Microsoft

Get step-by-step solutions to your math problems

qr code

Try Math Solver

Key Features

Get step-by-step explanations

Graph your math problems

Graph your math problems

Practice, practice, practice

Practice, practice, practice

Get math help in your language

Get math help in your language

Math Solver

Geogebra math solver.

Get accurate solutions and step-by-step explanations for algebra and other math problems, while enhancing your problem-solving skills!

person with long dark hair sit at a table working at a laptop. 3x+2 and x² equations float in the air signifying that she is working on math problems

Download on App Store

  • Solve equations and inequalities
  • Simplify expressions
  • Factor polynomials
  • Graph equations and inequalities
  • Advanced solvers
  • All solvers
  • Arithmetics
  • Determinant
  • Percentages
  • Scientific Notation
  • Inequalities

Download on App Store

What can QuickMath do?

QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students.

  • The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and cancelling common factors within a fraction.
  • The equations section lets you solve an equation or system of equations. You can usually find the exact answer or, if necessary, a numerical answer to almost any accuracy you require.
  • The inequalities section lets you solve an inequality or a system of inequalities for a single variable. You can also plot inequalities in two variables.
  • The calculus section will carry out differentiation as well as definite and indefinite integration.
  • The matrices section contains commands for the arithmetic manipulation of matrices.
  • The graphs section contains commands for plotting equations and inequalities.
  • The numbers section has a percentages command for explaining the most common types of percentage problems and a section for dealing with scientific notation.

Math Topics

More solvers.

  • Add Fractions
  • Simplify Fractions

High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

Free ready-to-use math resources

Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth

Free ready-to-use math resources

20 Effective Math Strategies To Approach Problem-Solving 

Katie Keeton

Math strategies for problem-solving help students use a range of approaches to solve many different types of problems. It involves identifying the problem and carrying out a plan of action to find the answer to mathematical problems.  

Problem-solving skills are essential to math in the general classroom and real-life. They require logical reasoning and critical thinking skills. Students must be equipped with strategies to help them find solutions to problems.

This article explores mathematical problem solving strategies, logical reasoning and critical thinking skills to help learners with solving math word problems independently in real-life situations. 

What are problem-solving strategies?

Problem-solving strategies in math are methods students can use to figure out solutions to math problems. Some problem-solving strategies: 

  • Draw a model
  • Use different approaches
  • Check the inverse to make sure the answer is correct

Students need to have a toolkit of math problem-solving strategies at their disposal to provide different ways to approach math problems. This makes it easier to find solutions and understand math better. 

Strategies can help guide students to the solution when it is difficult ot know when to start.

The ultimate guide to problem solving techniques

The ultimate guide to problem solving techniques

Download these ready-to-go problem solving techniques that every student should know. Includes printable tasks for students including challenges, short explanations for teachers with questioning prompts.

20 Math Strategies For Problem-Solving

Different problem-solving math strategies are required for different parts of the problem. It is unlikely that students will use the same strategy to understand and solve the problem. 

Here are 20 strategies to help students develop their problem-solving skills. 

Strategies to understand the problem

Strategies that help students understand the problem before solving it helps ensure they understand: 

  • The context
  • What the key information is
  • How to form a plan to solve it

Following these steps leads students to the correct solution and makes the math word problem easier .

Here are five strategies to help students understand the content of the problem and identify key information. 

1. Read the problem aloud

Read a word problem aloud to help understand it. Hearing the words engages auditory processing. This can make it easier to process and comprehend the context of the situation.

2. Highlight keywords 

When keywords are highlighted in a word problem, it helps the student focus on the essential information needed to solve it. Some important keywords help determine which operation is needed.  For example, if the word problem asks how many are left, the problem likely requires subtraction.  Ensure students highlight the keywords carefully and do not highlight every number or keyword. There is likely irrelevant information in the word problem.

3. Summarize the information

Read the problem aloud, highlight the key information and then summarize the information. Students can do this in their heads or write down a quick summary.  Summaries should include only the important information and be in simple terms that help contextualize the problem.

4. Determine the unknown

A common problem that students have when solving a word problem is misunderstanding what they are solving. Determine what the unknown information is before finding the answer.  Often, a word problem contains a question where you can find the unknown information you need to solve. For example, in the question ‘How many apples are left?’ students need to find the number of apples left over.

5. Make a plan

Once students understand the context of the word problem, have dentified the important information and determined the unknown, they can make a plan to solve it.  The plan will depend on the type of problem. Some problems involve more than one step to solve them as some require more than one answer.  Encourage students to make a list of each step they need to take to solve the problem before getting started.

Strategies for solving the problem 

1. draw a model or diagram.

Students may find it useful to draw a model, picture, diagram, or other visual aid to help with the problem solving process.  It can help to visualize the problem to understand the relationships between the numbers in the problem. In turn, this helps students see the solution.

math problem that needs a problem solving strategy

Similarly, you could draw a model to represent the objects in the problem:

math problem requiring problem solving

2. Act it out

This particular strategy is applicable at any grade level but is especially helpful in math investigation in elementary school . It involves a physical demonstration or students acting out the problem using movements, concrete resources and math manipulatives .  When students act out a problem, they can visualize and contectualize the word problem in another way and secure an understanding of the math concepts.  The examples below show how 1st-grade students could “act out” an addition and subtraction problem:

The problemHow to act out the problem
Gia has 6 apples. Jordan has 3 apples. How many apples do they have altogether?Two students use counters to represent the apples. One student has 6 counters and the other student takes 3. Then, they can combine their “apples” and count the total.
Michael has 7 pencils. He gives 2 pencils to Sarah. How many pencils does Michael have now?One student (“Michael”) holds 7 pencils, the other (“Sarah”) holds 2 pencils. The student playing Michael gives 2 pencils to the student playing Sarah. Then the students count how many pencils Michael is left holding.

3. Work backwards

Working backwards is a popular problem-solving strategy. It involves starting with a possible solution and deciding what steps to take to arrive at that solution.  This strategy can be particularly helpful when students solve math word problems involving multiple steps. They can start at the end and think carefully about each step taken as opposed to jumping to the end of the problem and missing steps in between.

For example,

problem solving math question 1

To solve this problem working backwards, start with the final condition, which is Sam’s grandmother’s age (71) and work backwards to find Sam’s age. Subtract 20 from the grandmother’s age, which is 71.  Then, divide the result by 3 to get Sam’s age. 71 – 20 = 51 51 ÷ 3 = 17 Sam is 17 years old.

4. Write a number sentence

When faced with a word problem, encourage students to write a number sentence based on the information. This helps translate the information in the word problem into a math equation or expression, which is more easily solved.  It is important to fully understand the context of the word problem and what students need to solve before writing an equation to represent it.

5. Use a formula

Specific formulas help solve many math problems. For example, if a problem asks students to find the area of a rug, they would use the area formula (area = length × width) to solve.   Make sure students know the important mathematical formulas they will need in tests and real-life. It can help to display these around the classroom or, for those who need more support, on students’ desks.

Strategies for checking the solution 

Once the problem is solved using an appropriate strategy, it is equally important to check the solution to ensure it is correct and makes sense. 

There are many strategies to check the solution. The strategy for a specific problem is dependent on the problem type and math content involved.

Here are five strategies to help students check their solutions. 

1. Use the Inverse Operation

For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7. As good practice, encourage students to use the inverse operation routinely to check their work. 

2. Estimate to check for reasonableness

Once students reach an answer, they can use estimation or rounding to see if the answer is reasonable.  Round each number in the equation to a number that’s close and easy to work with, usually a multiple of ten.  For example, if the question was 216 ÷ 18 and the quotient was 12, students might round 216 to 200 and round 18 to 20. Then use mental math to solve 200 ÷ 20, which is 10.  When the estimate is clear the two numbers are close. This means your answer is reasonable. 

3. Plug-In Method

This method is particularly useful for algebraic equations. Specifically when working with variables.  To use the plug-in method, students solve the problem as asked and arrive at an answer. They can then plug the answer into the original equation to see if it works. If it does, the answer is correct.

Problem solving math problem 2

If students use the equation 20m+80=300 to solve this problem and find that m = 11, they can plug that value back into the equation to see if it is correct. 20m + 80 = 300 20 (11) + 80 = 300 220 + 80 = 300 300 = 300 ✓

4. Peer Review

Peer review is a great tool to use at any grade level as it promotes critical thinking and collaboration between students. The reviewers can look at the problem from a different view as they check to see if the problem was solved correctly.   Problem solvers receive immediate feedback and the opportunity to discuss their thinking with their peers. This strategy is effective with mixed-ability partners or similar-ability partners. In mixed-ability groups, the partner with stronger skills provides guidance and support to the partner with weaker skills, while reinforcing their own understanding of the content and communication skills.  If partners have comparable ability levels and problem-solving skills, they may find that they approach problems differently or have unique insights to offer each other about the problem-solving process.

5. Use a Calculator

A calculator can be introduced at any grade level but may be best for older students who already have a foundational understanding of basic math operations. Provide students with a calculator to allow them to check their solutions independently, accurately, and quickly. Since calculators are so readily available on smartphones and tablets, they allow students to develop practical skills that apply to real-world situations.  

Step-by-step problem-solving processes for your classroom

In his book, How to Solve It , published in 1945, mathematician George Polya introduced a 4-step process to solve problems. 

Polya’s 4 steps include:

  • Understand the problem
  • Devise a plan
  • Carry out the plan

Today, in the style of George Polya, many problem-solving strategies use various acronyms and steps to help students recall. 

Many teachers create posters and anchor charts of their chosen process to display in their classrooms. They can be implemented in any elementary, middle school or high school classroom. 

Here are 5 problem-solving strategies to introduce to students and use in the classroom.

CUBES math strategy for problem solving

How Third Space Learning improves problem-solving 

Resources .

Third Space Learning offers a free resource library is filled with hundreds of high-quality resources. A team of experienced math experts carefully created each resource to develop students mental arithmetic, problem solving and critical thinking. 

Explore the range of problem solving resources for 2nd to 8th grade students. 

One-on-one tutoring 

Third Space Learning offers one-on-one math tutoring to help students improve their math skills. Highly qualified tutors deliver high-quality lessons aligned to state standards. 

Former teachers and math experts write all of Third Space Learning’s tutoring lessons. Expertly designed lessons follow a “my turn, follow me, your turn” pedagogy to help students move from guided instruction and problem-solving to independent practice. 

Throughout each lesson, tutors ask higher-level thinking questions to promote critical thinking and ensure students are developing a deep understanding of the content and problem-solving skills.

mathematics problem solving

Problem-solving

Educators can use many different strategies to teach problem-solving and help students develop and carry out a plan when solving math problems. Incorporate these math strategies into any math program and use them with a variety of math concepts, from whole numbers and fractions to algebra. 

Teaching students how to choose and implement problem-solving strategies helps them develop mathematical reasoning skills and critical thinking they can apply to real-life problem-solving.

READ MORE : 8 Common Core math examples

There are many different strategies for problem-solving; Here are 5 problem-solving strategies: • draw a model  • act it out  • work backwards  • write a number sentence • use a formula

Here are 10 strategies of problem-solving: • Read the problem aloud • Highlight keywords • Summarize the information • Determine the unknown • Make a plan • Draw a model  • Act it out  • Work backwards  • Write a number sentence • Use a formula

1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Look back

Some strategies you can use to solve challenging math problems are: breaking the problem into smaller parts, using diagrams or models, applying logical reasoning, and trying different approaches.

Related articles

Why Student Centered Learning Is Important: A Guide For Educators

Why Student Centered Learning Is Important: A Guide For Educators

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

Ultimate Guide to Metacognition [FREE]

Looking for a summary on metacognition in relation to math teaching and learning?

Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.

Privacy Overview

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Unit 2: Solving equations & inequalities

About this unit.

There are lots of strategies we can use to solve equations. Let's explore some different ways to solve equations and inequalities. We'll also see what it takes for an equation to have no solution, or infinite solutions.

Linear equations with variables on both sides

  • Why we do the same thing to both sides: Variable on both sides (Opens a modal)
  • Intro to equations with variables on both sides (Opens a modal)
  • Equations with variables on both sides: 20-7x=6x-6 (Opens a modal)
  • Equation with variables on both sides: fractions (Opens a modal)
  • Equation with the variable in the denominator (Opens a modal)
  • Equations with variables on both sides Get 3 of 4 questions to level up!
  • Equations with variables on both sides: decimals & fractions Get 3 of 4 questions to level up!

Linear equations with parentheses

  • Equations with parentheses (Opens a modal)
  • Reasoning with linear equations (Opens a modal)
  • Multi-step equations review (Opens a modal)
  • Equations with parentheses Get 3 of 4 questions to level up!
  • Equations with parentheses: decimals & fractions Get 3 of 4 questions to level up!
  • Reasoning with linear equations Get 3 of 4 questions to level up!

Analyzing the number of solutions to linear equations

  • Number of solutions to equations (Opens a modal)
  • Worked example: number of solutions to equations (Opens a modal)
  • Creating an equation with no solutions (Opens a modal)
  • Creating an equation with infinitely many solutions (Opens a modal)
  • Number of solutions to equations Get 3 of 4 questions to level up!
  • Number of solutions to equations challenge Get 3 of 4 questions to level up!

Linear equations with unknown coefficients

  • Linear equations with unknown coefficients (Opens a modal)
  • Why is algebra important to learn? (Opens a modal)
  • Linear equations with unknown coefficients Get 3 of 4 questions to level up!

Multi-step inequalities

  • Inequalities with variables on both sides (Opens a modal)
  • Inequalities with variables on both sides (with parentheses) (Opens a modal)
  • Multi-step inequalities (Opens a modal)
  • Using inequalities to solve problems (Opens a modal)
  • Multi-step linear inequalities Get 3 of 4 questions to level up!
  • Using inequalities to solve problems Get 3 of 4 questions to level up!

