description of your proposed project. That means your writing should be streamlined and organized so your reviewers can readily grasp the information. If writing is not your forte, get help.

There are many ways to create an outstanding Research Plan, so explore your options.

What Success Looks Like

Your application's Research Plan is the map that shows your reviewers how you plan to test your hypothesis.

It not only lays out your experiments and expected outcomes, but must also convince your reviewers of your likely success by allaying any doubts that may cross their minds that you will be able to conduct the research.

Notice in the sample applications how the writing keeps reviewers' eyes on the ball by bringing them back to the main points the PIs want to make. Write yourself an insurance policy against human fallibility: if it's a key point, repeat it, then repeat it again.

The Big Three

So as you write, put the big picture squarely in your sights. When reviewers read your application, they'll look for the answers to three basic questions:

  • Can your research move your field forward?
  • Is the field important—will progress make a difference to human health?
  • Can you and your team carry out the work?

Add Emphasis

Savvy PIs create opportunities to drive their main points home. They don't stop at the Significance section to emphasize their project's importance, and they look beyond their biosketches to highlight their team's expertise.

Don't take a chance your reviewer will gloss over that one critical sentence buried somewhere in your Research Strategy or elsewhere. Write yourself an insurance policy against human fallibility: if it's a key point, repeat it, then repeat it again.

Add more emphasis by putting the text in bold, or bold italics (in the modern age, we skip underlining—it's for typewriters).

Here are more strategies from our successful PIs:

  • While describing a method in the Approach section, they state their or collaborators' experience with it.
  • They point out that they have access to a necessary piece of equipment.
  • When explaining their field and the status of current research, they weave in their own work and their preliminary data.
  • They delve into the biology of the area to make sure reviewers will grasp the importance of their research and understand their field and how their work fits into it.

You can see many of these principles at work in the Approach section of the Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms."

  • Reviewers felt that the experiments described for Aim 1 will yield clear results.
  • The plans to translate those findings to gene targets of relevance are well outlined and focused.
  • He ties his proposed experiments to the larger picture, including past research and strong preliminary data for the current application. 

Anticipate Reviewer Questions

Our applicants not only wrote with their reviewers in mind they seemed to anticipate their questions. You may think: how can I anticipate all the questions people may have? Of course you can't, but there are some basic items (in addition to the "big three" listed above) that will surely be on your reviewers' minds:

  • Will the investigators be able to get the work done within the project period, or is the proposed work over ambitious?
  • Did the PI describe potential pitfalls and possible alternatives?
  • Will the experiments generate meaningful data?
  • Could the resulting data prove the hypothesis?
  • Are others already doing the work, or has it been already completed?

Address these questions; then spend time thinking about more potential issues specific to you and your research—and address those too.

For applications, a picture can truly be worth a thousand words. Graphics can illustrate complex information in a small space and add visual interest to your application.

Look at our sample applications to see how the investigators included schematics, tables, illustrations, graphs, and other types of graphics to enhance their applications.

Consider adding a timetable or flowchart to illustrate your experimental plan, including decision trees with alternative experimental pathways to help your reviewers understand your plans.

Plan Ahead for Video

If you plan to send one or more videos, you'll need to meet certain standards and include key information in your Research Strategy now.

To present some concepts or demonstrations, video may enhance your application beyond what graphics alone can achieve. However, you can't count on all reviewers being able to see or hear video, so you'll want to be strategic in how you incorporate it into your application.

Be reviewer-friendly. Help your cause by taking the following steps:

  • Caption any narration in the video.
  • Choose evocative still images from your video to accompany your summary.
  • Write your summary of the video carefully so the text would make sense even without the video.

In addition to those considerations, create your videos to fit NIH’s technical requirements. Learn more in the SF 424 Form Instructions .

Next, as you write your Research Strategy, include key images from the video and a brief description.

Then, state in your cover letter that you plan to send video later. (Don't attach your files to the application.)

After you apply and get assignment information from the Commons, ask your assigned scientific review officer (SRO) how your business official should send the files. Your video files are due at least one month before the peer review meeting.

Know Your Audience's Perspective

The primary audience for your application is your peer review group. Learn how to write for the reviewers who are experts in your field and those who are experts in other fields by reading Know Your Audience .

Be Organized: A B C or 1 2 3?

In the top-notch applications we reviewed, organization ruled but followed few rules. While you want to be organized, how you go about it is up to you.

Nevertheless, here are some principles to follow:

  • Start each of the Research Strategy's sections with a header: Significance, Innovation, and Approach—this you must do.

The Research Strategy's page limit—12 for R01s—is for the three main parts: Significance, Innovation, and Approach and your preliminary studies (or a progress report if you're renewing your grant). Other sections, for example, research animals or select agents, do not have a page limit.

Although you will emphasize your project's significance throughout the application, the Significance section should give the most details. Don't skimp—the farther removed your reviewers are from your field, the more information you'll need to provide on basic biology, importance of the area, research opportunities, and new findings.

When you describe your project's significance, put it in the context of 1) the state of your field, 2) your long-term research plans, and 3) your preliminary data.

In our Sample Applications , you can see that both investigators and reviewers made a case for the importance of the research to improving human health as well as to the scientific field.

Look at the Significance section of the Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses," to see how these elements combine to make a strong case for significance.

  • Dr. Jiang starts with a summary of the field of polyomavirus research, identifying critical knowledge gaps in the field.
  • The application ties the lab's previous discoveries and new research plans to filling those gaps, establishing the significance with context.
  • Note the use of formatting, whitespace, and sectioning to highlight key points and make it easier for reviewers to read the text.

After conveying the significance of the research in several parts of the application, check that

  • In the Significance section, I describe the importance of my hypothesis to the field (especially if my reviewers are not in it) and human disease.
  • I also point out the project's significance throughout the application.
  • The application shows that I am aware of opportunities, gaps, roadblocks, and research underway in my field.
  • I state how my research will advance my field, highlighting knowledge gaps and showing how my project fills one or more of them.
  • Based on my scan of the review committee roster, I determine whether I cannot assume my reviewers will know my field and provide some information on basic biology, the importance of the area, knowledge gaps, and new findings.

If you are either a new PI or entering a new area: be cautious about seeming too innovative. Not only is innovation just one of five review criteria, but there might be a paradigm shift in your area of science. A reviewer may take a challenge to the status quo as a challenge to his or her world view.

When you look at our sample applications, you see that both the new and experienced investigators are not generally shifting paradigms. They are using new approaches or models, working in new areas, or testing innovative ideas.

After finishing the draft innovation section, check that

  • I show how my proposed research is new and unique, e.g., explores new scientific avenues, has a novel hypothesis, will create new knowledge.
  • Most likely, I explain how my project's research can refine, improve, or propose a new application of an existing concept or method.
  • Make a very strong case for challenging the existing paradigm.
  • Have data to support the innovative approach.
  • Have strong evidence that I can do the work.

In your Approach, you spell out a few sets of experiments to address each aim. As we noted above, it's a good idea to restate the key points you've made about your project's significance, its place in your field, and your long-term goals.

You're probably wondering how much detail to include.

If you look at our sample applications as a guide, you can see very different approaches. Though people generally used less detail than you'd see in a scientific paper, they do include some experimental detail.

Expect your assigned reviewers to scrutinize your approach: they will want to know what you plan to do and how you plan to do it.

NIH data show that of the peer review criteria, approach has the highest correlation with the overall impact score.

Look at the Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses," to see how a new investigator handled the Approach section.

For an example of an experienced investigator's well-received Approach section, see the Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms."

Especially if you are a new investigator, you need enough detail to convince reviewers that you understand what you are undertaking and can handle the method.

  • Cite a publication that shows you can handle the method where you can, but give more details if you and your team don't have a proven record using the method—and state explicitly why you think you will succeed.
  • If space is short, you could also focus on experiments that highlight your expertise or are especially interesting. For experiments that are pedestrian or contracted out, just list the method.

Be sure to lay out a plan for alternative experiments and approaches in case you get negative or surprising results. Show reviewers you have a plan for spending the four or five years you will be funded no matter where the experiments lead.

See the Application from Drs. Li and Samulski , "Enhance AAV Liver Transduction with Capsid Immune Evasion," for a strong Approach section covering potential. As an example, see section C.1.3.'s alternative approaches.

Here are some pointers for organizing your Approach:

  • Enter a bold header for each Specific Aim.
  • Under each aim, describe the first set of experiments.
  • If you get result X, you will follow pathway X; if you get result Y, you will follow pathway Y.
  • Consider illustrating this with a flowchart.

Trim the fat—omit all information not needed to make your case. If you try to wow reviewers with your knowledge, they'll find flaws and penalize you heavily. Don't give them ammunition by including anything you don't need.

As you design your experiments, keep a running tab of the following essential data on a separate piece of paper:

  • Who. A list of people who will help you for your Key Personnel section later.
  • What. A list of equipment and supplies for the experiments you plan.
  • Time. Notes on how long each step takes. Timing directly affects your budget as well as how many Specific Aims you can realistically achieve.

Jotting this information down will help you Create a Budget and complete other sections later.

After finishing a draft Approach section, check that

  • I include enough background and preliminary data to give reviewers the context and significance of my plans.
  • They can test the hypothesis (or hypotheses).
  • I show alternative experiments and approaches in case I get negative or surprising results.
  • My experiments can yield meaningful data to test my hypothesis (or hypotheses).
  • As a new investigator, I include enough detail to convince reviewers I understand and can handle a method. I reviewed the sample applications to see how much detail to use.
  • If I or my team has experience with a method, I cite it; otherwise I include enough details to convince reviewers we can handle it.
  • I describe the results I anticipate and their implications.
  • I omit all information not needed to state my case.
  • I keep track of and explain who will do what, what they will do, when and where they will do it, how long it will take, and how much money it will cost.
  • My timeline shows when I expect to complete my aims.

If you are applying for a new application, include preliminary studies; for a renewal or a revision (a competing supplement to an existing grant), prepare a progress report instead.

Describing Preliminary Studies

Your preliminary studies show that you can handle the methods and interpret results. Here's where you build reviewer confidence that you are headed in the right direction by pursuing research that builds on your accomplishments.

Reviewers use your preliminary studies together with the biosketches to assess the investigator review criterion, which reflects the competence of the research team.

Give alternative interpretations to your data to show reviewers you've thought through problems in-depth and are prepared to meet future challenges. If you don't do this, the reviewers will!

Though you may include other people's publications, focus on your preliminary data or unpublished data from your lab and the labs of your team members as much as you can.

As we noted above, you can put your preliminary data anywhere in the Research Strategy that you feel is appropriate, but just make sure your reviewers will be able to distinguish it. Alternatively, you can create a separate section with its own header.

Including a Progress Report

If you are applying for a renewal or a revision (a competing supplement to an existing grant), prepare a progress report instead of preliminary studies.

Create a header so your program officer can easily find it and include the following information:

  • Project period beginning and end dates.
  • Summary of the importance of your findings in relation to your Specific Aims.
  • Account of published and unpublished results, highlighting your progress toward achieving your Specific Aims.

Note: if you submit a renewal application before the due date of your progress report, you do not need to submit a separate progress report for your grant. However, you will need to submit it, if your renewal is not funded.

After finishing the draft, check that

  • I interpret my preliminary results critically.
  • There is enough information to show I know what I'm talking about.
  • If my project is complex, I give more preliminary studies.
  • I show how my previous experience prepared me for the new project.
  • It's clear which data are mine and which are not.

References show your breadth of knowledge of the field. If you leave out an important work, reviewers may assume you're not aware of it.

Throughout your application, you will reference all relevant publications for the concepts underlying your research and your methods.

Read more about your Bibliography and References Cited at Add a Bibliography and Appendix .

  • Throughout my application I cite the literature thoroughly but not excessively, adding citations for all references important to my work.
  • I cite all papers important to my field, including those from potential reviewers.
  • I include fewer than 100 citations (if possible).
  • My Bibliography and References Cited form lists all my references.
  • I refer to unpublished work, including information I learned through personal contacts.
  • If I do not describe a method, I add a reference to the literature.

Look over what you've written with a critical eye of a reviewer to identify potential questions or weak spots.

Enlist others to do that too—they can look at your application with a fresh eye. Include people who aren't familiar with your research to make sure you can get your point across to someone outside your field.

As you finalize the details of your Research Strategy, you will also need to return to your Specific Aims to see if you must revise. See Draft Specific Aims .

After you finish your Research Plan, you are ready to write your Abstract (called Project Summary/Abstract) and Project Narrative, which are attachments to the Other Project Information form.

These sections may be small, but they're important.

  • All your peer reviewers read your Abstract and narrative.
  • Staff and automated systems in NIH's Center for Scientific Review use them to decide where to assign your application, even if you requested an institute and study section.
  • They show the importance and health relevance of your research to members of the public and Congress who are interested in what NIH is funding with taxpayer dollars.

Be sure to omit confidential or proprietary information in these sections! When your application is funded, NIH enters your title and Abstract in the public RePORTER database.

Think brief and simple: to the extent that you can, write these sections in lay language, and include appropriate keywords, e.g., immunotherapy, genetic risk factors.

As NIH referral officers use these parts to direct your application to an institute for possible funding, your description can influence the choice they make.

Write a succinct summary of your project that both a scientist and a lay person can understand (to the extent that you can).

  • Use your Specific Aims as a template—shorten it and simplify the language.
  • In the first sentence, state the significance of your research to your field and relevance to NIAID's mission: to better understand, treat, and prevent infectious, immunologic, and allergic diseases.
  • Next state your hypothesis and the innovative potential of your research.
  • Then list and briefly describe your Specific Aims and long-term objectives.

In your Project Narrative, you have only a few sentences to drive home your project's potential to improve public health.

Check out these effective Abstracts and Narratives from our R01  Sample Applications :

  • Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses"
  • Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms"
  • My Project Summary/Abstract and Project Narrative (and title) are accessible to a broad audience.
  • They describe the significance of my research to my field and state my hypothesis, my aims, and the innovative potential of my research.
  • My narrative describes my project's potential to improve public health.
  • I do not include any confidential or proprietary information.
  • I do not use graphs or images.
  • My Abstract has keywords that are appropriate and distinct enough to avoid confusion with other terms.
  • My title is specific and informative.

Previous Step

Have questions.

A program officer in your area of science can give you application advice, NIAID's perspective on your research, and confirmation that your proposed research fits within NIAID’s mission.

Find contacts and instructions at When to Contact an NIAID Program Officer .

  • University Libraries
  • Research Guides
  • Topic Guides
  • Research Methods Guide
  • Research Design & Method

Research Methods Guide: Research Design & Method

  • Introduction
  • Survey Research
  • Interview Research
  • Data Analysis
  • Resources & Consultation

Tutorial Videos: Research Design & Method

Research Methods (sociology-focused)

Qualitative vs. Quantitative Methods (intro)

Qualitative vs. Quantitative Methods (advanced)

plan a research

FAQ: Research Design & Method

What is the difference between Research Design and Research Method?

Research design is a plan to answer your research question.  A research method is a strategy used to implement that plan.  Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively.

Which research method should I choose ?

It depends on your research goal.  It depends on what subjects (and who) you want to study.  Let's say you are interested in studying what makes people happy, or why some students are more conscious about recycling on campus.  To answer these questions, you need to make a decision about how to collect your data.  Most frequently used methods include:

  • Observation / Participant Observation
  • Focus Groups
  • Experiments
  • Secondary Data Analysis / Archival Study
  • Mixed Methods (combination of some of the above)

One particular method could be better suited to your research goal than others, because the data you collect from different methods will be different in quality and quantity.   For instance, surveys are usually designed to produce relatively short answers, rather than the extensive responses expected in qualitative interviews.

What other factors should I consider when choosing one method over another?

Time for data collection and analysis is something you want to consider.  An observation or interview method, so-called qualitative approach, helps you collect richer information, but it takes time.  Using a survey helps you collect more data quickly, yet it may lack details.  So, you will need to consider the time you have for research and the balance between strengths and weaknesses associated with each method (e.g., qualitative vs. quantitative).