Free Mathematics Tutorials, Problems and Worksheets

Thousands of math problems and questions with solutions and detailed explanations are included. Free math tutorials and problems to help you explore and gain deep understanding of math topics such as: Algebra and graphing   ,   Precalculus   ,   Practice tests and worksheets   ,   Calculus   ,   Linear Algebra   ,   Geometry   ,   Trigonometry   ,   Math Videos   ,   Math From Grade 4 to Grade 12   ,   Statistics and Probabilities   ,   Applied Math   ,   Engineering Mathematics   ,   More Math Resources   ,   Math Pages in Different languages and Analyzemath.com in Different Languages

ALGEBRA AND GRAPHING

  • Algebra Questions and Problems
  • Fractions Questions and Problems with Solutions
  • Solving Equation and Inequalities
  • Find Domain and Range of Functions
  • Complex Numbers
  • Step by Step Maths Worksheets Solvers
  • Free Graph Paper
  • Online Step by Step Algebra Calculators and Solvers

PRECALCULUS

  • Graphs of Functions, Equations, and Algebra
  • Analytical Tutorials
  • Math Problems
  • Online Math Calculators and Solvers
  • Math Software

PRACTICE TESTS AND WORKSHEETS

  • Free Practice for SAT, ACT and Compass Math tests
  • Free Practice for quantitative GRE Maths Tests
  • Free Math Worksheets to Download
  • Differentiation and Derivatives Questions and Problems with Solutions
  • Integrals Questions and Problems in Calculus
  • Calculus Problem Solving and Applications
  • Calculus Tutorials and Problems
  • Calculus Questions With Answers
  • AP Calculus Questions With Solutions
  • Online Step by Step Calculus Calculators and Solvers
  • Free Calculus Worksheets to Download

LINEAR ALGEBRA

  • Linear Algebra - Questions with Solutions
  • Geometry Tutorials and Problems
  • Online Geometry Calculators and Solvers
  • Online 3D Geometry Calculators and Solvers
  • Free Geometry Worksheets to Download

TRIGONOMETRY

  • Trigonometry Tutorials and Problems for Self Tests
  • Free Trigonometry Questions with Answers
  • Free Trigonometry Worksheets to Download
  • Online Trigonometry Calculators and Solvers
  • Vectors Calculators and Solvers

STATISTICS AND PROBABILITIES

  • Elementary Statistics and Probability Tutorials and Problems
  • Probabilities
  • Statistics Calculators, Solvers and Graphers
  • Probability Calculators
  • Google Sheets in Math, Statistics and Probabilities

MATH FROM GRADE 4 TO GRADE 12

  • Grade 12 Math Problems with Solutions.
  • Grade 11 Math Problems with Solutions.
  • Grade 10 Math Problems with Solutions.
  • Grade 9 Math Problems with Solutions.
  • Grade 8 Math Problems with Solutions.
  • Grade 7 Math Problems with Solutions.
  • Grade 6 Math Problems with Solutions.
  • Grade 5 Math Problems with Solutions.
  • Grade 4 Math Problems with Solutions.
  • High School Math (Grades 10, 11 and 12) - Free Questions and Problems With Answers
  • Middle School Math (Grades 6, 7, 8, 9) - Free Questions and Problems With Answers
  • Primary Math (grades 4 and 5) - Free Questions and Problems With Answers
  • Units Conversion and Calculators
  • Convert Units of Measurements

APPLIED MATH

  • The Applications of Mathematics in Physics and Engineering
  • Linear Programming
  • Mathematics for Machine Learning
  • Mathematical Finance

MORE MATH RESOURCES

  • Math Formulas for Mobile Devices
  • Engineering Mathematics
  • Understanding, Teaching and Learning Mathematics
  • HTML5 Applets for iPads
  • Math Videos

MATH PAGES IN DIFFERENT LANGUAGES

  • Analyzemath.com in Different Languages
  • Exercises de Mathematiques Utilisant les Applets
  • Mathematics pages in French

Math Problem Solving Strategies

In these lessons, we will learn some math problem solving strategies for example, Verbal Model (or Logical Reasoning), Algebraic Model, Block Model (or Singapore Math), Guess & Check Model and Find a Pattern Model.

Related Pages Solving Word Problems Using Block Models Heuristic Approach to Problem-Solving Algebra Lessons

Problem Solving Strategies

The strategies used in solving word problems:

  • What do you know?
  • What do you need to know?
  • Draw a diagram/picture

Solution Strategies Label Variables Verbal Model or Logical Reasoning Algebraic Model - Translate Verbal Model to Algebraic Model Solve and Check.

Solving Word Problems

Step 1: Identify (What is being asked?) Step 2: Strategize Step 3: Write the equation(s) Step 4: Answer the question Step 5: Check

Problem Solving Strategy: Guess And Check

Using the guess and check problem solving strategy to help solve math word problems.

Example: Jamie spent $40 for an outfit. She paid for the items using $10, $5 and $1 bills. If she gave the clerk 10 bills in all, how many of each bill did she use?

Problem Solving : Make A Table And Look For A Pattern

  • Identify - What is the question?
  • Plan - What strategy will I use to solve the problem?
  • Solve - Carry out your plan.
  • Verify - Does my answer make sense?

Example: Marcus ran a lemonade stand for 5 days. On the first day, he made $5. Every day after that he made $2 more than the previous day. How much money did Marcus made in all after 5 days?

Find A Pattern Model (Intermediate)

In this lesson, we will look at some intermediate examples of Find a Pattern method of problem-solving strategy.

Example: The figure shows a series of rectangles where each rectangle is bounded by 10 dots. a) How many dots are required for 7 rectangles? b) If the figure has 73 dots, how many rectangles would there be?

Rectangles Pattern Total dots
1 10 10
2 10 + 7 17
3 10 + 14 24
4 10 + 21 31
5 10 + 28 38
6 10 + 35 45
7 10 + 42 52
8 10 + 49 59
9 10 + 56 66
10 10 + 63 73

a) The number of dots required for 7 rectangles is 52.

b) If the figure has 73 dots, there would be 10 rectangles.

Example: Each triangle in the figure below has 3 dots. Study the pattern and find the number of dots for 7 layers of triangles.

Layers Pattern Total dots
1 3 3
2 3 + 3 6
3 3 + 3 + 4 10
4 3 + 3 + 4 + 5 15
5 3 + 3 + 4 + 5 + 6 21
6 3 + 3 + 4 + 5 + 6 + 7 28
7 3 + 3 + 4 + 5 + 6 + 7 + 8 36

The number of dots for 7 layers of triangles is 36.

Example: The table below shows numbers placed into groups I, II, III, IV, V and VI. In which groups would the following numbers belong? a) 25 b) 46 c) 269

I 1 7 13 19 25
II 2 8 14 20 26
III 3 9 15 21 27
IV 4 10 16 22
V 5 11 17 23
VI 6 12 18 24

Solution: The pattern is: The remainder when the number is divided by 6 determines the group. a) 25 ÷ 6 = 4 remainder 1 (Group I) b) 46 ÷ 6 = 7 remainder 4 (Group IV) c) 269 ÷ 6 = 44 remainder 5 (Group V)

Example: The following figures were formed using matchsticks.

a) Based on the above series of figures, complete the table below.

Number of squares 1 2 3 4 5 6 7 8
Number of triangles 4 6 8 10
Number of matchsticks 12 19 26 33

b) How many triangles are there if the figure in the series has 9 squares?

c) How many matchsticks would be used in the figure in the series with 11 squares?

Number of squares 1 2 3 4 5 6 7 8
Number of triangles 4 6 8 10 12 14 16 18
Number of matchsticks 12 19 26 33 40 47 54 61

b) The pattern is +2 for each additional square.   18 + 2 = 20   If the figure in the series has 9 squares, there would be 20 triangles.

c) The pattern is + 7 for each additional square   61 + (3 x 7) = 82   If the figure in the series has 11 squares, there would be 82 matchsticks.

Example: Seven ex-schoolmates had a gathering. Each one of them shook hands with all others once. How many handshakes were there?

A B C D E F G
A
B
C
D
E
F
G
HS 6 5 4 3 2 1

Total = 6 + 5 + 4 + 3 + 2 + 1 = 21 handshakes.

The following video shows more examples of using problem solving strategies and models. Question 1: Approximate your average speed given some information Question 2: The table shows the number of seats in each of the first four rows in an auditorium. The remaining ten rows follow the same pattern. Find the number of seats in the last row. Question 3: You are hanging three pictures in the wall of your home that is 16 feet wide. The width of your pictures are 2, 3 and 4 feet. You want space between your pictures to be the same and the space to the left and right to be 6 inches more than between the pictures. How would you place the pictures?

The following are some other examples of problem solving strategies.

Explore it/Act it/Try it (EAT) Method (Basic) Explore it/Act it/Try it (EAT) Method (Intermediate) Explore it/Act it/Try it (EAT) Method (Advanced)

Finding A Pattern (Basic) Finding A Pattern (Intermediate) Finding A Pattern (Advanced)

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

  • Problem Generator
  • Mobile Apps
  • All Products
  • Preferences
  • My Apps (API)

mathematics problem solving

Problem Solving in Mathematics

  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade

The main reason for learning about math is to become a better problem solver in all aspects of life. Many problems are multistep and require some type of systematic approach. There are a couple of things you need to do when solving problems. Ask yourself exactly what type of information is being asked for: Is it one of addition, subtraction, multiplication , or division? Then determine all the information that is being given to you in the question.

Mathematician George Pólya’s book, “ How to Solve It: A New Aspect of Mathematical Method ,” written in 1957, is a great guide to have on hand. The ideas below, which provide you with general steps or strategies to solve math problems, are similar to those expressed in Pólya’s book and should help you untangle even the most complicated math problem.

Use Established Procedures

Learning how to solve problems in mathematics is knowing what to look for. Math problems often require established procedures and knowing what procedure to apply. To create procedures, you have to be familiar with the problem situation and be able to collect the appropriate information, identify a strategy or strategies, and use the strategy appropriately.

Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

Look for Clue Words

Think of yourself as a math detective. The first thing to do when you encounter a math problem is to look for clue words. This is one of the most important skills you can develop. If you begin to solve problems by looking for clue words, you will find that those words often indicate an operation.

Common clue words for addition  problems:

Common clue words for  subtraction  problems:

  • How much more

Common clue words for multiplication problems:

Common clue words for division problems:

Although clue words will vary a bit from problem to problem, you'll soon learn to recognize which words mean what in order to perform the correct operation.

Read the Problem Carefully

This, of course, means looking for clue words as outlined in the previous section. Once you’ve identified your clue words, highlight or underline them. This will let you know what kind of problem you’re dealing with. Then do the following:

  • Ask yourself if you've seen a problem similar to this one. If so, what is similar about it?
  • What did you need to do in that instance?
  • What facts are you given about this problem?
  • What facts do you still need to find out about this problem?

Develop a Plan and Review Your Work

Based on what you discovered by reading the problem carefully and identifying similar problems you’ve encountered before, you can then:

  • Define your problem-solving strategy or strategies. This might mean identifying patterns, using known formulas, using sketches, and even guessing and checking.
  • If your strategy doesn't work, it may lead you to an ah-ha moment and to a strategy that does work.

If it seems like you’ve solved the problem, ask yourself the following:

  • Does your solution seem probable?
  • Does it answer the initial question?
  • Did you answer using the language in the question?
  • Did you answer using the same units?

If you feel confident that the answer is “yes” to all questions, consider your problem solved.

Tips and Hints

Some key questions to consider as you approach the problem may be:

  • What are the keywords in the problem?
  • Do I need a data visual, such as a diagram, list, table, chart, or graph?
  • Is there a formula or equation that I'll need? If so, which one?
  • Will I need to use a calculator? Is there a pattern I can use or follow?

Read the problem carefully, and decide on a method to solve the problem. Once you've finished working the problem, check your work and ensure that your answer makes sense and that you've used the same terms and or units in your answer.

  • Critical Thinking Definition, Skills, and Examples
  • Converting Cubic Meters to Liters
  • 2nd Grade Math Word Problems
  • The Horse Problem: A Math Challenge
  • 2020-21 Common Application Essay Option 4—Solving a Problem
  • How to Use Math Journals in Class
  • The Frayer Model for Math
  • Algorithms in Mathematics and Beyond
  • "Grandpa's Rubik's Cube"—Sample Common Application Essay, Option #4
  • Math Stumper: Use Two Squares to Make Separate Pens for Nine Pigs
  • Graphic Organizers in Math
  • College Interview Tips: "Tell Me About a Challenge You Overcame"
  • Christmas Word Problem Worksheets
  • Solving Problems Involving Distance, Rate, and Time
  • Innovative Ways to Teach Math
  • Study Tips for Math Homework and Math Tests

Over 5 Billion Problems Solved

Step-by-step examples.