  • << Previous: Introduction
  • Next: Survey Research >>
  • Last Updated: Aug 21, 2023 10:42 AM
  • U.S. Locations
  • UMGC Europe
  • Learn Online
  • Find Answers
  • 855-655-8682
  • Current Students

Online Guide to Writing and Research

The research process, explore more of umgc.

  • Online Guide to Writing

Planning and Writing a Research Paper

Mastering the complex academic skill of writing a research paper will prepare you to enter the discourse community of your chosen area of study with excitement and confidence. Writing a research paper can seem like a daunting task, but if you take the time in the pages ahead to learn how to break the writing process down, you will be amazed at the level of comfort and control you feel when preparing your assignment. 

Mailing Address: 3501 University Blvd. East, Adelphi, MD 20783 This work is licensed under a  Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License . © 2022 UMGC. All links to external sites were verified at the time of publication. UMGC is not responsible for the validity or integrity of information located at external sites.

Table of Contents: Online Guide to Writing

Chapter 1: College Writing

How Does College Writing Differ from Workplace Writing?

What Is College Writing?

Why So Much Emphasis on Writing?

Chapter 2: The Writing Process

Doing Exploratory Research

Getting from Notes to Your Draft

Introduction

Prewriting - Techniques to Get Started - Mining Your Intuition

Prewriting: Targeting Your Audience

Prewriting: Techniques to Get Started

Prewriting: Understanding Your Assignment

Rewriting: Being Your Own Critic

Rewriting: Creating a Revision Strategy

Rewriting: Getting Feedback

Rewriting: The Final Draft

Techniques to Get Started - Outlining

Techniques to Get Started - Using Systematic Techniques

Thesis Statement and Controlling Idea

Writing: Getting from Notes to Your Draft - Freewriting

Writing: Getting from Notes to Your Draft - Summarizing Your Ideas

Writing: Outlining What You Will Write

Chapter 3: Thinking Strategies

A Word About Style, Voice, and Tone

A Word About Style, Voice, and Tone: Style Through Vocabulary and Diction

Critical Strategies and Writing

Critical Strategies and Writing: Analysis

Critical Strategies and Writing: Evaluation

Critical Strategies and Writing: Persuasion

Critical Strategies and Writing: Synthesis

Developing a Paper Using Strategies

Kinds of Assignments You Will Write

Patterns for Presenting Information

Patterns for Presenting Information: Critiques

Patterns for Presenting Information: Discussing Raw Data

Patterns for Presenting Information: General-to-Specific Pattern

Patterns for Presenting Information: Problem-Cause-Solution Pattern

Patterns for Presenting Information: Specific-to-General Pattern

Patterns for Presenting Information: Summaries and Abstracts

Supporting with Research and Examples

Writing Essay Examinations

Writing Essay Examinations: Make Your Answer Relevant and Complete

Writing Essay Examinations: Organize Thinking Before Writing

Writing Essay Examinations: Read and Understand the Question

Chapter 4: The Research Process

Planning and Writing a Research Paper: Ask a Research Question

Planning and Writing a Research Paper: Cite Sources

Planning and Writing a Research Paper: Collect Evidence

Planning and Writing a Research Paper: Decide Your Point of View, or Role, for Your Research

Planning and Writing a Research Paper: Draw Conclusions

Planning and Writing a Research Paper: Find a Topic and Get an Overview

Planning and Writing a Research Paper: Manage Your Resources

Planning and Writing a Research Paper: Outline

Planning and Writing a Research Paper: Survey the Literature

Planning and Writing a Research Paper: Work Your Sources into Your Research Writing

Research Resources: Where Are Research Resources Found? - Human Resources

Research Resources: What Are Research Resources?

Research Resources: Where Are Research Resources Found?

Research Resources: Where Are Research Resources Found? - Electronic Resources

Research Resources: Where Are Research Resources Found? - Print Resources

Structuring the Research Paper: Formal Research Structure

Structuring the Research Paper: Informal Research Structure

The Nature of Research

The Research Assignment: How Should Research Sources Be Evaluated?

The Research Assignment: When Is Research Needed?

The Research Assignment: Why Perform Research?

Chapter 5: Academic Integrity

Academic Integrity

Giving Credit to Sources

Giving Credit to Sources: Copyright Laws

Giving Credit to Sources: Documentation

Giving Credit to Sources: Style Guides

Integrating Sources

Practicing Academic Integrity

Practicing Academic Integrity: Keeping Accurate Records

Practicing Academic Integrity: Managing Source Material

Practicing Academic Integrity: Managing Source Material - Paraphrasing Your Source

Practicing Academic Integrity: Managing Source Material - Quoting Your Source

Practicing Academic Integrity: Managing Source Material - Summarizing Your Sources

Types of Documentation

Types of Documentation: Bibliographies and Source Lists

Types of Documentation: Citing World Wide Web Sources

Types of Documentation: In-Text or Parenthetical Citations

Types of Documentation: In-Text or Parenthetical Citations - APA Style

Types of Documentation: In-Text or Parenthetical Citations - CSE/CBE Style

Types of Documentation: In-Text or Parenthetical Citations - Chicago Style

Types of Documentation: In-Text or Parenthetical Citations - MLA Style

Types of Documentation: Note Citations

Chapter 6: Using Library Resources

Finding Library Resources

Chapter 7: Assessing Your Writing

How Is Writing Graded?

How Is Writing Graded?: A General Assessment Tool

The Draft Stage

The Draft Stage: The First Draft

The Draft Stage: The Revision Process and the Final Draft

The Draft Stage: Using Feedback

The Research Stage

Using Assessment to Improve Your Writing

Chapter 8: Other Frequently Assigned Papers

Reviews and Reaction Papers: Article and Book Reviews

Reviews and Reaction Papers: Reaction Papers

Writing Arguments

Writing Arguments: Adapting the Argument Structure

Writing Arguments: Purposes of Argument

Writing Arguments: References to Consult for Writing Arguments

Writing Arguments: Steps to Writing an Argument - Anticipate Active Opposition

Writing Arguments: Steps to Writing an Argument - Determine Your Organization

Writing Arguments: Steps to Writing an Argument - Develop Your Argument

Writing Arguments: Steps to Writing an Argument - Introduce Your Argument

Writing Arguments: Steps to Writing an Argument - State Your Thesis or Proposition

Writing Arguments: Steps to Writing an Argument - Write Your Conclusion

Writing Arguments: Types of Argument

Appendix A: Books to Help Improve Your Writing

Dictionaries

General Style Manuals

Researching on the Internet

Special Style Manuals

Writing Handbooks

Appendix B: Collaborative Writing and Peer Reviewing

Collaborative Writing: Assignments to Accompany the Group Project

Collaborative Writing: Informal Progress Report

Collaborative Writing: Issues to Resolve

Collaborative Writing: Methodology

Collaborative Writing: Peer Evaluation

Collaborative Writing: Tasks of Collaborative Writing Group Members

Collaborative Writing: Writing Plan

General Introduction

Peer Reviewing

Appendix C: Developing an Improvement Plan

Working with Your Instructor’s Comments and Grades

Appendix D: Writing Plan and Project Schedule

Devising a Writing Project Plan and Schedule

Reviewing Your Plan with Others

By using our website you agree to our use of cookies. Learn more about how we use cookies by reading our  Privacy Policy .

President Biden Signs National Plan to End Parkinson's Act into Law

Parkinson's connection, personal information.

How America Saves 2024

The current state of defined contribution plans in america, how does your plan stack up, industry participation rates , industry benchmark reports, key stats you should know .

  • All investing is subject to risk, including the possible loss of the money you invest.

Human Subjects Office

Medical terms in lay language.

Please use these descriptions in place of medical jargon in consent documents, recruitment materials and other study documents. Note: These terms are not the only acceptable plain language alternatives for these vocabulary words.

This glossary of terms is derived from a list copyrighted by the University of Kentucky, Office of Research Integrity (1990).

For clinical research-specific definitions, see also the Clinical Research Glossary developed by the Multi-Regional Clinical Trials (MRCT) Center of Brigham and Women’s Hospital and Harvard  and the Clinical Data Interchange Standards Consortium (CDISC) .

Alternative Lay Language for Medical Terms for use in Informed Consent Documents

A   B   C   D   E   F   G   H   I  J  K   L   M   N   O   P   Q   R   S   T   U   V   W  X  Y  Z

ABDOMEN/ABDOMINAL body cavity below diaphragm that contains stomach, intestines, liver and other organs ABSORB take up fluids, take in ACIDOSIS condition when blood contains more acid than normal ACUITY clearness, keenness, esp. of vision and airways ACUTE new, recent, sudden, urgent ADENOPATHY swollen lymph nodes (glands) ADJUVANT helpful, assisting, aiding, supportive ADJUVANT TREATMENT added treatment (usually to a standard treatment) ANTIBIOTIC drug that kills bacteria and other germs ANTIMICROBIAL drug that kills bacteria and other germs ANTIRETROVIRAL drug that works against the growth of certain viruses ADVERSE EFFECT side effect, bad reaction, unwanted response ALLERGIC REACTION rash, hives, swelling, trouble breathing AMBULATE/AMBULATION/AMBULATORY walk, able to walk ANAPHYLAXIS serious, potentially life-threatening allergic reaction ANEMIA decreased red blood cells; low red cell blood count ANESTHETIC a drug or agent used to decrease the feeling of pain, or eliminate the feeling of pain by putting you to sleep ANGINA pain resulting from not enough blood flowing to the heart ANGINA PECTORIS pain resulting from not enough blood flowing to the heart ANOREXIA disorder in which person will not eat; lack of appetite ANTECUBITAL related to the inner side of the forearm ANTIBODY protein made in the body in response to foreign substance ANTICONVULSANT drug used to prevent seizures ANTILIPEMIC a drug that lowers fat levels in the blood ANTITUSSIVE a drug used to relieve coughing ARRHYTHMIA abnormal heartbeat; any change from the normal heartbeat ASPIRATION fluid entering the lungs, such as after vomiting ASSAY lab test ASSESS to learn about, measure, evaluate, look at ASTHMA lung disease associated with tightening of air passages, making breathing difficult ASYMPTOMATIC without symptoms AXILLA armpit

BENIGN not malignant, without serious consequences BID twice a day BINDING/BOUND carried by, to make stick together, transported BIOAVAILABILITY the extent to which a drug or other substance becomes available to the body BLOOD PROFILE series of blood tests BOLUS a large amount given all at once BONE MASS the amount of calcium and other minerals in a given amount of bone BRADYARRHYTHMIAS slow, irregular heartbeats BRADYCARDIA slow heartbeat BRONCHOSPASM breathing distress caused by narrowing of the airways

CARCINOGENIC cancer-causing CARCINOMA type of cancer CARDIAC related to the heart CARDIOVERSION return to normal heartbeat by electric shock CATHETER a tube for withdrawing or giving fluids CATHETER a tube placed near the spinal cord and used for anesthesia (indwelling epidural) during surgery CENTRAL NERVOUS SYSTEM (CNS) brain and spinal cord CEREBRAL TRAUMA damage to the brain CESSATION stopping CHD coronary heart disease CHEMOTHERAPY treatment of disease, usually cancer, by chemical agents CHRONIC continuing for a long time, ongoing CLINICAL pertaining to medical care CLINICAL TRIAL an experiment involving human subjects COMA unconscious state COMPLETE RESPONSE total disappearance of disease CONGENITAL present before birth CONJUNCTIVITIS redness and irritation of the thin membrane that covers the eye CONSOLIDATION PHASE treatment phase intended to make a remission permanent (follows induction phase) CONTROLLED TRIAL research study in which the experimental treatment or procedure is compared to a standard (control) treatment or procedure COOPERATIVE GROUP association of multiple institutions to perform clinical trials CORONARY related to the blood vessels that supply the heart, or to the heart itself CT SCAN (CAT) computerized series of x-rays (computerized tomography) CULTURE test for infection, or for organisms that could cause infection CUMULATIVE added together from the beginning CUTANEOUS relating to the skin CVA stroke (cerebrovascular accident)

DERMATOLOGIC pertaining to the skin DIASTOLIC lower number in a blood pressure reading DISTAL toward the end, away from the center of the body DIURETIC "water pill" or drug that causes increase in urination DOPPLER device using sound waves to diagnose or test DOUBLE BLIND study in which neither investigators nor subjects know what drug or treatment the subject is receiving DYSFUNCTION state of improper function DYSPLASIA abnormal cells

ECHOCARDIOGRAM sound wave test of the heart EDEMA excess fluid collecting in tissue EEG electric brain wave tracing (electroencephalogram) EFFICACY effectiveness ELECTROCARDIOGRAM electrical tracing of the heartbeat (ECG or EKG) ELECTROLYTE IMBALANCE an imbalance of minerals in the blood EMESIS vomiting EMPIRIC based on experience ENDOSCOPIC EXAMINATION viewing an  internal part of the body with a lighted tube  ENTERAL by way of the intestines EPIDURAL outside the spinal cord ERADICATE get rid of (such as disease) Page 2 of 7 EVALUATED, ASSESSED examined for a medical condition EXPEDITED REVIEW rapid review of a protocol by the IRB Chair without full committee approval, permitted with certain low-risk research studies EXTERNAL outside the body EXTRAVASATE to leak outside of a planned area, such as out of a blood vessel

FDA U.S. Food and Drug Administration, the branch of federal government that approves new drugs FIBROUS having many fibers, such as scar tissue FIBRILLATION irregular beat of the heart or other muscle

GENERAL ANESTHESIA pain prevention by giving drugs to cause loss of consciousness, as during surgery GESTATIONAL pertaining to pregnancy

HEMATOCRIT amount of red blood cells in the blood HEMATOMA a bruise, a black and blue mark HEMODYNAMIC MEASURING blood flow HEMOLYSIS breakdown in red blood cells HEPARIN LOCK needle placed in the arm with blood thinner to keep the blood from clotting HEPATOMA cancer or tumor of the liver HERITABLE DISEASE can be transmitted to one’s offspring, resulting in damage to future children HISTOPATHOLOGIC pertaining to the disease status of body tissues or cells HOLTER MONITOR a portable machine for recording heart beats HYPERCALCEMIA high blood calcium level HYPERKALEMIA high blood potassium level HYPERNATREMIA high blood sodium level HYPERTENSION high blood pressure HYPOCALCEMIA low blood calcium level HYPOKALEMIA low blood potassium level HYPONATREMIA low blood sodium level HYPOTENSION low blood pressure HYPOXEMIA a decrease of oxygen in the blood HYPOXIA a decrease of oxygen reaching body tissues HYSTERECTOMY surgical removal of the uterus, ovaries (female sex glands), or both uterus and ovaries

IATROGENIC caused by a physician or by treatment IDE investigational device exemption, the license to test an unapproved new medical device IDIOPATHIC of unknown cause IMMUNITY defense against, protection from IMMUNOGLOBIN a protein that makes antibodies IMMUNOSUPPRESSIVE drug which works against the body's immune (protective) response, often used in transplantation and diseases caused by immune system malfunction IMMUNOTHERAPY giving of drugs to help the body's immune (protective) system; usually used to destroy cancer cells IMPAIRED FUNCTION abnormal function IMPLANTED placed in the body IND investigational new drug, the license to test an unapproved new drug INDUCTION PHASE beginning phase or stage of a treatment INDURATION hardening INDWELLING remaining in a given location, such as a catheter INFARCT death of tissue due to lack of blood supply INFECTIOUS DISEASE transmitted from one person to the next INFLAMMATION swelling that is generally painful, red, and warm INFUSION slow injection of a substance into the body, usually into the blood by means of a catheter INGESTION eating; taking by mouth INTERFERON drug which acts against viruses; antiviral agent INTERMITTENT occurring (regularly or irregularly) between two time points; repeatedly stopping, then starting again INTERNAL within the body INTERIOR inside of the body INTRAMUSCULAR into the muscle; within the muscle INTRAPERITONEAL into the abdominal cavity INTRATHECAL into the spinal fluid INTRAVENOUS (IV) through the vein INTRAVESICAL in the bladder INTUBATE the placement of a tube into the airway INVASIVE PROCEDURE puncturing, opening, or cutting the skin INVESTIGATIONAL NEW DRUG (IND) a new drug that has not been approved by the FDA INVESTIGATIONAL METHOD a treatment method which has not been proven to be beneficial or has not been accepted as standard care ISCHEMIA decreased oxygen in a tissue (usually because of decreased blood flow)