  • Adding Using Long Addition
  • Long Subtraction
  • Long Multiplication
  • Long Division
  • Dividing Using Partial Quotients Division
  • Converting Regular to Scientific Notation
  • Arranging a List in Order
  • Expanded Notation
  • Prime or Composite
  • Comparing Expressions
  • Converting to a Percentage
  • Finding the Additive Inverse
  • Finding the Multiplicative Inverse
  • Reducing Fractions
  • Finding the Reciprocal
  • Converting to a Decimal
  • Converting to a Mixed Number
  • Adding Fractions
  • Subtracting Fractions
  • Multiplying Fractions
  • Dividing Fractions
  • Converting Ratios to Fractions
  • Converting Percents to Decimal
  • Converting Percents to Fractions
  • Converting the Percent Grade to Degree
  • Converting the Degree to Percent Grade
  • Finding the Area of a Rectangle
  • Finding the Perimeter of a Rectangle
  • Finding the Area of a Square
  • Finding the Perimeter of a Square
  • Finding the Area of a Circle
  • Finding the Circumference of a Circle
  • Finding the Area of a Triangle
  • Finding the Area of a Trapezoid
  • Finding the Volume of a Box
  • Finding the Volume of a Cylinder
  • Finding the Volume of a Cone
  • Finding the Volume of a Pyramid
  • Finding the Volume of a Sphere
  • Finding the Surface Area of a Box
  • Finding the Surface Area of a Cylinder
  • Finding the Surface Area of a Cone
  • Finding the Surface Area of a Pyramid
  • Converting to a Fraction
  • Simple Exponents
  • Prime Factorizations
  • Finding the Factors
  • Simplifying Fractions
  • Converting Grams to Kilograms
  • Converting Grams to Pounds
  • Converting Grams to Ounces
  • Converting Feet to Inches
  • Converting to Meters
  • Converting Feet to Miles
  • Converting Feet to Yards
  • Converting to Feet
  • Converting to Yards
  • Converting Miles to Feet
  • Converting Miles to Kilometers
  • Converting Miles to Yards
  • Converting Kilometers to Miles
  • Converting Kilometers to Meters
  • Converting Meters to Feet
  • Converting Meters to Inches
  • Converting Ounces to Grams
  • Converting Ounces to Pounds
  • Converting Ounces to Tons
  • Converting Pounds to Grams
  • Converting Pounds to Ounces
  • Converting Pounds to Tons
  • Converting Yards to Feet
  • Converting Yards to Millimeters
  • Converting Yards to Inches
  • Converting Yards to Miles
  • Converting Yards to Meters
  • Converting Fahrenheit to Celsius
  • Converting Celsius to Fahrenheit
  • Finding the Median
  • Finding the Mean (Arithmetic)
  • Finding the Mode
  • Finding the Minimum
  • Finding the Maximum
  • Finding the Lower or First Quartile
  • Finding the Upper or Third Quartile
  • Finding the Five Number Summary
  • Finding a Point's Quadrant
  • Finding the Midpoint of a Line Segment
  • Distance Formula
  • Arithmetic Operations
  • Combining Like Terms
  • Determining if the Expression is a Polynomial
  • Distributive Property
  • Simplifying
  • Multiplication
  • Polynomial Addition
  • Polynomial Subtraction
  • Polynomial Multiplication
  • Polynomial Division
  • Simplifying Expressions
  • Evaluate the Expression Using the Given Values
  • Multiplying Polynomials Using FOIL
  • Identifying Degree
  • Operations on Polynomials
  • Negative Exponents
  • Evaluating Radicals
  • Solving by Adding/Subtracting
  • Solving by Multiplying/Dividing
  • Solving Containing Decimals
  • Solving for a Variable
  • Solving Linear Equations
  • Solving Linear Inequalities
  • Finding the Quadratic Constant of Variation
  • Converting the Percent Grade to Slope
  • Converting the Slope to Percent Grade
  • Finding Equations Using Slope-Intercept
  • Finding the Slope
  • Finding the y Intercept
  • Calculating Slope and y-Intercept
  • Rewriting in Slope-Intercept Form
  • Finding Equations Using the Slope-Intercept Formula
  • Finding Equations Using Two Points
  • Finding a Perpendicular Line Containing a Given Point
  • Finding a Parallel Line Containing a Given Point
  • Finding a Parallel Line to the Given Line
  • Finding a Perpendicular Line to the Given Line
  • Finding Ordered Pair Solutions
  • Using a Table of Values to Graph an Equation
  • Finding the Equation Using Point-Slope Form
  • Finding the Surface Area of a Sphere
  • Solving by Graphing
  • Finding the LCM of a List of Expressions
  • Finding the LCD of a List of Expressions
  • Determining if the Number is a Perfect Square
  • Finding the Domain
  • Evaluating the Difference Quotient
  • Solving Using the Square Root Property
  • Determining if True
  • Finding the Holes in a Graph
  • Finding the Common Factors
  • Expand a Trinomial with the Trinomial Theorem
  • Finding the Start Point Given the Mid and End Points
  • Finding the End Point Given the Start and Mid Points
  • Finding the Slope and y-Intercept
  • Finding the Equation of the Parabola
  • Finding the Average Rate of Change
  • Finding the Slope of the Perpendicular Line to the Line Through the Two Points
  • Rewriting Using Negative Exponents
  • Synthetic Division
  • Maximum Number of Real Roots/Zeros
  • Finding All Possible Roots/Zeros (RRT)
  • Finding All Roots with Rational Root Test (RRT)
  • Finding the Remainder
  • Finding the Remainder Using Long Polynomial Division
  • Reordering the Polynomial in Ascending Order
  • Reordering the Polynomial in Descending Order
  • Finding the Leading Term
  • Finding the Leading Coefficient
  • Finding the Degree, Leading Term, and Leading Coefficient
  • Finding the GCF of a Polynomial
  • Factoring Out Greatest Common Factor (GCF)
  • Identifying the Common Factors
  • Cancelling the Common Factors
  • Finding the LCM using GCF
  • Finding the GCF
  • Factoring Trinomials
  • Trinomial Squares
  • Factoring Using Any Method
  • Factoring a Difference of Squares
  • Factoring a Sum of Cubes
  • Factoring by Grouping
  • Factoring a Difference of Cubes
  • Determine if an Expression is a Factor
  • Determining if Factor Using Synthetic Division
  • Find the Factors Using the Factor Theorem
  • Determining if Polynomial is Prime
  • Determining if the Polynomial is a Perfect Square
  • Expand using the Binomial Theorem
  • Factoring over the Complex Numbers
  • Finding All Integers k Such That the Trinomial Can Be Factored
  • Determining if Linear
  • Rewriting in Standard Form
  • Finding x and y Intercepts
  • Finding Equations Using the Point Slope Formula
  • Finding Equations Given Point and y-Intercept
  • Finding the Constant Using Slope
  • Finding the Slope of a Parallel Line
  • Finding the Slope of a Perpendicular Line
  • Simplifying Absolute Value Expressions
  • Solving with Absolute Values
  • Finding the Vertex for the Absolute Value
  • Rewriting the Absolute Value as Piecewise
  • Calculating the Square Root
  • Simplifying Radical Expressions
  • Rationalizing Radical Expressions
  • Solving Radical Equations
  • Rewriting with Rational (Fractional) Exponents
  • Finding the Square Root End Point
  • Operations on Rational Expressions
  • Determining if the Point is a Solution
  • Solving over the Interval
  • Finding the Range
  • Finding the Domain and Range
  • Solving Rational Equations
  • Adding Rational Expressions
  • Subtracting Rational Expressions
  • Multiplying Rational Expressions
  • Finding the Equation Given the Roots
  • Finding the Asymptotes
  • Finding the Constant of Variation
  • Finding the Equation of Variation
  • Substitution Method
  • Addition/Elimination Method
  • Graphing Method
  • Determining Parallel Lines
  • Determining Perpendicular Lines
  • Dependent, Independent, and Inconsistent Systems
  • Finding the Intersection (and)
  • Using the Simplex Method for Constraint Maximization
  • Using the Simplex Method for Constraint Minimization
  • Finding the Union (or)
  • Finding the Equation with Real Coefficients
  • Solving in Terms of the Arbitrary Variable
  • Finding a Direct Variation Equation
  • Finding the Slope for Every Equation
  • Finding a Variable Using the Constant of Variation
  • Quadratic Formula
  • Solving by Factoring
  • Solve by Completing the Square
  • Finding the Perfect Square Trinomial
  • Finding the Quadratic Equation Given the Solution Set
  • Finding a,b, and c in the Standard Form
  • Finding the Discriminant
  • Finding the Zeros by Completing the Square
  • Quadratic Inequalities
  • Rational Inequalities
  • Converting from Interval to Inequality
  • Converting to Interval Notation
  • Rewriting as a Single Interval
  • Determining if the Relation is a Function
  • Finding the Domain and Range of the Relation
  • Finding the Inverse of the Relation
  • Finding the Inverse
  • Determining if One Relation is the Inverse of Another
  • Determining if Surjective (Onto)
  • Determining if Bijective (One-to-One)
  • Determining if Injective (One to One)
  • Rewriting as an Equation
  • Rewriting as y=mx+b
  • Solving Function Systems
  • Find the Behavior (Leading Coefficient Test)
  • Determining Odd and Even Functions
  • Describing the Transformation
  • Finding the Symmetry
  • Arithmetic of Functions
  • Domain of Composite Functions
  • Finding Roots Using the Factor Theorem
  • Determine if Injective (One to One)
  • Determine if Surjective (Onto)
  • Finding the Vertex
  • Finding the Sum
  • Finding the Difference
  • Finding the Product
  • Finding the Quotient
  • Finding the Domain of the Sum of the Functions
  • Finding the Domain of the Difference of the Functions
  • Finding the Domain of the Product of the Functions
  • Finding the Domain of the Quotient of the Functions
  • Finding Roots (Zeros)
  • Identifying Zeros and Their Multiplicities
  • Finding the Bounds of the Zeros
  • Proving a Root is on the Interval
  • Finding Maximum Number of Real Roots
  • Function Composition
  • Rewriting as a Function
  • Determining if a Function is Rational
  • Determining if a Function is Proper or Improper
  • Maximum/Minimum of Quadratic Functions
  • Finding All Complex Number Solutions
  • Rationalizing with Complex Conjugates
  • Vector Arithmetic
  • Finding the Complex Conjugate
  • Finding the Magnitude of a Complex Number
  • Simplifying Logarithmic Expressions
  • Expanding Logarithmic Expressions
  • Evaluating Logarithms
  • Rewriting in Exponential Form
  • Converting to Logarithmic Form
  • Exponential Expressions
  • Exponential Equations
  • Converting to Radical Form
  • Find the Nth Root of the Given Value
  • Simplifying Matrices
  • Finding the Variables
  • Solving the System of Equations Using an Inverse Matrix
  • Finding the Dimensions
  • Multiplication by a Scalar
  • Subtraction
  • Finding the Determinant of the Resulting Matrix
  • Finding the Inverse of the Resulting Matrix
  • Finding the Identity Matrix
  • Finding the Scalar multiplied by the Identity Matrix
  • Simplifying the Matrix Operation
  • Finding the Determinant of a 2x2 Matrix
  • Finding the Determinant of a 3x3 Matrix
  • Finding the Determinant of Large Matrices
  • Inverse of a 2x2 Matrix
  • Inverse of an nxn Matrix
  • Finding Reduced Row Echelon Form
  • Finding the Transpose
  • Finding the Adjoint
  • Finding the Cofactor Matrix
  • Finding the Pivot Positions and Pivot Columns
  • Finding the Basis and Dimension for the Row Space of the Matrix
  • Finding the Basis and Dimension for the Column Space of the Matrix
  • Finding the LU Decomposition of a Matrix
  • Identifying Conic Sections
  • Identifying Circles
  • Finding a Circle Using the Center and Another Point
  • Finding a Circle by the Diameter End Points
  • Finding the Parabola Equation Using the Vertex and Another Point
  • Finding the Properties of the Parabola
  • Finding the Vertex Form of the Parabola
  • Finding the Vertex Form of an Ellipse
  • Finding the Vertex Form of a Circle
  • Finding the Vertex Form of a Hyperbola
  • Finding the Standard Form of a Parabola
  • Finding the Expanded Form of an Ellipse
  • Finding the Expanded Form of a Circle
  • Finding the Expanded Form of a Hyperbola
  • Vector Addition
  • Vector Subtraction
  • Vector Multiplication by a Scalar
  • Finding the Length
  • Finding the Position Vector
  • Determining Column Spaces
  • Finding an Orthonormal Basis by Gram-Schmidt Method
  • Rewrite the System as a Vector Equality
  • Finding the Rank
  • Finding the Nullity
  • Finding the Distance
  • Finding the Plane Parallel to a Line Given four 3d Points
  • Finding the Intersection of the Line Perpendicular to Plane 1 Through the Origin and Plane 2
  • Finding the Eigenvalues
  • Finding the Characteristic Equation
  • Finding the Eigenvectors/Eigenspace of a Matrix
  • Proving a Transformation is Linear
  • Finding the Kernel of a Transformation
  • Projecting Using a Transformation
  • Finding the Pre-Image
  • Finding the Intersection of Sets
  • Finding the Union of Number Sets
  • Determining if a Set is a Subset of Another Set
  • Determining if Two Sets are Mutually Exclusive
  • Finding the Set Complement of Two Sets
  • Finding the Power Set
  • Finding the Cardinality
  • Finding the Cartesian Product of Two Sets
  • Determining if a Set is a Proper Subset of Another Set
  • Finding the Function Rule
  • Finding the Square or Rectangle Area Given Four Points
  • Finding the Square or Rectangle Perimeter Given Four Points
  • Finding the Square or Rectangle Area Given Three Points
  • Finding the Square or Rectangle Perimeter Given Three Points
  • Finding the Equation of a Circle
  • Finding the Equation of a Hyperbola
  • Finding the Equation of an Ellipse
  • Partial Fraction Decomposition
  • Finding an Angle Using another Angle
  • Pythagorean Theorem
  • Finding the Sine
  • Finding the Cosine
  • Finding the Tangent
  • Finding the Trig Value
  • Converting to Degrees, Minutes, and Seconds
  • Finding Trig Functions Using Identities
  • Finding Trig Functions Using the Right Triangle
  • Converting Radians to Degrees
  • Converting Degrees to Radians
  • Finding a Reference Angle
  • Finding a Supplement
  • Finding a Complement
  • Converting RPM to Radians per Second
  • Finding the Quadrant of the Angle
  • Graphing Sine & Cosine Functions
  • Graphing Other Trigonometric Functions
  • Amplitude, Period, and Phase Shift
  • Finding the Other Trig Values in a Quadrant
  • Finding the Exact Value
  • Finding the Value Using the Unit Circle
  • Expanding Trigonometric Expressions
  • Expanding Using Double-Angle Formulas
  • Expanding Using Triple-Angle Formulas
  • Expanding Using Sum/Difference Formulas
  • Simplify Using Pythagorean Identities
  • Simplify by Converting to Sine/Cosine
  • Inverting Trigonometric Expressions
  • Finding the Trig Value of an Angle
  • Expanding Using De Moivre's Theorem
  • Verifying Trigonometric Identities
  • Using Fundamental Identities
  • Solving Standard Angle Equations
  • Complex Trigonometric Equations
  • Solving the Triangle
  • Find the Roots of a Complex Number
  • Complex Operations
  • Trigonometric Form of a Complex Number
  • Converting to Polar Coordinates
  • Identifying and Graphing Circles
  • Identifying and Graphing Limacons
  • Identifying and Graphing Roses
  • Identifying and Graphing Cardioids
  • Difference Quotient
  • Finding Upper and Lower Bounds
  • Evaluating Functions
  • Right Triangle Trigonometry
  • Arithmetic Sequences/Progressions
  • Geometric Sequences/Progressions
  • Finding the Next Term of the Sequence
  • Finding the nth Term Given a List of Numbers
  • Finding the nth Term
  • Finding the Sum of First n Terms
  • Expanding Series Notation
  • Finding the Sum of the Series
  • Finding the Sum of the Infinite Geometric Series
  • Converting to Rectangular Coordinates
  • Evaluating Limits Approaching a Value
  • Evaluating Limits Approaching Infinity
  • Finding the Angle Between the Vectors
  • Determining if the Point is on the Graph
  • Finding the Antiderivative
  • Checking if Continuous Over an Interval
  • Determining if a Series is Divergent
  • Using the Integral Test for Convergence
  • Determining if an Infinite Series is Convergent Using Cauchy's Root Test
  • Using the Limit Definition to Find the Tangent Line at a Given Point
  • Finding the nth Derivative
  • Finding the Derivative Using Product Rule
  • Finding the Derivative Using Quotient Rule
  • Finding the Derivative Using Chain Rule
  • Use Logarithmic Differentiation to Find the Derivative
  • Finding the Derivative
  • Implicit Differentiation
  • Using the Limit Definition to Find the Derivative
  • Evaluating the Derivative
  • Finding Where dy/dx is Equal to Zero
  • Finding the Linearization
  • Finding a Tangent Line to a Curve
  • Checking if Differentiable Over an Interval
  • The Mean Value Theorem
  • Finding the Inflection Points
  • Find Where the Function Increases/Decreases
  • Finding the Critical Points of a Function
  • Find Horizontal Tangent Line
  • Evaluating Limits with L'Hospital Rule
  • Local Maxima and Minima
  • Finding the Absolute Maximum and Minimum on the Given Interval
  • Finding Concavity using the Second Derivative
  • Finding the Derivative using the Fundamental Theorem of Calculus
  • Find the Turning Points
  • Finding the Integral
  • Evaluating Definite Integrals
  • Evaluating Indefinite Integrals
  • Substitution Rule
  • Finding the Arc Length
  • Finding the Average Value of the Derivative
  • Finding the Average Value of the Equation
  • Finding Area Between Curves
  • Finding the Volume
  • Finding the Average Value of the Function
  • Finding the Root Mean Square
  • Integration by Parts
  • Trigonometric Integrals
  • Trigonometric Substitution
  • Integration by Partial Fractions
  • Eliminating the Parameter from the Function
  • Verify the Solution of a Differential Equation
  • Solve for a Constant Given an Initial Condition
  • Find an Exact Solution to the Differential Equation
  • Verify the Existence and Uniqueness of Solutions for the Differential Equation
  • Solve for a Constant in a Given Solution
  • Solve the Bernoulli Differential Equation
  • Solve the Linear Differential Equation
  • Solve the Homogeneous Differential Equation
  • Solve the Exact Differential Equation
  • Approximate a Differential Equation Using Euler's Method
  • Finding Elasticity of Demand
  • Finding the Consumer Surplus
  • Finding the Producer Surplus
  • Finding the Gini Index
  • Finding the Geometric Mean
  • Finding the Quadratic Mean (RMS)
  • Find the Mean Absolute Deviation
  • Finding the Mid-Range (Mid-Extreme)
  • Finding the Interquartile Range (H-Spread)
  • Finding the Midhinge
  • Finding the Standard Deviation
  • Finding the Skew of a Data Set
  • Finding the Range of a Data Set
  • Finding the Variance of a Data Set
  • Finding the Class Width
  • Solving Combinations
  • Solving Permutations
  • Finding the Probability of Both Independent Events
  • Finding the Probability of Both Dependent Events
  • Finding the Probability for Both Mutually Exclusive Events
  • Finding the Conditional Probability for Independent Events
  • Determining if Given Events are Independent/Dependent Events
  • Determining if Given Events are Mutually Exclusive Events
  • Finding the Probability of Both not Mutually Exclusive Events
  • Finding the Conditional Probability Using Bayes' Theorem
  • Finding the Probability of the Complement
  • Describing Distribution's Two Properties
  • Finding the Expectation
  • Finding the Variance
  • Finding the Probability of a Binomial Distribution
  • Finding the Probability of the Binomial Event
  • Finding the Mean
  • Finding the Relative Frequency
  • Finding the Percentage Frequency
  • Finding the Upper and Lower Class Limits of the Frequency Table
  • Finding the Class Boundaries of the Frequency Table
  • Finding the Class Width of the Frequency Table
  • Finding the Midpoints of the Frequency Table
  • Finding the Mean of the Frequency Table
  • Finding the Variance of the Frequency Table
  • Finding the Standard Deviation of the Frequency Table
  • Finding the Cumulative Frequency of the Frequency Table
  • Finding the Relative Frequency of the Frequency Table
  • Finding the Median Class Interval of the Frequency Table
  • Finding the Modal Class of the Frequency Table
  • Creating a Grouped Frequency Distribution Table
  • Finding the Data Range
  • Finding a z-Score for a Normal Distribution
  • Approximating Using Normal Distribution
  • Finding the Probability of the z-Score Range
  • Finding the Probability of a Range in a Nonstandard Normal Distribution
  • Finding the z-Score Using the Table
  • Finding the z-Score
  • Testing the Claim
  • Finding a t-Value for a Confidence Level
  • Finding the Critical t-Value
  • Setting the Alternative Hypothesis
  • Setting the Null Hypothesis
  • Determining if Left, Right, or Two Tailed Test Given the Null Hypothesis
  • Determining if Left, Right, or Two Tailed Test Given the Alternative Hypothesis
  • Finding Standard Error
  • Finding the Linear Correlation Coefficient
  • Determining if the Correlation is Significant
  • Finding a Regression Line
  • Cramer's Rule
  • Solving using Matrices by Elimination
  • Solving using Matrices by Row Operations
  • Solving using an Augmented Matrix
  • Finding the Simple Interest Received
  • Finding the Present Value with Compound Interest
  • Finding the Simple Interest Future Value
  • Finding the Future Value with Continuous Interest
  • Finding the Norm in Real Vector Space
  • Finding the Direction Angle of the Vector
  • Finding the Cross Product of Vectors
  • Finding the Dot Product of Vectors
  • Determining if Vectors are Orthogonal
  • Finding the Distance Between the Vectors
  • Finding a Unit Vector in the Same Direction as the Given Vector
  • Finding the Angle Between Two Vectors Using the Cross Product
  • Finding the Angle Between Two Vectors Using the Dot Product
  • Finding the Projection of One Vector Onto another Vector
  • Matrices Addition
  • Matrices Subtraction
  • Matrices Multiplication
  • Finding the Trace
  • Finding the Basis
  • Matrix Dimension
  • Convert to a Linear System
  • Diagonalizing a Matrix
  • Determining the value of k for which the system has no solutions
  • Linear Independence of Real Vector Spaces
  • Finding the Null Space
  • Determining if the Vector is in the Span of the Set
  • Finding the Number of Protons
  • Finding the Number of Electrons
  • Finding the Number of Neutrons
  • Finding the Mass of a Single Atom
  • Finding the Electron Configuration
  • Finding the Atomic Mass
  • Finding the Atomic Number
  • Finding the Mass Percentages
  • Finding Oxidation Numbers
  • Balancing Chemical Equations
  • Balancing Burning Reactions
  • Finding the Density at STP
  • Determining if the Compound is Soluble in Water
  • Finding Mass
  • Finding Density
  • Finding Weight
  • Finding Force
  • Finding the Work Done
  • Finding Angular Velocity
  • Finding Centripetal Acceleration
  • Finding Final Velocity
  • Finding Average Acceleration
  • Finding Displacement
  • Finding Voltage Using the Ohm's Law
  • Finding Electrical Power
  • Finding Kinetic Energy
  • Finding Power
  • Finding Wavelength
  • Finding Frequency
  • Finding Pressure of the Gas