LAPAROTOMY surgical procedure in which an incision is made in the abdominal wall to enable a doctor to look at the organs inside LESION wound or injury; a diseased patch of skin LETHARGY sleepiness, tiredness LEUKOPENIA low white blood cell count LIPID fat LIPID CONTENT fat content in the blood LIPID PROFILE (PANEL) fat and cholesterol levels in the blood LOCAL ANESTHESIA creation of insensitivity to pain in a small, local area of the body, usually by injection of numbing drugs LOCALIZED restricted to one area, limited to one area LUMEN the cavity of an organ or tube (e.g., blood vessel) LYMPHANGIOGRAPHY an x-ray of the lymph nodes or tissues after injecting dye into lymph vessels (e.g., in feet) LYMPHOCYTE a type of white blood cell important in immunity (protection) against infection LYMPHOMA a cancer of the lymph nodes (or tissues)

MALAISE a vague feeling of bodily discomfort, feeling badly MALFUNCTION condition in which something is not functioning properly MALIGNANCY cancer or other progressively enlarging and spreading tumor, usually fatal if not successfully treated MEDULLABLASTOMA a type of brain tumor MEGALOBLASTOSIS change in red blood cells METABOLIZE process of breaking down substances in the cells to obtain energy METASTASIS spread of cancer cells from one part of the body to another METRONIDAZOLE drug used to treat infections caused by parasites (invading organisms that take up living in the body) or other causes of anaerobic infection (not requiring oxygen to survive) MI myocardial infarction, heart attack MINIMAL slight MINIMIZE reduce as much as possible Page 4 of 7 MONITOR check on; keep track of; watch carefully MOBILITY ease of movement MORBIDITY undesired result or complication MORTALITY death MOTILITY the ability to move MRI magnetic resonance imaging, diagnostic pictures of the inside of the body, created using magnetic rather than x-ray energy MUCOSA, MUCOUS MEMBRANE moist lining of digestive, respiratory, reproductive, and urinary tracts MYALGIA muscle aches MYOCARDIAL pertaining to the heart muscle MYOCARDIAL INFARCTION heart attack

NASOGASTRIC TUBE placed in the nose, reaching to the stomach NCI the National Cancer Institute NECROSIS death of tissue NEOPLASIA/NEOPLASM tumor, may be benign or malignant NEUROBLASTOMA a cancer of nerve tissue NEUROLOGICAL pertaining to the nervous system NEUTROPENIA decrease in the main part of the white blood cells NIH the National Institutes of Health NONINVASIVE not breaking, cutting, or entering the skin NOSOCOMIAL acquired in the hospital

OCCLUSION closing; blockage; obstruction ONCOLOGY the study of tumors or cancer OPHTHALMIC pertaining to the eye OPTIMAL best, most favorable or desirable ORAL ADMINISTRATION by mouth ORTHOPEDIC pertaining to the bones OSTEOPETROSIS rare bone disorder characterized by dense bone OSTEOPOROSIS softening of the bones OVARIES female sex glands

PARENTERAL given by injection PATENCY condition of being open PATHOGENESIS development of a disease or unhealthy condition PERCUTANEOUS through the skin PERIPHERAL not central PER OS (PO) by mouth PHARMACOKINETICS the study of the way the body absorbs, distributes, and gets rid of a drug PHASE I first phase of study of a new drug in humans to determine action, safety, and proper dosing PHASE II second phase of study of a new drug in humans, intended to gather information about safety and effectiveness of the drug for certain uses PHASE III large-scale studies to confirm and expand information on safety and effectiveness of new drug for certain uses, and to study common side effects PHASE IV studies done after the drug is approved by the FDA, especially to compare it to standard care or to try it for new uses PHLEBITIS irritation or inflammation of the vein PLACEBO an inactive substance; a pill/liquid that contains no medicine PLACEBO EFFECT improvement seen with giving subjects a placebo, though it contains no active drug/treatment PLATELETS small particles in the blood that help with clotting POTENTIAL possible POTENTIATE increase or multiply the effect of a drug or toxin (poison) by giving another drug or toxin at the same time (sometimes an unintentional result) POTENTIATOR an agent that helps another agent work better PRENATAL before birth PROPHYLAXIS a drug given to prevent disease or infection PER OS (PO) by mouth PRN as needed PROGNOSIS outlook, probable outcomes PRONE lying on the stomach PROSPECTIVE STUDY following patients forward in time PROSTHESIS artificial part, most often limbs, such as arms or legs PROTOCOL plan of study PROXIMAL closer to the center of the body, away from the end PULMONARY pertaining to the lungs

QD every day; daily QID four times a day

RADIATION THERAPY x-ray or cobalt treatment RANDOM by chance (like the flip of a coin) RANDOMIZATION chance selection RBC red blood cell RECOMBINANT formation of new combinations of genes RECONSTITUTION putting back together the original parts or elements RECUR happen again REFRACTORY not responding to treatment REGENERATION re-growth of a structure or of lost tissue REGIMEN pattern of giving treatment RELAPSE the return of a disease REMISSION disappearance of evidence of cancer or other disease RENAL pertaining to the kidneys REPLICABLE possible to duplicate RESECT remove or cut out surgically RETROSPECTIVE STUDY looking back over past experience

SARCOMA a type of cancer SEDATIVE a drug to calm or make less anxious SEMINOMA a type of testicular cancer (found in the male sex glands) SEQUENTIALLY in a row, in order SOMNOLENCE sleepiness SPIROMETER an instrument to measure the amount of air taken into and exhaled from the lungs STAGING an evaluation of the extent of the disease STANDARD OF CARE a treatment plan that the majority of the medical community would accept as appropriate STENOSIS narrowing of a duct, tube, or one of the blood vessels in the heart STOMATITIS mouth sores, inflammation of the mouth STRATIFY arrange in groups for analysis of results (e.g., stratify by age, sex, etc.) STUPOR stunned state in which it is difficult to get a response or the attention of the subject SUBCLAVIAN under the collarbone SUBCUTANEOUS under the skin SUPINE lying on the back SUPPORTIVE CARE general medical care aimed at symptoms, not intended to improve or cure underlying disease SYMPTOMATIC having symptoms SYNDROME a condition characterized by a set of symptoms SYSTOLIC top number in blood pressure; pressure during active contraction of the heart

TERATOGENIC capable of causing malformations in a fetus (developing baby still inside the mother’s body) TESTES/TESTICLES male sex glands THROMBOSIS clotting THROMBUS blood clot TID three times a day TITRATION a method for deciding on the strength of a drug or solution; gradually increasing the dose T-LYMPHOCYTES type of white blood cells TOPICAL on the surface TOPICAL ANESTHETIC applied to a certain area of the skin and reducing pain only in the area to which applied TOXICITY side effects or undesirable effects of a drug or treatment TRANSDERMAL through the skin TRANSIENTLY temporarily TRAUMA injury; wound TREADMILL walking machine used to test heart function

UPTAKE absorbing and taking in of a substance by living tissue

VALVULOPLASTY plastic repair of a valve, especially a heart valve VARICES enlarged veins VASOSPASM narrowing of the blood vessels VECTOR a carrier that can transmit disease-causing microorganisms (germs and viruses) VENIPUNCTURE needle stick, blood draw, entering the skin with a needle VERTICAL TRANSMISSION spread of disease

WBC white blood cell

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Americans are split over the state of the American dream

“The American dream ” is a century-old phrase used to describe the idea that anyone can achieve success in the United States through hard work and determination. Today, about half of Americans (53%) say that dream is still possible.  

Pew Research Center asked Americans about their views of the American dream as part of a larger survey exploring their social and political attitudes.  