Popular Problems

  • Pre-Algebra
  • Trigonometry
  • Precalculus
  • Finite Math
  • Linear Algebra
  • Recent Popular Problems

Calculator Pages

Formula pages.

  • Algebra Formulas
  • Trigonometry Formulas
  • Geometric Formulas
  • Terms ( Premium )
  • DO NOT SELL MY INFO
  • Mathway © 2024

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

To get additional practice, check out the sample problems in each of the topic above. We provide full solutions with steps for all practice problems. There's no better way to find math help online than with Cymath, so also make sure you download our mobile app for and today! Learn more than what the answer is - with the math helper app, you'll learn the steps behind it too.

Even simple math problems become easier to solve when broken down into steps. From basic additions to calculus, the process of problem solving usually takes a lot of practice before answers could come easily. As problems become more complex, it becomes even more important to understand the step-by-step process by which we solve them. At Cymath, our goal is to take your understanding of math to a new level.

If you find Cymath useful, try today! It offers an ad-free experience and more detailed explanations. In short, goes into more depth than the standard version, giving students more resources to learn the step-by-step process of solving math problems.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

Khan Academy Blog

Unlocking the Power of Math Learning: Strategies and Tools for Success

posted on September 20, 2023

mathematics problem solving

Mathematics, the foundation of all sciences and technology, plays a fundamental role in our everyday lives. Yet many students find the subject challenging, causing them to shy away from it altogether. This reluctance is often due to a lack of confidence, a misunderstanding of unclear concepts, a move ahead to more advanced skills before they are ready, and ineffective learning methods. However, with the right approach, math learning can be both rewarding and empowering. This post will explore different approaches to learning math, strategies for success, and cutting-edge tools to help you achieve your goals.

Math Learning

Math learning can take many forms, including traditional classroom instruction, online courses, and self-directed learning. A multifaceted approach to math learning can improve understanding, engage students, and promote subject mastery. A 2014 study by the National Council of Teachers of Mathematics found that the use of multiple representations, such as visual aids, graphs, and real-world examples, supports the development of mathematical connections, reasoning, and problem-solving skills.

Moreover, the importance of math learning goes beyond solving equations and formulas. Advanced math skills are essential for success in many fields, including science, engineering, finance, health care, and technology. In fact, a report by Burning Glass Technologies found that 71% of high-salary, entry-level positions require advanced math skills.

Benefits of Math Learning

In today’s 21st-century world, having a broad knowledge base and strong reading and math skills is essential. Mathematical literacy plays a crucial role in this success. It empowers individuals to comprehend the world around them and make well-informed decisions based on data-driven understanding. More than just earning good grades in math, mathematical literacy is a vital life skill that can open doors to economic opportunities, improve financial management, and foster critical thinking. We’re not the only ones who say so:

  • Math learning enhances problem-solving skills, critical thinking, and logical reasoning abilities. (Source: National Council of Teachers of Mathematics )
  • It improves analytical skills that can be applied in various real-life situations, such as budgeting or analyzing data. (Source: Southern New Hampshire University )
  • Math learning promotes creativity and innovation by fostering a deep understanding of patterns and relationships. (Source: Purdue University )
  • It provides a strong foundation for careers in fields such as engineering, finance, computer science, and more. These careers generally correlate to high wages. (Source: U.S. Bureau of Labor Statistics )
  • Math skills are transferable and can be applied across different academic disciplines. (Source: Sydney School of Education and Social Work )

How to Know What Math You Need to Learn

Often students will find gaps in their math knowledge; this can occur at any age or skill level. As math learning is generally iterative, a solid foundation and understanding of the math skills that preceded current learning are key to success. The solution to these gaps is called mastery learning, the philosophy that underpins Khan Academy’s approach to education .

Mastery learning is an educational philosophy that emphasizes the importance of a student fully understanding a concept before moving on to the next one. Rather than rushing students through a curriculum, mastery learning asks educators to ensure that learners have “mastered” a topic or skill, showing a high level of proficiency and understanding, before progressing. This approach is rooted in the belief that all students can learn given the appropriate learning conditions and enough time, making it a markedly student-centered method. It promotes thoroughness over speed and encourages individualized learning paths, thus catering to the unique learning needs of each student.

Students will encounter mastery learning passively as they go through Khan Academy coursework, as our platform identifies gaps and systematically adjusts to support student learning outcomes. More details can be found in our Educators Hub . 

Try Our Free Confidence Boosters

How to learn math.

Learning at School

One of the most common methods of math instruction is classroom learning. In-class instruction provides students with real-time feedback, practical application, and a peer-learning environment. Teachers can personalize instruction by assessing students’ strengths and weaknesses, providing remediation when necessary, and offering advanced instruction to students who need it.

Learning at Home

Supplemental learning at home can complement traditional classroom instruction. For example, using online resources that provide additional practice opportunities, interactive games, and demonstrations, can help students consolidate learning outside of class. E-learning has become increasingly popular, with a wealth of online resources available to learners of all ages. The benefits of online learning include flexibility, customization, and the ability to work at one’s own pace. One excellent online learning platform is Khan Academy, which offers free video tutorials, interactive practice exercises, and a wealth of resources across a range of mathematical topics.

Moreover, parents can encourage and monitor progress, answer questions, and demonstrate practical applications of math in everyday life. For example, when at the grocery store, parents can ask their children to help calculate the price per ounce of two items to discover which one is the better deal. Cooking and baking with your children also provides a lot of opportunities to use math skills, like dividing a recipe in half or doubling the ingredients. 

Learning Math with the Help of Artificial Intelligence (AI) 

AI-powered tools are changing the way students learn math. Personalized feedback and adaptive practice help target individual needs. Virtual tutors offer real-time help with math concepts while AI algorithms identify areas for improvement. Custom math problems provide tailored practice, and natural language processing allows for instant question-and-answer sessions. 

Using Khan Academy’s AI Tutor, Khanmigo

Transform your child’s grasp of mathematics with Khanmigo , the 24/7 AI-powered tutor that specializes in tailored, one-on-one math instruction. Available at any time, Khanmigo provides personalized support that goes beyond mere answers to nurture genuine mathematical understanding and critical thinking. Khanmigo can track progress, identify strengths and weaknesses, and offer real-time feedback to help students stay on the right track. Within a secure and ethical AI framework, your child can tackle everything from basic arithmetic to complex calculus, all while you maintain oversight using robust parental controls.

Get Math Help with Khanmigo Right Now

You can learn anything .

Math learning is essential for success in the modern world, and with the right approach, it can also be enjoyable and rewarding. Learning math requires curiosity, diligence, and the ability to connect abstract concepts with real-world applications. Strategies for effective math learning include a multifaceted approach, including classroom instruction, online courses, homework, tutoring, and personalized AI support. 

So, don’t let math anxiety hold you back; take advantage of available resources and technology to enhance your knowledge base and enjoy the benefits of math learning.

National Council of Teachers of Mathematics, “Principles to Actions: Ensuring Mathematical Success for All” , April 2014

Project Lead The Way Research Report, “The Power of Transportable Skills: Assessing the Demand and Value of the Skills of the Future” , 2020

Page. M, “Why Develop Quantitative and Qualitative Data Analysis Skills?” , 2016

Mann. EL, Creativity: The Essence of Mathematics, Journal for the Education of the Gifted. Vol. 30, No. 2, 2006, pp. 236–260, http://www.prufrock.com ’

Nakakoji Y, Wilson R.” Interdisciplinary Learning in Mathematics and Science: Transfer of Learning for 21st Century Problem Solving at University ”. J Intell. 2020 Sep 1;8(3):32. doi: 10.3390/jintelligence8030032. PMID: 32882908; PMCID: PMC7555771.