We surveyed 8,709 U.S. adults from April 8 to 14, 2024. Everyone who took part in this survey is a member of the Center’s American Trends Panel (ATP), an online survey panel that is recruited through national, random sampling of residential addresses. This way nearly all U.S. adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other categories. Read more about the ATP’s methodology .

Here are the questions used for this analysis , along with responses, and its methodology .

A pie chart showing that Americans are split over whether ‘the American dream’ is possible to achieve.

Another 41% say the American dream was once possible for people to achieve – but is not anymore. And 6% say it was never possible, according to a recent Pew Research Center survey of 8,709 U.S. adults.

While this is the first time the Center has asked about the American dream in this way, other surveys have long found that sizable shares of Americans are skeptical about the future of the American dream .

Who believes the American dream is still possible?

There are relatively modest differences in views of the American dream by race and ethnicity, partisanship, and education. But there are wider divides by age and income.

A horizontal stacked bar chart showing that older and wealthier adults are more likely to say achieving the American dream is still possible.

Americans ages 50 and older are more likely than younger adults to say the American dream is still possible. About two-thirds of adults ages 65 and older (68%) say this, as do 61% of those 50 to 64.

By comparison, only about four-in-ten adults under 50 (42%) say it’s still possible for people to achieve the American dream.

Higher-income Americans are also more likely than others to say the American dream is still achievable.

While 64% of upper-income Americans say the American dream still exists, 39% of lower-income Americans say the same – a gap of 25 percentage points.

Middle-income Americans fall in between, with a 56% majority saying the American dream is still possible.

Race and ethnicity

Roughly half of Americans in each racial and ethnic group say the American dream remains possible. And while relatively few Americans – just 6% overall – say that the American dream was never possible, Black Americans are about twice as likely as those in other groups to say this (11%).

Partisanship

While 56% of Republicans and Republican leaners say the American dream is still possible to achieve, 50% of Democrats and Democratic leaners say the same.

A 57% majority of adults with a bachelor’s degree or more education say the American dream remains possible, compared with 50% of those with less education.

Age and income differences within both parties

A dot plot showing that, in both parties, lower-income, younger adults are less likely to say the American dream is still possible.

Age and income differences in views of the American dream persist within each political party.

Clear majorities of both Republicans (64%) and Democrats (67%) ages 50 and older say achieving the American dream is still possible.

In contrast, just 38% of Democrats under 50 and 48% of Republicans under 50 view the American dream as still possible.

In both parties, upper-income Americans are about 25 points more likely than lower-income Americans to say it is still possible for people to achieve the American dream.

Do people think they can achieve the American dream?

Americans are also divided over whether they think they personally can achieve the American dream. About three-in-ten (31%) say they’ve achieved it, while a slightly larger share (36%) say they are on their way to achieving it. Another 30% say it’s out of reach for them. These views are nearly identical to when the Center last asked this question in 2022.

A horizontal stacked bar chart showing that a majority of Americans say they’re on their way to achieving the American dream or have already achieved it.

White adults (39%) are more likely than Black (15%) and Hispanic adults (19%), and about as likely as Asian adults (34%), to say they have already achieved the American dream.

Black (48%), Hispanic (47%) and Asian adults (46%) are more likely than White adults (29%) to say they are on their way to achieving it.

Republicans are more likely than Democrats to say they have achieved the American dream (38% vs. 28%). But Democrats are somewhat more likely than Republicans to say they’re on the way to achieving it (38% vs. 34%). Democrats are also more likely than Republicans to view the American dream as personally out of reach.

Income and age

Older and higher-income Americans are more likely than younger and less wealthy Americans to say they have achieved or are within reach of the American dream. These patterns are similar to those for views about the American dream more generally.

Note: Here are the questions used for this analysis , along with responses, and its methodology .

  • Economic Conditions
  • Income, Wealth & Poverty

Download Gabriel Borelli's photo

Gabriel Borelli is a research associate focusing on U.S. politics and policy at Pew Research Center .

Income inequality is greater among Chinese Americans than any other Asian origin group in the U.S.

The state of the asian american middle class, the state of the american middle class, is college worth it, 7 facts about americans and taxes, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

© 2024 Pew Research Center

Home

U.S. Government Accountability Office

NOAA Mariner Recruitment and Retention: Actions Needed to Develop a Strategic Workforce Planning Process

The National Oceanic and Atmospheric Administration has 15 ships it uses for fisheries research, nautical charting, and other scientific missions. NOAA needs more mariners to support these ships. This Q&A report examines NOAA's recruitment and retention efforts amid a global mariner shortage.

For example, a recent effort to address mariner feedback aims to reduce the stretches of time that NOAA mariners spend at sea. NOAA has also given recruitment and retention bonuses to mariners.

But having workforce plans would put NOAA in a better position to recruit and retain mariners. We recommended developing a workforce planning process.

A white NOAA ship at sea.

What GAO Found

The National Oceanic and Atmospheric Administration's (NOAA) marine operations mission is to support its environmental science and stewardship goals through the operation, maintenance, and modernization of its ships. NOAA's Office of Marine and Aviation Operations (OMAO) plays a central role in enabling NOAA to conduct research, collect data, and carry out various mandates related to oceanography, atmospheric science, climate research, and more. According to OMAO officials, they need to increase the number of NOAA Commissioned Officer Corps (NOAA Corps) officers and civilian professional mariners (professional mariners) to meet NOAA's marine operations mission requirements. NOAA data show that recruitment and retention varied for the NOAA Corps and professional mariners over the last 5 fiscal years, with separations outpacing hiring in some of those years.

Factors that affect NOAA mariner recruitment and retention include challenges with work-life balance and pay, among others. OMAO has taken a variety of actions to address recruitment and retention challenges. However, OMAO does not have active workforce plans for the NOAA Corps or professional mariners to guide its efforts to improve mariner recruitment and retention and to expand the size of these mariner workforces. By developing and implementing a workforce planning process, OMAO can ensure that it consistently has active workforce plans. As OMAO develops a workforce planning process, incorporating key principles for effective strategic workforce planning (see figure below) would better position OMAO to grow its mariner workforces and meet mission requirements.

Key Principles for Effective Strategic Workforce Planning

plan a research

Why GAO Did This Study

NOAA mariners—which include the NOAA Corps officers as well as professional mariners—operate the nation's largest fleet of federal research and survey ships. This fleet of 15 ships, managed by OMAO, operates worldwide to conduct scientific missions such as nautical charting, fisheries research and surveys, and atmospheric research. The James M. Inhofe National Defense Authorization Act for Fiscal Year 2023 includes a provision for GAO to review issues related to the recruitment and retention of NOAA mariners.

This report provides information on the status of recruitment and retention of NOAA mariners, OMAO efforts to address factors that affect mariner recruitment and retention, the extent to which OMAO has implemented strategic workforce planning for its mariner workforce, and other maritime organizations' approaches for recruiting and retaining mariners.

GAO reviewed NOAA data on mariner hiring and separations from fiscal years 2019 through 2023 and reviewed documentation of OMAO efforts to improve recruitment and retention among its mariner workforces. In addition, GAO visited two NOAA vessels to observe NOAA mariner working conditions. GAO interviewed OMAO officials, NOAA Corps officers and professional mariners, and representatives of employee groups and unions.

Recommendations

GAO is recommending that OMAO develop and implement a workforce planning process that covers both the NOAA Corps and professional mariners and incorporates key principles of effective strategic workforce planning.

Recommendations for Executive Action

Recommendation
Office of Marine and Aviation Operations The Director of OMAO should develop and implement a workforce planning process that covers both the NOAA Corps and professional mariners and incorporates key principles of effective strategic workforce planning. (Recommendation 1)

Full Report

Gao contacts.