Get Khanmigo

The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo. 

For learners     For teachers     For parents

mathematics problem solving

Mathematical Problem Solving

Current Themes, Trends, and Research

  • © 2019
  • Peter Liljedahl 0 ,
  • Manuel Santos-Trigo 1

Faculty of Education, Simon Fraser University, Burnaby, Canada

You can also search for this editor in PubMed   Google Scholar

Department of Mathematics Education, Cinvestav-Instituto Politecnico Nacional, Mexico City, Mexico

  • Brings together some of the latest research on problem solving
  • Offers international perspectives on current themes, trends, and research on problem solving
  • Presents multiple frameworks and views on problem solving

Part of the book series: ICME-13 Monographs (ICME13Mo)

27k Accesses

66 Citations

2 Altmetric

This is a preview of subscription content, log in via an institution to check access.

Access this book

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book contributes to the field of mathematical problem solving by exploring current themes, trends and research perspectives. It does so by addressing five broad and related dimensions: problem solving heuristics, problem solving and technology, inquiry and problem posing in mathematics education, assessment of and through problem solving, and the problem solving environment.

Mathematical problem solving has long been recognized as an important aspect of mathematics, teaching mathematics, and learning mathematics. It has influenced mathematics curricula around the world, with calls for the teaching of problem solving as well as the teaching of mathematics through problem solving. And as such, it has been of interest to mathematics education researchers for as long as the field has existed. Research in this area has generally aimed at understanding and relating the processes involved in solving problems to students’ development of mathematical knowledge and problem solving skills. The accumulated knowledge and field developments have included conceptual frameworks for characterizing learners’ success in problem solving activities, cognitive, metacognitive, social and affective analysis, curriculum proposals, and ways to promote problem solving approaches. 

Similar content being viewed by others

mathematics problem solving

Can Mathematical Problem Solving Be Taught? Preliminary Answers from 30 Years of Research

mathematics problem solving

Reflections on Problem-Solving

mathematics problem solving

Problem solving in mathematics education: tracing its foundations and current research-practice trends

  • Mathematical problem solving
  • Problem solving heuristics
  • Problem posing in mathematics education
  • Problem solving environment
  • Future-oriented Thinking in Mathematical Problem Solving
  • Mathematical problem solving with technology
  • Spreadsheet affordances in solving complex word problems
  • Didactic analysis by means of problem posing
  • Mathematical problem solving competencies
  • Activating Problem Solving in the Classroom
  • Creating and sustaining online problem-solving forums
  • Methods in Evaluating Metacognitive Strategies

Table of contents (15 chapters)

Front matter, problem solving heuristics, “looking back” to solve differently: familiarity, fluency, and flexibility.

  • Hartono Tjoe

Future-Oriented Thinking and Activity in Mathematical Problem Solving

  • Wes Maciejewski

Problem Solving and Technology

A model of mathematical problem solving with technology: the case of marco solving-and-expressing two geometry problems.

  • Susana Carreira, Hélia Jacinto

Mathematical Problem Solving and the Use of Digital Technologies

Manuel Santos-Trigo

The Spreadsheet Affordances in Solving Complex Word Problems

  • Nélia Amado, Susana Carreira, Sandra Nobre

Inquiry and Problem Posing in Mathematics Education

Is an inquiry-based approach possible at the elementary school.

  • Magali Hersant, Christine Choquet

How to Stimulate In-Service Teachers’ Didactic Analysis Competence by Means of Problem Posing

  • Uldarico Malaspina, Carlos Torres, Norma Rubio

Assessment of and Through Problem Solving

The impact of various methods in evaluating metacognitive strategies in mathematical problem solving.

  • Mei Yoke Loh, Ngan Hoe Lee

Assessing Inquiry-Based Mathematics Education with Both a Summative and Formative Purpose

  • Maud Chanudet

Beyond the Standardized Assessment of Mathematical Problem Solving Competencies: From Products to Processes

  • Pietro Di Martino, Giulia Signorini

Toward Designing and Developing Likert Items to Assess Mathematical Problem Solving

  • James A. Mendoza Álvarez, Kathryn Rhoads, R. Cavender Campbell

The Problem Solving Environment

Creating and sustaining online problem solving forums: two perspectives.

  • Boris Koichu, Nelly Keller

Conditions for Supporting Problem Solving: Vertical Non-permanent Surfaces

Peter Liljedahl

The ARPA Experience in Chile: Problem Solving for Teachers’ Professional Development

  • Patricio Felmer, Josefa Perdomo-Díaz, Cristián Reyes

“The volume will be a useful addition to the libraries of education researchers and to mathematics teacher educators who are charged with supporting preservice or inservice teachers’ development of capacities to incorporate problem solving into their instruction. … this volume offer interesting insights into the phenomenon of problem solving and the technological tools and learning environments that support students to engage in problem solving.” (Duane Gaysay, MAA Reviews, August 16, 2020)

Editors and Affiliations

Bibliographic information.

Book Title : Mathematical Problem Solving

Book Subtitle : Current Themes, Trends, and Research

Editors : Peter Liljedahl, Manuel Santos-Trigo

Series Title : ICME-13 Monographs

DOI : https://doi.org/10.1007/978-3-030-10472-6

Publisher : Springer Cham

eBook Packages : Education , Education (R0)

Copyright Information : Springer Nature Switzerland AG 2019

Hardcover ISBN : 978-3-030-10471-9 Published: 21 February 2019

eBook ISBN : 978-3-030-10472-6 Published: 12 February 2019

Series ISSN : 2520-8322

Series E-ISSN : 2520-8330

Edition Number : 1

Number of Pages : XI, 362

Number of Illustrations : 30 b/w illustrations, 82 illustrations in colour

Topics : Mathematics Education , Teaching and Teacher Education , Study and Learning Skills , International and Comparative Education

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Logo for FHSU Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Teaching Mathematics Through Problem Solving

Janet Stramel

Problem Solving

In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)

What is a problem  in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.

According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems  includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.

There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.

Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.

Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.

Teaching through problem solving  focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.

Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):

  • The problem has important, useful mathematics embedded in it.
  • The problem requires high-level thinking and problem solving.
  • The problem contributes to the conceptual development of students.
  • The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
  • The problem can be approached by students in multiple ways using different solution strategies.
  • The problem has various solutions or allows different decisions or positions to be taken and defended.
  • The problem encourages student engagement and discourse.
  • The problem connects to other important mathematical ideas.
  • The problem promotes the skillful use of mathematics.
  • The problem provides an opportunity to practice important skills.

Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.

Key features of a good mathematics problem includes:

  • It must begin where the students are mathematically.
  • The feature of the problem must be the mathematics that students are to learn.
  • It must require justifications and explanations for both answers and methods of solving.

Needlepoint of cats

Problem solving is not a  neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.

Back of a needlepoint

But look at the b ack.

It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.

When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!

Mathematics Tasks and Activities that Promote Teaching through Problem Solving

Teacher teaching a math lesson

Choosing the Right Task

Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:

  • Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
  • What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
  • Can the activity accomplish your learning objective/goals?

mathematics problem solving

Low Floor High Ceiling Tasks

By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].

The strengths of using Low Floor High Ceiling Tasks:

  • Allows students to show what they can do, not what they can’t.
  • Provides differentiation to all students.
  • Promotes a positive classroom environment.
  • Advances a growth mindset in students
  • Aligns with the Standards for Mathematical Practice

Examples of some Low Floor High Ceiling Tasks can be found at the following sites:

  • YouCubed – under grades choose Low Floor High Ceiling
  • NRICH Creating a Low Threshold High Ceiling Classroom
  • Inside Mathematics Problems of the Month

Math in 3-Acts

Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:

Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.

In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.

Act Three is the “reveal.” Students share their thinking as well as their solutions.

“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:

  • Dan Meyer’s Three-Act Math Tasks
  • Graham Fletcher3-Act Tasks ]
  • Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete

Number Talks

Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:

  • The teacher presents a problem for students to solve mentally.
  • Provide adequate “ wait time .”
  • The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
  • For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
  • Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.

“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:

  • Inside Mathematics Number Talks
  • Number Talks Build Numerical Reasoning

Light bulb

Saying “This is Easy”

“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.

When the teacher says, “this is easy,” students may think,

  • “Everyone else understands and I don’t. I can’t do this!”
  • Students may just give up and surrender the mathematics to their classmates.
  • Students may shut down.

Instead, you and your students could say the following:

  • “I think I can do this.”
  • “I have an idea I want to try.”
  • “I’ve seen this kind of problem before.”

Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.

Using “Worksheets”

Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?

What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.

Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.

One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”

You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can

  • Provide your students a bridge between the concrete and abstract
  • Serve as models that support students’ thinking
  • Provide another representation
  • Support student engagement
  • Give students ownership of their own learning.

Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.

any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method

should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning

involves teaching a skill so that a student can later solve a story problem

when we teach students how to problem solve

teaching mathematics content through real contexts, problems, situations, and models

a mathematical activity where everyone in the group can begin and then work on at their own level of engagement

20 seconds to 2 minutes for students to make sense of questions

Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Mathematics Through Problem Solving

What Is A ‘Problem-Solving Approach’?

Squirrel on Bird Feeder

  • interactions between students/students and teacher/students (Van Zoest et al., 1994)
  • mathematical dialogue and consensus between students (Van Zoest et al., 1994)
  • teachers providing just enough information to establish background/intent of the problem, and students clarifing, interpreting, and attempting to construct one or more solution processes (Cobb et al., 1991)
  • teachers accepting right/wrong answers in a non-evaluative way (Cobb et al., 1991)
  • teachers guiding, coaching, asking insightful questions and sharing in the process of solving problems (Lester et al., 1994)
  • teachers knowing when it is appropriate to intervene, and when to step back and let the pupils make their own way (Lester et al., 1994)
  • A further characteristic is that a problem-solving approach can be used to encourage students to make generalisations about rules and concepts, a process which is central to mathematics (Evan and Lappin, 1994).

Schoenfeld (in Olkin and Schoenfeld, 1994, p.43) described the way in which the use of problem solving in his teaching has changed since the 1970s:

My early problem-solving courses focused on problems amenable to solutions by Polya-type heuristics: draw a diagram, examine special cases or analogies, specialize, generalize, and so on. Over the years the courses evolved to the point where they focused less on heuristics per se and more on introducing students to fundamental ideas: the importance of mathematical reasoning and proof…, for example, and of sustained mathematical investigations (where my problems served as starting points for serious explorations, rather than tasks to be completed).

Schoenfeld also suggested that a good problem should be one which can be extended to lead to mathematical explorations and generalisations. He described three characteristics of mathematical thinking:

  • valuing the processes of mathematization and abstraction and having the predilection to apply them
  • developing competence with the tools of the trade and using those tools in the service of the goal of understanding structure – mathematical sense-making (Schoenfeld, 1994, p.60).
  • As Cobb et al. (1991) suggested, the purpose for engaging in problem solving is not just to solve specific problems, but to ‘encourage the interiorization and reorganization of the involved schemes as a result of the activity’ (p.187). Not only does this approach develop students’ confidence in their own ability to think mathematically (Schifter and Fosnot, 1993), it is a vehicle for students to construct, evaluate and refine their own theories about mathematics and the theories of others (NCTM, 1989). Because it has become so predominant a requirement of teaching, it is important to consider the processes themselves in more detail.

The Role of Problem Solving in Teaching Mathematics as a Process

Problem solving is an important component of mathematics education because it is the single vehicle which seems to be able to achieve at school level all three of the values of mathematics listed at the outset of this article: functional, logical and aesthetic. Let us consider how problem solving is a useful medium for each of these.

It has already been pointed out that mathematics is an essential discipline because of its practical role to the individual and society. Through a problem-solving approach, this aspect of mathematics can be developed. Presenting a problem and developing the skills needed to solve that problem is more motivational than teaching the skills without a context. Such motivation gives problem solving special value as a vehicle for learning new concepts and skills or the reinforcement of skills already acquired (Stanic and Kilpatrick, 1989, NCTM, 1989). Approaching mathematics through problem solving can create a context which simulates real life and therefore justifies the mathematics rather than treating it as an end in itself. The National Council of Teachers of Mathematics (NCTM, 1980) recommended that problem solving be the focus of mathematics teaching because, they say, it encompasses skills and functions which are an important part of everyday life. Furthermore it can help people to adapt to changes and unexpected problems in their careers and other aspects of their lives. More recently the Council endorsed this recommendation (NCTM, 1989) with the statement that problem solving should underly all aspects of mathematics teaching in order to give students experience of the power of mathematics in the world around them. They see problem solving as a vehicle for students to construct, evaluate and refine their own theories about mathematics and the theories of others.

According to Resnick (1987) a problem-solving approach contributes to the practical use of mathematics by helping people to develop the facility to be adaptable when, for instance, technology breaks down. It can thus also help people to transfer into new work environments at this time when most are likely to be faced with several career changes during a working lifetime (NCTM, 1989). Resnick expressed the belief that ‘school should focus its efforts on preparing people to be good adaptive learners, so that they can perform effectively when situations are unpredictable and task demands change’ (p.18). Cockcroft (1982) also advocated problem solving as a means of developing mathematical thinking as a tool for daily living, saying that problem-solving ability lies ‘at the heart of mathematics’ (p.73) because it is the means by which mathematics can be applied to a variety of unfamiliar situations.

Problem solving is, however, more than a vehicle for teaching and reinforcing mathematical knowledge and helping to meet everyday challenges. It is also a skill which can enhance logical reasoning. Individuals can no longer function optimally in society by just knowing the rules to follow to obtain a correct answer. They also need to be able to decide through a process of logical deduction what algorithm, if any, a situation requires, and sometimes need to be able to develop their own rules in a situation where an algorithm cannot be directly applied. For these reasons problem solving can be developed as a valuable skill in itself, a way of thinking (NCTM, 1989), rather than just as the means to an end of finding the correct answer.

Many writers have emphasised the importance of problem solving as a means of developing the logical thinking aspect of mathematics. ‘If education fails to contribute to the development of the intelligence, it is obviously incomplete. Yet intelligence is essentially the ability to solve problems: everyday problems, personal problems … ‘(Polya, 1980, p.1). Modern definitions of intelligence (Gardner, 1985) talk about practical intelligence which enables ‘the individual to resolve genuine problems or difficulties that he or she encounters’ (p.60) and also encourages the individual to find or create problems ‘thereby laying the groundwork for the acquisition of new knowledge’ (p.85). As was pointed out earlier, standard mathematics, with the emphasis on the acquisition of knowledge, does not necessarily cater for these needs. Resnick (1987) described the discrepancies which exist between the algorithmic approaches taught in schools and the ‘invented’ strategies which most people use in the workforce in order to solve practical problems which do not always fit neatly into a taught algorithm. As she says, most people have developed ‘rules of thumb’ for calculating, for example, quantities, discounts or the amount of change they should give, and these rarely involve standard algorithms. Training in problem-solving techniques equips people more readily with the ability to adapt to such situations.

A further reason why a problem-solving approach is valuable is as an aesthetic form. Problem solving allows the student to experience a range of emotions associated with various stages in the solution process. Mathematicians who successfully solve problems say that the experience of having done so contributes to an appreciation for the ‘power and beauty of mathematics’ (NCTM, 1989, p.77), the “joy of banging your head against a mathematical wall, and then discovering that there might be ways of either going around or over that wall” (Olkin and Schoenfeld, 1994, p.43). They also speak of the willingness or even desire to engage with a task for a length of time which causes the task to cease being a ‘puzzle’ and allows it to become a problem. However, although it is this engagement which initially motivates the solver to pursue a problem, it is still necessary for certain techniques to be available for the involvement to continue successfully. Hence more needs to be understood about what these techniques are and how they can best be made available.

In the past decade it has been suggested that problem-solving techniques can be made available most effectively through making problem solving the focus of the mathematics curriculum. Although mathematical problems have traditionally been a part of the mathematics curriculum, it has been only comparatively recently that problem solving has come to be regarded as an important medium for teaching and learning mathematics (Stanic and Kilpatrick, 1989). In the past problem solving had a place in the mathematics classroom, but it was usually used in a token way as a starting point to obtain a single correct answer, usually by following a single ‘correct’ procedure. More recently, however, professional organisations such as the National Council of Teachers of Mathematics (NCTM, 1980 and 1989) have recommended that the mathematics curriculum should be organized around problem solving, focusing on:

  • developing skills and the ability to apply these skills to unfamiliar situations
  • gathering, organising, interpreting and communicating information
  • formulating key questions, analyzing and conceptualizing problems, defining problems and goals, discovering patterns and similarities, seeking out appropriate data, experimenting, transferring skills and strategies to new situations
  • developing curiosity, confidence and open-mindedness (NCTM, 1980, pp.2-3).

One of the aims of teaching through problem solving is to encourage students to refine and build onto their own processes over a period of time as their experiences allow them to discard some ideas and become aware of further possibilities (Carpenter, 1989). As well as developing knowledge, the students are also developing an understanding of when it is appropriate to use particular strategies. Through using this approach the emphasis is on making the students more responsible for their own learning rather than letting them feel that the algorithms they use are the inventions of some external and unknown ‘expert’. There is considerable importance placed on exploratory activities, observation and discovery, and trial and error. Students need to develop their own theories, test them, test the theories of others, discard them if they are not consistent, and try something else (NCTM, 1989). Students can become even more involved in problem solving by formulating and solving their own problems, or by rewriting problems in their own words in order to facilitate understanding. It is of particular importance to note that they are encouraged to discuss the processes which they are undertaking, in order to improve understanding, gain new insights into the problem and communicate their ideas (Thompson, 1985, Stacey and Groves, 1985).

It has been suggested in this chapter that there are many reasons why a problem-solving approach can contribute significantly to the outcomes of a mathematics education. Not only is it a vehicle for developing logical thinking, it can provide students with a context for learning mathematical knowledge, it can enhance transfer of skills to unfamiliar situations and it is an aesthetic form in itself. A problem-solving approach can provide a vehicle for students to construct their own ideas about mathematics and to take responsibility for their own learning. There is little doubt that the mathematics program can be enhanced by the establishment of an environment in which students are exposed to teaching via problem solving, as opposed to more traditional models of teaching about problem solving. The challenge for teachers, at all levels, is to develop the process of mathematical thinking alongside the knowledge and to seek opportunities to present even routine mathematics tasks in problem-solving contexts.

Example #1 – Mathematical Treasure Hunt

Objective – The objective of this activity is to encourage students to apply their problem-solving skills while having fun exploring mathematical concepts in a real-world context.

Materials Needed

Paper and pencils for each student Treasure map (could be a printed map or drawn by hand) Clues (math-related questions or puzzles) Optional: Small prizes or rewards for completing the treasure hunt Instructions:

Introduction (5 minutes)

Begin by introducing the activity to the students. Explain that they will be going on a mathematical treasure hunt where they will solve math problems to uncover hidden clues leading them to the treasure. Emphasize that this activity will require their problem-solving skills and teamwork.

Setting Up the Treasure Hunt (10 minutes)

Prepare a treasure map with different locations marked on it. These locations could be scattered around the classroom, school, or any other designated area. Hide clues at each location that will lead the students to the next destination.

Creating Clues (15 minutes)

Create math-related clues or puzzles that the students will need to solve to uncover the next location on the treasure map. The clues should be age-appropriate and aligned with the students’ math skills. For example:

Solve the following addition problem to reveal the next clue: 15 + 27 – 9 = ?

Count the number of chairs in the classroom and multiply by 3 to find the next location.

Find the area of the square-shaped rug in the library to unlock the next clue.

Starting the Treasure Hunt (5 minutes)

Divide the students into small groups or pairs, depending on the class size. Provide each group with a treasure map and the first clue. Explain the rules of the treasure hunt and encourage students to work together to solve the clues.

Exploring and Solving Clues (30 minutes)

Allow the students to begin the treasure hunt. As they solve each clue, they will uncover the location of the next clue on the treasure map. Encourage them to discuss and collaborate on the solutions to the math problems. Circulate around the room to provide assistance and guidance as needed.

Finding the Treasure (10 minutes)

Once the students have solved all the clues and reached the final location on the treasure map, they will discover the hidden treasure.

Congratulate them on their problem-solving skills and teamwork. You can optionally reward the students with small prizes or certificates for completing the treasure hunt successfully.

Reflection and Discussion (10 minutes)

After the treasure hunt, gather the students together for a brief reflection and discussion. Ask them about their favorite part of the activity, the challenges they faced, and what they learned from solving the math problems. Encourage them to share their strategies and insights with the class.

Extension Ideas

Create themed treasure hunts based on specific mathematical concepts such as geometry, fractions, or measurement.

Invite students to design their own treasure hunts for their classmates, incorporating math problems and creative clues.

Integrate technology by using QR codes or digital maps to lead students to each clue location.

By engaging students in a fun and interactive math problem-solving activity like the “Mathematical Treasure Hunt,” educators can foster a positive attitude towards mathematics while strengthening students’ critical thinking and collaboration skills.

Example #2 – Math Maze Adventure

Objective – The objective of this activity is to challenge students’ problem-solving abilities while navigating through a maze filled with math-related obstacles and puzzles.

Large maze layout (could be drawn on a poster board or printed) Dice Game tokens or markers for each student Math problem cards (with varying difficulty levels) Stopwatch or timer Optional: Prizes or rewards for completing the maze within a certain time limit

Instructions

Begin by introducing the “Math Maze Adventure” to the students. Explain that they will embark on a thrilling journey through a maze filled with mathematical challenges that they must overcome using their problem-solving skills.

Setting Up the Maze (10 minutes)

Create a large maze layout on a poster board or print one from a maze generator website. Designate a starting point and an endpoint within the maze. Place obstacles and challenges throughout the maze, such as math problems, riddles, or puzzles.

Preparing Math Problem Cards (15 minutes)

Create a set of math problem cards with varying difficulty levels. These problems could involve arithmetic operations, geometry concepts, fractions, or any other relevant math topics. Write each problem on a separate card and mix them up.

Starting the Adventure (5 minutes)

Divide the students into small groups or pairs, depending on the class size. Provide each group with a game token or marker to represent their position in the maze. Explain the rules of the game and how to navigate through the maze.

Navigating the Maze (30 minutes)

Start the timer and allow the students to begin their “Math Maze Adventure.” They will roll the dice to determine how many spaces they can move in the maze. When they land on a space with a math problem, they must draw a problem card and solve it correctly to proceed.

Solving Math Problems (30 minutes)

As students encounter math problems in the maze, they will work together to solve them. Encourage them to discuss strategies, share ideas, and check each other’s work. If they solve the problem correctly, they can continue moving through the maze. If not, they must stay in place until they solve it.

Reaching the Endpoint (10 minutes)

The goal of the “Math Maze Adventure” is to reach the endpoint of the maze within a certain time limit. Students must use their problem-solving skills and teamwork to overcome obstacles and challenges along the way. If they reach the endpoint before time runs out, they win the game!

After completing the maze, gather the students together for a reflection and discussion. Ask them about their experience navigating through the maze, the math problems they encountered, and the strategies they used to solve them. Encourage them to share their insights and lessons learned.

Create multiple versions of the maze with different layouts and levels of difficulty to provide ongoing challenges for students.

Integrate storytelling elements into the maze adventure, with each space representing a different part of the story that unfolds as students progress.

Incorporate technology by using a digital maze app or online platform to create and navigate through virtual mazes with math challenges.

The “Math Maze Adventure” offers an exciting and interactive way for students to practice their problem-solving skills while embarking on a thrilling journey through a maze filled with mathematical challenges. Through teamwork, critical thinking, and perseverance, students will navigate their way to success!

Carpenter, T. P. (1989). ‘Teaching as problem solving’. In R.I.Charles and E.A. Silver (Eds), The Teaching and Assessing of Mathematical Problem Solving, (pp.187-202). USA: National Council of Teachers of Mathematics.

Clarke, D. and McDonough, A. (1989). ‘The problems of the problem solving classroom’, The Australian Mathematics Teacher, 45, 3, 20-24.

Cobb, P., Wood, T. and Yackel, E. (1991). ‘A constructivist approach to second grade mathematics’. In von Glaserfield, E. (Ed.), Radical Constructivism in Mathematics Education, pp. 157-176. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Cockcroft, W.H. (Ed.) (1982). Mathematics Counts. Report of the Committee of Inquiry into the Teaching of Mathematics in Schools, London: Her Majesty’s Stationery Office.

Evan, R. and Lappin, G. (1994). ‘Constructing meaningful understanding of mathematics content’, in Aichele, D. and Coxford, A. (Eds.) Professional Development for Teachers of Mathematics , pp. 128-143. Reston, Virginia: NCTM.

Gardner, Howard (1985). Frames of Mind. N.Y: Basic Books.

Lester, F.K.Jr., Masingila, J.O., Mau, S.T., Lambdin, D.V., dos Santon, V.M. and Raymond, A.M. (1994). ‘Learning how to teach via problem solving’. in Aichele, D. and Coxford, A. (Eds.) Professional Development for Teachers of Mathematics , pp. 152-166. Reston, Virginia: NCTM.

National Council of Teachers of Mathematics (NCTM) (1980). An Agenda for Action: Recommendations for School Mathematics of the 1980s, Reston, Virginia: NCTM.

National Council of Teachers of Mathematics (NCTM) (1989). Curriculum and Evaluation Standards for School Mathematics, Reston, Virginia: NCTM.

Olkin, I. & Schoenfeld, A. (1994). A discussion of Bruce Reznick’s chapter. In A. Schoenfeld (Ed.). Mathematical Thinking and Problem Solving. (pp. 39-51). Hillsdale, NJ: Lawrence Erlbaum Associates.

Polya, G. (1980). ‘On solving mathematical problems in high school’. In S. Krulik (Ed). Problem Solving in School Mathematics, (pp.1-2). Reston, Virginia: NCTM.

Resnick, L. B. (1987). ‘Learning in school and out’, Educational Researcher, 16, 13-20..

Romberg, T. (1994). Classroom instruction that fosters mathematical thinking and problem solving: connections between theory and practice. In A. Schoenfeld (Ed.). Mathematical Thinking and Problem Solving. (pp. 287-304). Hillsdale, NJ: Lawrence Erlbaum Associates.

Schifter, D. and Fosnot, C. (1993). Reconstructing Mathematics Education. NY: Teachers College Press.

Schoenfeld, A. (1994). Reflections on doing and teaching mathematics. In A. Schoenfeld (Ed.). Mathematical Thinking and Problem Solving. (pp. 53-69). Hillsdale, NJ: Lawrence Erlbaum Associates.

Stacey, K. and Groves, S. (1985). Strategies for Problem Solving, Melbourne, Victoria: VICTRACC.

Stanic, G. and Kilpatrick, J. (1989). ‘Historical perspectives on problem solving in the mathematics curriculum’. In R.I. Charles and E.A. Silver (Eds), The Teaching and Assessing of Mathematical Problem Solving, (pp.1-22). USA: National Council of Teachers of Mathematics.

Swafford, J.O. (1995). ‘Teacher preparation’. in Carl, I.M. (Ed.) Prospects for School Mathematics , pp. 157-174. Reston, Virginia: NCTM.

Thompson, P. W. (1985). ‘Experience, problem solving, and learning mathematics: considerations in developing mathematics curricula’. In E.A. Silver (Ed.), Teaching and Learning Mathematical Problem Solving: Multiple Research Perspectives, (pp.189-236). Hillsdale, N.J: Lawrence Erlbaum.

Van Zoest, L., Jones, G. and Thornton, C. (1994). ‘Beliefs about mathematics teaching held by pre-service teachers involved in a first grade mentorship program’. Mathematics Education Research Journal. 6(1): 37-55.

Related Article on Teaching Values  |  Other Articles

  • PRINT TO PLAY
  • DIGITAL GAMES

mathematics problem solving

Problem-Solving Strategies

October 16, 2019

There are many different ways to solve a math problem, and equipping students with problem-solving strategies is just as important as teaching computation and algorithms. Problem-solving strategies help students visualize the problem or present the given information in a way that can lead them to the solution. Solving word problems using strategies works great as a number talks activity and helps to revise many skills.

Problem-solving strategies

1. create a diagram/picture, 2. guess and check., 3. make a table or a list., 4. logical reasoning., 5. find a pattern, 6. work backward, 1. create a diagram/draw a picture.

Creating a diagram helps students visualize the problem and reach the solution. A diagram can be a picture with labels, or a representation of the problem with objects that can be manipulated. Role-playing and acting out the problem like a story can help get to the solution.