Heather Macleod Director [email protected] (206) 654-5574

Office of Public Affairs

Sarah Kaczmarek Acting Managing Director [email protected] (202) 512-4800

  • Election 2024
  • Entertainment
  • Newsletters
  • Photography
  • AP Investigations
  • AP Buyline Personal Finance
  • AP Buyline Shopping
  • Press Releases
  • Israel-Hamas War
  • Russia-Ukraine War
  • Global elections
  • Asia Pacific
  • Latin America
  • Middle East
  • Election Results
  • Delegate Tracker
  • AP & Elections
  • Auto Racing
  • 2024 Paris Olympic Games
  • Movie reviews
  • Book reviews
  • Financial Markets
  • Business Highlights
  • Financial wellness
  • Artificial Intelligence
  • Social Media

Most Americans plan to watch the Biden-Trump debate, and many see high stakes, an AP-NORC poll finds

A new AP-NORC poll finds that most U.S. adults plan to watch or listen to some element of Thursday’s presidential debate. And many think the stakes are high for both President Joe Biden and former President Donald Trump.

Image

Signage for the upcoming presidential debate is seen at the media file center near the CNN Techwood campus in Atlanta on Tuesday, June 25, 2024. A new poll finds that most U.S. adults plan to watch or listen to some element of Thursday’s presidential debate. (AP Photo/Pablo Martinez Monsivais)

  • Copy Link copied

Rep. Wesley Hunt, R-Texas, speaks during an event Wednesday, June 26, 2024, in Atlanta, hosted by the Donald Trump campaign billed as a “Black American Business Leaders Round Table,” at Rocky’s Barber Shop, in advance of the presidential debate between President Joe Biden and Republican presidential candidate former President Donald Trump. (AP Photo/Gerald Herbert)

Ben Starett, lighting programmer for CNN, sets up lights in the spin room for the upcoming CNN Presidential Debate between President Joe Biden and Republican presidential candidate former President Donald Trump in Atlanta, Wednesday, June 26, 2024. (AP Photo/Gerald Herbert)

People converse during setup in the spin room for the upcoming CNN Presidential Debate between President Joe Biden and Republican presidential candidate former President Donald Trump in Atlanta, Wednesday, June 26, 2024. (AP Photo/Gerald Herbert)

FILE - Democratic presidential candidate former Vice President Joe Biden speaks during the first presidential debate with President Donald Trump Sept. 29, 2020, at Case Western University and Cleveland Clinic, in Cleveland. (AP Photo/Patrick Semansky, File)

This combination of photos show President Donald Trump, left, and former Vice President Joe Biden during the first presidential debate on Sept. 29, 2020, in Cleveland. (AP Photo/Patrick Semansky, File)

WASHINGTON (AP) — Most U.S. adults plan to watch some element of Thursday’s presidential debate and many think the event will be important for the campaigns of both President Joe Biden and former President Donald Trump, according to a new poll from The Associated Press-NORC Center for Public Affairs Research .

Both men remain broadly unpopular as they prepare to face off for the first time since 2020, although Trump, the presumptive Republican nominee, maintains a modest enthusiasm advantage with his base compared to Biden, the Democratic incumbent.

About 6 in 10 U.S. adults say they are “extremely” or “very” likely to watch the debate live or in clips, or read about or listen to commentary about the performance of the candidates in the news or social media.

The poll suggests tens of millions of Americans are likely to see or hear about at least part of Thursday’s debate despite how unusually early it comes in the campaign season. Both Biden and Trump supporters view the debate as a major test for their candidate — or just a spectacle not to miss.

“I think it’s super important,” said Victoria Perdomo, a 44-year-old stay-at-home mom and a Trump supporter in Coral Springs, Florida. “It shows America what you’re going to see for the next four years.”

Image

Nic Greene, a libertarian who is a registered independent, said he’ll likely vote for Trump as the “least worst candidate.” He doesn’t think debates do much to help voters make decisions, but he’s expecting to be entertained and plans to listen to post-debate analysis on podcasts.

What to know about the 2024 Election

  • Democracy: American democracy has overcome big stress tests since 2020. More challenges lie ahead in 2024.
  • AP’s Role: The Associated Press is the most trusted source of information on election night, with a history of accuracy dating to 1848. Learn more.
  • Read the latest: Follow AP’s complete coverage of this year’s election.

“I think the majority of people have their minds made up with or without these debates,” he said. “It’s a circus.”

Both sides see the debate as important

About half, 47%, of Americans say the debate is “extremely” or “very” important for the success of Biden’s campaign and about 4 in 10 say it’s highly important for Trump’s campaign. About 3 in 10 Americans say it is at least “very” important for both campaigns.

Most Democrats, 55%, think the upcoming debate is extremely or very important for the success of the Biden campaign. About half of Republicans, 51%, say the same thing about the importance of the debate for the Trump campaign. Only about one-third of independents say the debate, taking place at a CNN studio in Atlanta, is highly important for either campaign.

Arthur Morris, a 40-year-old operations manager at a major financial firm, is an undecided voter open to Biden, Trump or a third-party option such as independent candidate Robert F. Kennedy, Jr. He, along with a significant share of Americans, has doubts about the mental capabilities of the aging candidates, and sees Biden’s debate performance as an important test.

“I need Biden to demonstrate to me that he’s cogent enough to be able to hold this office and execute to the level that we need him to,” Morris said.

Trump, meanwhile, needs to show he can be trusted after the Jan. 6, 2021, attack on the U.S. Capitol in which Trump supporters disrupted the certification of his 2020 loss to Biden and Trump’s recent conviction in a hush money scheme, said Morris, of Lewiston, Ohio.

About 4 in 10 say they are likely to watch or listen to some or all of the debate live, while a similar share say they will watch or listen to clips later. Another 4 in 10, roughly, expect to consume commentary about the debate and candidate performance in the news or on social media. Republicans and Democrats are more likely than independents to be following debate coverage in some capacity.

Voters are still unhappy about their options

Biden and Trump are each entering the debate with low favorability ratings. About 6 in 10 U.S. adults say they have a very or somewhat unfavorable view of Biden, and a similar number have a negative view of Trump.

Most Americans, 56%, say they are “very” or “somewhat” dissatisfied with Biden being the Democratic Party’s likely nominee for president, and a similar majority are dissatisfied with Trump as the likely GOP nominee. The poll indicates that Republicans continue to be more satisfied with a re-nomination of Trump than Democrats are with an anticipated Biden re-nomination. Six in 10 Republicans are satisfied with Trump as a nominee; just 42% of Democrats say that about Biden.

About 3 in 10 U.S. adults are dissatisfied with both Trump and Biden as their party’s likely nominees – with independents and Democrats being more likely than Republicans to be dissatisfied with both.

Republicans and Democrats are more likely to have a negative view of the opposing party’s candidate than they are to have a positive view of their own.

About 9 in 10 Republicans have an unfavorable view of Biden, and about 9 in 10 Democrats have a negative view of Trump. By comparison, roughly 7 in 10 Democrats have a favorable view of Biden, and about 7 in 10 Republicans have a positive view of Trump.

About 4 in 10 U.S. adults approve of how Biden is handling his job as president, in line with where that number has stood for the past two years. Biden’s approval rating among U.S. adults on handling the economy is similar, as is his handling of abortion policy. Only 3 in 10 approve of his approach to immigration.

“I do believe there has been some progress under Biden, but I believe it’s Congress who is the one stalling on any of the policies that Biden wants to proceed with,” said Jane Quan-Bell, 70, a school librarian from Chico, California, and a Democrat.

The conflict between the Israelis and Palestinians is an especially vulnerable spot for Biden. With only 26% of U.S. adults approving of his handling of the issue, it’s well below his overall approval rating. Nearly 6 in 10 Democrats disapprove of his approach.

The poll of 1,088 adults was conducted June 20-24, 2024, using a sample drawn from NORC’s probability-based AmeriSpeak Panel, which is designed to be representative of the U.S. population. The margin of sampling error for all respondents is plus or minus 4.0 percentage points.

Cooper reported from Phoenix.

A previous version of this story misspelled Arthur Morris’ last name. It is Morris, not Murray.

plan a research

COMMENTS

  1. How to Write a Research Plan: A Step by Step Guide

    Here's an example outline of a research plan you might put together: Project title. Project members involved in the research plan. Purpose of the project (provide a summary of the research plan's intent) Objective 1 (provide a short description for each objective) Objective 2. Objective 3.