Alice spent 3/4 of her babysitting money on comic books. She is left with $6. How much money did she make from babysitting?

mathematics problem solving

2. Guess and check

Teach students the same strategy research mathematicians use.

With this strategy, students solve problems by making a reasonable guess depending on the information given. Then they check to see if the answer is correct and they improve it accordingly.  By repeating this process, a student can arrive at a correct answer that has been checked. It is recommended that the students keep a record of their guesses by making a chart, a table or a list. This is a flexible strategy that works for many types of problems. When students are stuck, guessing and checking helps them start and explore the problem. However, there is a trap. Exactly because it is such a simple strategy to use, some students find it difficult to consider other strategies. As problems get more complicated, other strategies become more important and more effective.

Find two numbers that have sum 11 and product 24.

Try/guess  5 and 6  the product is 30 too high

  adjust  to 4 and 7 with product 28 still high

  adjust  again 3 and 8 product 24

3. Make a table or a list

Carefully organize the information on a table or list according to the problem information. It might be a table of numbers, a table with ticks and crosses to solve a logic problem or a list of possible answers. Seeing the given information sorted out on a table or a list will help find patterns and lead to the correct solution.

To make sure you are listing all the information correctly read the problem carefully.

Find the common factors of 24, 30 and 18

mathematics problem solving

Logical reasoning is the process of using logical, systemic steps to arrive at a conclusion based on given facts and mathematic principles. Read and understand the problem. Then find the information that helps you start solving the problem. Continue with each piece of information and write possible answers.

Thomas, Helen, Bill, and Mary have cats that are black, brown, white, or gray. The cats’ names are Buddy, Lucky, Fifi, and Moo. Buddy is brown. Thoma’s cat, Lucky, is not gray. Helen’s cat is white but is not named Moo. The gray cat belongs to Bill. Which cat belongs to each student, and what is its color?

A table or list is useful in solving logic problems.

Thomas Lucky Not gray, the cat is black
Helen Not Moo, not Buddy, not Lucky so Fifi White  
Bill Moo Gray  
Mary Buddy Brown

Since Lucky is not gray it can be black or brown. However, Buddy is brown so Lucky has to be black.

Buddy is brown so it cannot be Helen’s cat. Helen’s cat cannot be Moo, Buddy or Lucky, so it is Fifi.

Therefore, Moo is Bill’s cat and Buddy is Mary’s cat.

5. Find a pattern.

Finding a pattern is a strategy in which students look for patterns in the given information in order to solve the problem. When the problem consists of data like numbers or events that are repeated then it can be solved using the “find a pattern” problem-solving strategy. Data can be organized in a table or a list to reveal the pattern and help discover the “rule” of the pattern.

 The “rule” can then be used to find the answer to the question and complete the table/list.

Shannon’s Pizzeria made 5 pizzas on Sunday, 10 pizzas on Monday, 20 pizzas on Tuesday, and 40 pizzas on Wednesday. If this pattern continues, how many pizzas will the pizzeria make on Saturday?

Sunday 5
Monday 10
Tuesday 20
Wednesday 40
Thursday  
Friday  
Saturday  

6. Working backward

Problems that can be solved with this strategy are the ones that  list a series of events or a sequence of steps .

In this strategy, the students must start with the solution and work back to the beginning. Each operation must be reversed to get back to the beginning. So if working forwards requires addition, when students work backward they will need to subtract. And if they multiply working forwards, they must divide when working backward.

Mom bought a box of candy. Mary took 5 of them, Nick took 4 of them and 31 were given out on Halloween night. The next morning they found 8 pieces of candy in the box. How many candy pieces were in the box when mom bought it.

For this problem, we know that the final number of candy was 8, so if we work backward to “put back” the candy that was taken from the box we can reach the number of candy pieces that were in the box, to begin with.

The candy was taken away so we will normally subtract them. However, to get back to the original number of candy we need to work backward and do the opposite, which is to add them.

8 candy pieces were left + the 31 given out + plus the ones Mary took + the ones Nick took

8+31+5+4= 48   Answer: The box came with 48 pieces of candy.

Selecting the best strategy for a problem comes with practice and often problems will require the use of more than one strategies.

Print and digital activities

I have created a collection of print and digital activity cards and worksheets with word problems (print and google slides) to solve using the strategies above. The collection includes 70 problems (5 challenge ones) and their solution s and explanations.

sample below

mathematics problem solving

How to use the activity cards

Allow the students to use manipulatives to solve the problems. (counters, shapes, lego blocks, Cuisenaire blocks, base 10 blocks, clocks) They can use manipulatives to create a picture and visualize the problem. They can use counters for the guess and check strategy. Discuss which strategy/strategies are better for solving each problem. Discuss the different ways. Use the activities as warm-ups, number talks, initiate discussions, group work, challenge, escape rooms, and more.

Ask your students to write their own problems using the problems in this resource, and more, as examples. Start with a simple type. Students learn a lot when trying to compose a problem. They can share the problem with their partner or the whole class. Make a collection of problems to share with another class.

For the google slides the students can use text boxes to explain their thinking with words, add shapes and lines to create diagrams, and add (insert) tables and diagrams.

Many of the problems can be solved faster by using algebraic expressions. However, since I created this resource for grades 4 and up I chose to show simple conceptual ways of solving the problems using the strategies above. You can suggest different ways of solving the problems based on the grade level.

Find the free and premium versions of the resource below. The premium version includes 70 problems (challenge problems included) and their solutions

There are 2 versions of the resource

70 google slides with explanations + 70 printable task cards

70 google slides with explanations + 11 worksheets

You might also like

mathematics problem solving

Multiplying fractions/mixed numbers/simplifying

mathematics problem solving

Adding and subtracting fractions

mathematics problem solving

AM/PM, 24-hour clock, Elapsed Time – ideas, games, and activities

mathematics problem solving

Teaching area, ideas, games, print, and digital activities

mathematics problem solving

Multi-Digit Multiplication, Area model, Partial Products algorithm, Puzzles, Word problems

mathematics problem solving

Place Value – Representing and adding 2/3 digit numbers with manipulatives

mathematics problem solving

Multiplication Mission – arrays, properties, multiples, factors, division

mathematics problem solving

Fractions Games and activities – Equivalence, make 1, compare, add, subtract, like, unlike

mathematics problem solving

Diving into Division -Teaching division conceptually

mathematics problem solving

Expressions with arrays

mathematics problem solving

Decimals, Decimal fractions, Percentages – print and digital

mathematics problem solving

Solving Word Problems- Math talks-Strategies, Ideas and Activities-print and digital

Check out our best selling card games now available at amazon.com and amazon.ca.

mathematics problem solving

Chicken Escape

A multiplayer card game that makes mental math practice fun! Chicken Escape is a fast-paced multiplayer card game. While playing…

mathematics problem solving

Dragon Times – A math Adventure card game

Dragon Times is an educational fantasy card game that aims to motivate children to practice multiplication and division facts while…

Mathematicians Are Edging Close to Solving One of the World's 7 Hardest Math Problems

And there’s $1 million at stake.

opened safe deposit with glowing insides

  • In new research, mathematicians have narrowed down one of the biggest outstanding problems in math.
  • Huge breakthroughs in math and science are usually the work of many people over many years.
  • Seven math problems were given a $1 million bounty each in 2000, and just one has been solved so far.

The “Millennium Problems” are seven infamously intractable math problems laid out in the year 2000 by the prestigious Clay Institute, each with $1 million attached as payment for a solution. They span all areas of math , as the Clay Institute was founded in 1998 to push the entire field forward with financial support for researchers and important breakthroughs.

But the only solved Millennium Problem so far, the Poincare conjecture, illustrates one of the funny pitfalls inherent to offering a large cash prize for math. The winner, Grigori Perelman, refused the Clay prize as well as the prestigious Fields Medal. He withdrew from mathematics and public life in 2006, and even in 2010, he still insisted his contribution was the same as the mathematician whose work laid the foundation on which he built his proof, Richard Hamilton.

Math, all sciences, and arguably all human inquiries are filled with pairs or groups that circle the same finding at the same time until one officially makes the breakthrough. Think about Sir Isaac Newton and Gottfried Leibniz, whose back-and-forth about calculus led to the combined version of the field we still study today. Rosalind Franklin is now mentioned in the same breath as her fellow discoverers of DNA, James Watson and Francis Crick. Even the Bechdel Test for women in media is sometimes called the Bechdel-Wallace Test, because humans are almost always in collaboration.

That’s what makes this new paper so important. Two mathematicians—Larry Guth of the Massachusetts Institute of Technology (MIT) and James Maynard of the University of Oxford—collaborated on the new finding about how certain polynomials are formed and how they reach out into the number line. Maynard is just 37, and won the Fields Medal himself in 2022. Guth, a decade older, has won a number of important prizes with a little less name recognition.

The Riemann hypothesis is not directly related to prime numbers , but it has implications that ripple through number theory in different ways (including with prime numbers). Basically, it deals with where and how the graph of a certain function of complex numbers crosses back and forth across axes. The points where the function crosses an axis is called a “zero,” and the frequency with which those zeroes appear is called the zero density.

In the far reaches of the number line, prime numbers become less and less predictable (in the proverbial sense). They are not, so far, predictable in the literal sense—a fact that is an underpinning of modern encryption , where data is protected by enormous strings of integers made by multiplying enormous prime numbers together. The idea of a periodic table of primes, of any kind of template that could help mathematicians better understand where and how large primes cluster together or not, is a holy grail.

In the new paper, Maynard and Guth focus on a new limitation of Dirichlet polynomials. These are special series of complex numbers that many believe are of the same type as the function involved in the Riemann hypothesis involves. In the paper, they claim they’ve proven that these polynomials have a certain number of large values, or solutions , within a tighter range than before.

In other words, if we knew there might be an estimated three Dirichlet values between 50 and 100 before, now we may know that range to be between 60 and 90 instead. The eye exam just switched a blurry plate for a slightly less blurry one, but we still haven’t found the perfect prescription. “If one knows some more structure about the set of large values of a Dirichlet polynomial, then one can hope to have improved bound,” Maynard and Guth conclude.

No, this is not a final proof of the Riemann hypothesis. But no one is suggesting it is. In advanced math, narrowing things down is also vital. Indeed, even finding out that a promising idea turns out to be wrong can have a lot of value—as it has a number of times in the related Twin Primes Conjecture that still eludes mathematicians.

In a collaboration that has lasted 160 years and counting, mathematicians continue to take each step together and then, hopefully, compare notes.

Headshot of Caroline Delbert

Caroline Delbert is a writer, avid reader, and contributing editor at Pop Mech. She's also an enthusiast of just about everything. Her favorite topics include nuclear energy, cosmology, math of everyday things, and the philosophy of it all. 

preview for Popular Mechanics All Sections

.css-cuqpxl:before{padding-right:0.3125rem;content:'//';display:inline;} Math .css-xtujxj:before{padding-left:0.3125rem;content:'//';display:inline;}

stone maze with path to the centre

Billiards With Memory Creates Intricate Patterns

watch in the clouds

A Wonder Clock Has Rocked the Scientific World

portrait of french mathematician, pierre de fermat

Machines About to Tackle Fermat’s Last Theorem

numbers around a phantom face in black and blue

Can AI Help Solve Math’s Thorniest Mysteries?

the greek letter pi, the ratio of the circumference of a circle to its diameter, is drawn in chalk on a black chalkboard with a compass in honor

The History of Pi

leaves helix pattern

Experts Discovered the Secret Geometry of Life

water splash from sprinkler

Scientists Solved a 141-Year-Old Problem

assembling jigsaw puzzle pieces abstract background

The Perfect Table Size for Your Jigsaw Puzzle

text, letter

Breaking the 1880s Silk Dress Cryptogram

pierre de fermat, math equation

10 of the Hardest Math Problems Ever Solved

3 frogs riddle

Solution to Riddle of the Week #12: Licking Frogs

7 of the hardest problems in mathematics that have been solved

Mathematics is full of problems, some of which have been solved and others that haven’t. here, we focus on 7 of the hardest problems that have been solved..

Tejasri Gururaj

Tejasri Gururaj

7 of the hardest problems in mathematics that have been solved

What are the hardest problems in math that have already been solved?

intararit  

  • Some problems in mathematics have taken centuries to be solved, due to their complexity.
  • Although there are some complex math problems that still elude solutions, others have now been solved.
  • Here are 7 of the hardest math problems ever solved.

Some mathematical problems are challenging even for the most accomplished mathematicians.

From the Poincaré conjecture to Fermat’s last theorem , here we take a look at some of the most challenging math problems ever solved.

1. Poincaré conjecture

mathematics problem solving

Salix alba  

The Poincaré conjecture is a famous problem in topology, initially proposed by French mathematician and theoretical physicist Henri Poincaré in 1904. It asserts that every simply connected, closed 3-manifold is topologically homeomorphic (a function that is a one-to-one mapping between sets such that both the function and its inverse are continuous) to a 3-dimensional sphere. 

In simpler terms, the conjecture asserts that a particular group of three-dimensional shapes can be continuously transformed into a sphere without any gaps or holes.

The problem was solved by the reclusive Russian mathematician Grigori Perelman in 2003. He built upon the work of American mathematician Richard S. Hamilton’s program involving the Ricci flow.

What makes this achievement even more remarkable is that Perelman declined the prestigious Fields Medal and the Clay Millennium Prize reward that came with it. He chose to stay away from the spotlight and mathematical acclaim, but his proof withstood rigorous scrutiny from the mathematical community.

The resolution of the Poincaré conjecture confirmed the fundamental role of topology in understanding the shape and structure of spaces, impacting fields like geometry and manifold theory.

2. The prime number theorem 

mathematics problem solving

Britannica  

The prime number theorem long stood as one of the fundamental questions in number theory. At its core, this problem is concerned with unraveling the distribution of prime numbers. 

The question at hand revolves around the distribution pattern of these primes within the realm of natural numbers. Are there any discernible patterns governing the distribution of prime numbers, or do they appear to be entirely random? The theorem states that for large values of x, π(x) is approximately equal to x/ln(x).

The breakthrough in solving this theorem came in the late 19th century, thanks to the independent work of two mathematicians, Jacques Hadamard and Charles de la Vallée-Poussin. In 1896, both mathematicians presented their proofs of the theorem. 

Their work demonstrated that prime numbers exhibit a remarkable, asymptotic distribution pattern . Their solution produced the insight that, as one considers larger and larger numbers, the density of prime numbers diminishes. 