  2. How To Write a Research Plan (With Template and Examples)

    A research plan is a documented overview of your entire project, from the research you conduct to the results you expect to find at the end of the project. Within a research plan, you determine your goals, the steps to reach them and everything you need to gather your results. Research plans help orient a team, or just yourself, toward a set plan.

  3. Research Plan

    A research plan is a framework that shows how you intend to approach your topic. The plan can take many forms: a written outline, a narrative, a visual/concept map or timeline. It's a document that will change and develop as you conduct your research. Components of a research plan. 1. Research conceptualization - introduces your research question.

  4. How to plan a research project

    Planning research projects is a time-honoured intellectual exercise: one that requires both creativity and sharp analytical skills. The purpose of this Guide is to make the process systematic and easy to understand. While there is a great deal of freedom and discovery involved - from the topics you choose, to the data and methods you apply ...

  5. A Beginner's Guide to Starting the Research Process

    This article takes you through the first steps of the research process, helping you narrow down your ideas and build up a strong foundation for your research project. Table of contents. Step 1: Choose your topic. Step 2: Identify a problem. Step 3: Formulate research questions. Step 4: Create a research design. Step 5: Write a research proposal.

  6. How to Write a Research Proposal

    A research plan helps you, the researcher, organize your thoughts. On the other hand, a dissertation proposal or research proposal aims to convince others (e.g., a supervisor, a funding body, or a dissertation committee) that your research topic is relevant and worthy of being conducted.

  7. Research Plan: What Is It & How To Write It [with Templates]

    A research plan is a comprehensive document that outlines the entirety of your research project. It details the research process, from defining the problem statement and research objectives to selecting the research method and outlining the expected outcomes. This plan serves as a blueprint for your research activities, ensuring a focused and ...

  8. How to Write a Research Plan

    A research plan is a comprehensive documented outline of your entire project, encompassing the research process and the anticipated outcomes. This strategic document aids in defining objectives, summarizing the necessary steps to achieve them, and detailing the requirements for obtaining conclusive results.

  9. Sage Research Methods

    This tool is designed to guide you through your research project. First, think about what stage you're at in your research. If you've already gotten started, click on the stage below that best describes where you are. If you're just starting out, it might be helpful to read more about why we do research before getting started. We found other ...

  10. What Is a Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Other interesting articles.

  11. Writing a Research Plan

    The research plan, however, serves another, very important function: It contributes to your development as a scientist. Your research plan is a map for your career as a research science professional. As will become apparent later in this document, one of the functions of a research plan is to demonstrate your intellectual vision and aspirations.

  12. Creating a research plan

    A well thought out research plan will help you find relevant books, ebooks, journal articles, encyclopedia articles, dictionary entries and more much more easily than if you just jumped right in to a database and hoped for the best. It's an easy and helpful way to organize your thinking about a topic, which will help you find what you need.

  13. How to Write a Research Plan

    Writing a Research Plan. To write out your research plan, begin by restating your main thesis question and any secondary ones. They may have changed a bit since your original proposal. If these questions bear on a particular theory or analytic perspective, state that briefly. In the social sciences, for example, two or three prominent theories ...

  14. How To Write A Research Proposal (With Examples)

    Make sure you can ask the critical what, who, and how questions of your research before you put pen to paper. Your research proposal should include (at least) 5 essential components : Title - provides the first taste of your research, in broad terms. Introduction - explains what you'll be researching in more detail.

  15. Creating a Research Plan

    The research plan describes many aspects of the project. It will help both the researchers and mentors understand the overall approach that is planned for the project. The contents of this web page should serve as a guide for creating a research plan. A written research plan should contain a description of the following. 1. The goals of the ...

  16. How to Create a Research Plan (With Tips and an Example)

    A research plan or proposal is a document that describes a research project, including its purpose, methods, objectives, timeline, budget, participants, expected outcomes, and preliminary studies. This proposal usually outlines what the researcher wants to achieve, explore, or corroborate and explains the importance of the project. ...

  17. How to Plan a Research Project

    If you want know how to plan a research project that has attainable goals, then having a clear and well-defined problem statement is the first step toward it. 2. Set pragmatic goals: Nobody knows more than you how tumultuous and unpredictable a researcher's journey can be. Additionally, it is always challenging to plan a research project and ...

  18. How to Plan and Conduct a Research Project: 12 Simple Steps

    Let's have a brief and clear discussion on what we should do for achieving success in our research project. Well! For planning and conduction we have to go through following steps. Planning. 1. Topic selection. Many of us have a clear research topic of mind but some are also there who come up with various ideas.

  19. Basic Steps in the Research Process

    Step 1: Identify and develop your topic. Selecting a topic can be the most challenging part of a research assignment. Since this is the very first step in writing a paper, it is vital that it be done correctly. Here are some tips for selecting a topic: Select a topic within the parameters set by the assignment.

  20. The critical steps for successful research: The research proposal and

    Completing any research project requires meticulous planning, experimental design and execution, and compilation and publication of findings in the form of a research paper. All of these are often unfamiliar to naïve researchers; thus, the purpose of this workshop was to teach participants to master the critical steps involved in the ...

  21. Write Your Research Plan

    Your Research Strategy is the bigger part of your application's Research Plan (the other part is the Specific Aims—discussed above.) The Research Strategy is the nuts and bolts of your application, describing the rationale for your research and the experiments you will do to accomplish each aim. It is structured as follows: Three main sections

  22. Research Methods Guide: Research Design & Method

    Research design is a plan to answer your research question. A research method is a strategy used to implement that plan. Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively.

  23. Planning and Writing a Research Paper

    Planning and Writing a Research Paper. Mastering the complex academic skill of writing a research paper will prepare you to enter the discourse community of your chosen area of study with excitement and confidence. Writing a research paper can seem like a daunting task, but if you take the time in the pages ahead to learn how to break the ...

  24. President Biden Signs National Plan to End Parkinson's Act into Law

    On July 2, President Joe Biden signed the National Plan to End Parkinson's Act into law. On July 2, President Joe Biden signed the National Plan to End Parkinson's Act into law. ... Get the latest news about PD research, resources and community initiatives — straight to your inbox. Email Address. Email Opt In. FL: 200 SE 1st Street, Ste ...

  25. How America Saves 2024

    With this interactive chart, you can see how 401(k) plan participation rates across 16 industries compared with the Vanguard benchmark. To learn how your plan compared in your industry, select plan weighted (the average participant rate among a group of plans) or participant weighted (average of all eligible employees as if they were in a ...

  26. Medical Terms in Lay Language

    Human Subjects Office / IRB Hardin Library, Suite 105A 600 Newton Rd Iowa City, IA 52242-1098. Voice: 319-335-6564 Fax: 319-335-7310

  27. Americans are split over the state of the American dream

    Pew Research Center asked Americans about their views of the American dream as part of a larger survey exploring their social and political attitudes. We surveyed 8,709 U.S. adults from April 8 to 14, 2024. Everyone who took part in this survey is a member of the Center's American Trends Panel (ATP), an online survey panel that is recruited ...

  28. PDF CHIPS R&D Education and Workforce Development (EWD) Plan Guidebook

    A resource for developing an education and workforce development plan in response to CHIPS R&D funding opportunities. The CHIPS and Science Act provides $50 billion to the U.S. Department of Commerce (DOC) to strengthen and revitalize the U.S. position in semiconductor research, development, and manufacturing.

  29. NOAA Mariner Recruitment and Retention: Actions Needed to Develop a

    This fleet of 15 ships, managed by OMAO, operates worldwide to conduct scientific missions such as nautical charting, fisheries research and surveys, and atmospheric research. The James M. Inhofe National Defense Authorization Act for Fiscal Year 2023 includes a provision for GAO to review issues related to the recruitment and retention of NOAA ...

  30. Most Americans plan to watch Biden-Trump debate: AP-NORC Poll

    WASHINGTON (AP) — Most U.S. adults plan to watch some element of Thursday's presidential debate and many think the event will be important for the campaigns of both President Joe Biden and former President Donald Trump, according to a new poll from The Associated Press-NORC Center for Public Affairs Research.. Both men remain broadly unpopular as they prepare to face off for the first time ...