The theorem precisely characterized the rate of this decrease, showing that prime numbers become less frequent as we move along the number line. It’s as if they gradually thin out, although they never entirely vanish.

The prime number theorem was a turning point in the study of number theory . It provided profound insights into the distribution of prime numbers and put to rest the notion that there might exist a formula predicting each prime number. 

Instead, it proposed a probabilistic approach to understanding the distribution of prime numbers. The theorem’s significance extends into various mathematical fields, especially in cryptography, where the properties of prime numbers play a pivotal role in securing communications.

3. Fermat’s last theorem

mathematics problem solving

Charles Rex Arbogast/AP via NPR  

Fermat’s last theorem is one of the problems on this list many people are most likely to have heard of. The conjecture, proposed by French mathematician Pierre de Fermat in the 17th century, states that it’s impossible to find three positive integers, a, b, and c, that can satisfy the equation a n + b n = c n for any integer value of n greater than 2.

For instance, there are no whole number values of a, b, and c that can make 3 3 + 4 3 = 5 3 true.

This problem remained unsolved for centuries and became one of the most challenging problems in mathematics. It was made more enticing because Fermat apparently wrote a note in his copy of the  Arithmetica  by Diophantus of Alexandria, saying, “I have discovered a truly remarkable proof [of this theorem], but this margin is too small to contain it.”

Numerous mathematicians attempted to prove or disprove Fermat’s conjecture, but it wasn’t until 1994 that the breakthrough came.

The solution was achieved by British mathematician Andrew Wiles, who built upon the work of many other mathematicians who had contributed to the field of number theory. Wiles’ proof was extraordinarily complex and required intricate mathematical concepts and theorems, particularly those related to elliptic curves and modular forms.

Wiles’ remarkable proof of Fermat’s last theorem confirmed that the conjecture was indeed true. Having taken more than three centuries to be solved, it had a profound impact on the world of mathematics, demonstrating the power of advanced mathematical techniques in solving long-standing problems.

mathematics problem solving

Z. Ziegler, M. Ondrachek  

Before Wiles presented its proof, it was in the Guinness Book of World Records as the “most difficult mathematical problem,” in part because the theorem has seen the greatest number of unsuccessful proofs.

4. Classification of finite simple groups

mathematics problem solving

Jakob.scholbach/Pbroks13  

This one is a bit different from the others on the list. The classification of finite simple groups , also known as the “enormous theorem,” set out to classify all finite simple groups, which are the fundamental building blocks of group theory.

Finite simple groups are those groups that cannot be divided into smaller non-trivial normal subgroups. The goal was to understand and categorize all the different types of finite simple groups that exist.

The solution to this problem is not straightforward. The proof is a collaborative effort by hundreds of mathematicians covering tens of thousands of pages in hundreds of journal articles published between 1955 and 2004.

It is one of the most extensive mathematical proofs ever produced and marks a monumental achievement in group theory.

The proof outlines the structure of finite simple groups and demonstrates that they can be classified into several specific categories. This achievement paved the way for a deeper understanding of group theory and its applications in various mathematical fields. 

5. The four color theorem

mathematics problem solving

Inductiveload  

The four color theorem tackles an intriguing question related to topology and stands as one of the first significant theorems proved by a computer. 

It states that any map in a plane can be colored using four colors so that no two adjacent regions share the same color while using the fewest possible colors. Adjacent, in this context, means that two regions share a common boundary curve segment, not merely a corner where three or more regions meet.

The theorem doesn’t focus on the artistic aspect of map coloring but rather on the fundamental mathematical principles that underlie it.

The solution to this theorem arrived in 1976, thanks to the combined efforts of mathematicians Kenneth Appel and Wolfgang Haken. However, the proof was not widely accepted due to the infeasibility of checking it by hand.

Appel and Haken’s achievement confirmed that any map, regardless of its complexity, can be colored with just four colors such that no two neighboring regions share the same color. While the idea seems simple, proving it rigorously was complex and time-consuming.

To address any lingering skepticism about the Appel–Haken proof, a more accessible proof using similar principles and still utilizing computer assistance was presented in 1997 by Robertson, Sanders, Seymour, and Thomas. 

Additionally, in 2005, Georges Gonthier achieved a proof of the theorem using general-purpose theorem-proving software, reinforcing the credibility of the four color theorem.

This theorem is not actually used in map-making but has far-reaching implications in various fields, from graph theory to computer science, where it finds applications in scheduling, circuit design, and optimization problems.

6. Gödel’s incompleteness theorems

mathematics problem solving

Andrew Das Arulsamy/Research Gate  

Gödel’s incompleteness theorems , formulated by Austrian mathematician Kurt Gödel in the 20th century, delve into the mysteries of formal systems and their inherent limitations. 

In mathematics, a formal system has a structured and well-defined framework or language that comprises a set of symbols, rules, and axioms employed for representing and manipulating mathematical or logical expressions.

Gödel’s first incompleteness theorem explores a fundamental question: In any consistent formal system, are there true mathematical statements that are undecidable within that system? In other words, do statements exist that cannot be proven as either true or false using the rules and axioms of that system?

The second incompleteness theorem takes this further: Can any consistent formal system prove its own consistency?

Gödel not only posed these questions but also provided the answers. He established, through rigorous mathematical proofs , that there exist true statements within formal systems that cannot be proven within those very systems.

In essence, the first theorem asserts that there are statements that cannot be proven as either true or false using the rules and axioms of a system. The second theorem demonstrates that no consistent formal system can prove its own consistency.

Gödel’s theorems introduced a profound paradox within the realm of mathematical logic: There are truths that exist beyond the reach of formal proofs, and there are limits to what can be achieved through mathematical systems alone.

Gödel’s contributions to mathematical logic influenced the philosophy of mathematics and our understanding of the inherent limits of formal systems.

7. The goat problem

mathematics problem solving

Mnchnstnr  

The goat problem is a much more recently solved mathematical problem. It involves calculating the grazing area for a tethered goat. Despite its initial simplicity, mathematicians have pondered this problem for over a century.

In its basic form, a goat on a rope can graze in a semicircle with an area of A = 1/2πr 2 , where r is the rope’s length. However, the problem becomes more complex when you change the shape of the area the goat can access.

For instance, when tethered to a square barn, the goat can access more than just a semicircle. The goat can also go around the corners of the barn, creating additional quarter circles.

Mathematician Ingo Ullisch recently unraveled the goat grazing problem, introducing complex analysis into the equation. However, the solution is far from elementary.

It involves intricate calculations, relying on the ratio of contour integral expressions and involves numerous trigonometric terms . Although the solution may not offer a practical guide for goat owners, it represents a significant achievement in the world of mathematics.

RECOMMENDED ARTICLES

What makes the goat problem truly fascinating is its capacity to act as a mathematical Rosetta stone , transcending boundaries between various fields and serving as a versatile challenge for experts from diverse disciplines.

From age-old conundrums that took centuries to crack to enigmas that continue to elude solutions, mathematical mysteries remind us that the pursuit of knowledge is an ever-evolving journey.

So, the next time you find yourself pondering a difficult math problem, remember that you are in good company, following in the footsteps of the greatest mathematical explorers!

The Blueprint Daily

Stay up-to-date on engineering, tech, space, and science news with The Blueprint.

By clicking sign up, you confirm that you accept this site's Terms of Use and Privacy Policy

ABOUT THE EDITOR

Tejasri Gururaj Tejasri is a versatile Science Writer & Communicator, leveraging her expertise from an MS in Physics to make science accessible to all. In her spare time, she enjoys spending quality time with her cats, indulging in TV shows, and rejuvenating through naps.

POPULAR ARTICLES

World’s largest indoor ice park in china offers immersive tech experience, african lions finish record swim in predator-infested river to find female mates, the dopamine trap: understanding the neuroscience of doomscrolling, 3d renders of futuristic buildings and metal marking machine the best of ie this week, related articles.

These glasses change tint 1800 times faster in less than 10th of a second

These glasses change tint 1800 times faster in less than 10th of a second

China’s carbon fiber armored drone dares deep-sea pressure at 19,700 ft

China’s carbon fiber armored drone dares deep-sea pressure at 19,700 ft

Taylor Swift’s eating disorder talk boosts body image among Swifties: Study

Taylor Swift’s eating disorder talk boosts body image among Swifties: Study

US: Cancer patient’s voice restored with world’s first larynx transplant

US: Cancer patient’s voice restored with world’s first larynx transplant

More From Forbes

The most rigorous math program you've never heard of.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Math-M-Addicts students eagerly dive into complex math problems during class.

In the building of the Speyer Legacy School in New York City, a revolutionary math program is quietly producing some of the city's most gifted young problem solvers and logical thinkers. Founded in 2005 by two former math prodigies, Math-M-Addicts has grown into an elite academy developing the skills and mindset that traditional schooling often lacks.

"We wanted to establish the most advanced math program in New York," explains Ruvim Breydo, co-founder of Math-M-Addicts. "The curriculum focuses not just on mathematical knowledge, but on developing a mastery of problem-solving through a proof-based approach aligned with prestigious competitions like the International Mathematical Olympiad."

From its inception, Math-M-Addicts took an unconventional path. What began as an attempt to attract only the highest caliber high school students soon expanded to offer multiple curriculum levels. "We realized we couldn't find enough kids at the most advanced levels," says Breydo. "So we decided to develop that talent from an earlier age."

The program's approach centers on rigor. At each of the 7 levels, the coursework comprises just a handful of fiendishly difficult proof-based math problems every week. "On average, we expect them to get about 50% of the solutions right," explains instructor Natalia Lukina. "The problems take hours and require grappling with sophisticated mathematical concepts."

But it's about more than just the content. Class sizes are small, with two instructors for every 15-20 students. One instructor leads the session, while the other teacher coordinates the presentation of the homework solutions by students. The teachers also provide customized feedback by meticulously reviewing each student's solutions. "I spend as much time analyzing their thought processes as I do teaching new material," admits instructor Bobby Lee.

Best High-Yield Savings Accounts Of 2024

Best 5% interest savings accounts of 2024.

Lee and the Math-M-Addicts faculty embrace an unconventional pedagogy focused on developing logic, creativity, and a tenacious problem-solving mindset over procedures. "We don't dumb it down for them," says Breydo. "We use technical math language and allow students to struggle through the challenges because that's where real learning happens."

Impressive results of Math-M-addicts students in selective math competitions highlight their ... [+] preparation and dedication.

For the Math-M-Addicts team, finding the right teachers is as essential as shaping brilliant students. Prospective instructors go through a rigorous multi-stage vetting process. "We seek passionate mathematical problem solvers first," says program director Sonali Jasuja. "Teaching experience is great, but first and foremost, we need people who deeply understand and enjoy the reasoning behind mathematics."

Even exceptional instructors undergo extensive training by co-teaching for at least a year alongside veteran Math-M-Addicts faculty before taking the lead role. "Our approach is different from how most US teachers learned mathematics," explains instructor Tanya Gross, the director of Girls Adventures in Math (GAIM) competition. "We immerse them in our unique math culture, which focuses on the 'why' instead of the 'how,' empowering a paradigm shift."

That culture extends to the students as well. In addition to the tools and strategies imparted in class, Math-M-Addicts alumni speak of an unshakable confidence and camaraderie that comes from up to several thousands of hours grappling with mathematics at the highest levels alongside peers facing the same challenges.

As Math-M-Addicts ramps up efforts to expand access through online classes and global partnerships, the founders remain devoted to their core mission. "Math education should not obsess with speed and memorization of math concepts," argues Breydo. "This is not what mathematics is about. To unlock human potential, we must refocus on cognitive reasoning and problem-solving skills. We are seeking to raise young people unafraid to tackle any complex challenge they face"

Julia Brodsky

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

Carnegie Mellon Informatics and Mathematics Competition

The Carnegie Mellon Informatics and Mathematics Competition (CMIMC) is an annual high school math competition organized by students at Carnegie Mellon University. The math competition has run annually in the spring since 2016 and was last held on April 6, 2024 .

The tournament consists of a TCS round, a team round, and individual rounds.

TCS (Theoretical Computer Science) Round

This is a 60 minute test with 2-3 problems to be completed as a team. Each question is worth the same number of points. Teams will submit at most one bound per problem and should provide an accompanying proof.

This is a 40 minute test with 10 problems to be completed as a team. Each question is worth the same number of points.

Individual Rounds

There are three different rounds: Algebra and Number Theory, Combinatorics and Computer Science, and Geometry. Each student will take all 3 exams.

Each round is a 50 minute test with 10 problems (and a tiebreaker). Harder/less-solved questions are worth more points.

Official CMIMC Website

Past Problems

Carnegie Mellon Women's Mathematics Competition

CMIMC Programming

  • Mathematics competitions
  • Intermediate mathematics competitions

Something appears to not have loaded correctly.

Click to refresh .

mathematics problem solving

July 1, 2024

The Biggest Problem in Mathematics Is Finally a Step Closer to Being Solved

Number theorists have been trying to prove a conjecture about the distribution of prime numbers for more than 160 years

By Manon Bischoff

Abstract purple lines funnelling towards the right with white dotted light sources becoming smaller towards the right.

Weiquan Lin/Getty Images

The Riemann hypothesis is the most important open question in number theory—if not all of mathematics. It has occupied experts for more than 160 years. And the problem appeared both in mathematician David Hilbert’s groundbreaking speech from 1900 and among the “Millennium Problems” formulated a century later. The person who solves it will win a million-dollar prize.

But the Riemann hypothesis is a tough nut to crack. Despite decades of effort, the interest of many experts and the cash reward, there has been little progress. Now mathematicians Larry Guth of the Massachusetts Institute of Technology and James Maynard of the University of Oxford have posted a sensational new finding on the preprint server arXiv.org. In the paper, “the authors improve a result that seemed insurmountable for more than 50 years,” says number theorist Valentin Blomer of the University of Bonn in Germany.

Other experts agree. The work is “a remarkable breakthrough,” mathematician and Fields Medalist Terence Tao wrote on Mastodon , “though still very far from fully resolving this conjecture.”

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

The Riemann hypothesis concerns the basic building blocks of natural numbers: prime numbers, values greater than 1 that are only divisible by 1 and themselves. Examples include 2, 3, 5, 7, 11, 13, and so on.*

Every other number, such as 15, can be clearly broken down into a product of prime numbers: 15 = 3 x 5. The problem is that the prime numbers do not seem to follow a simple pattern and instead appear randomly among the natural numbers. Nineteenth-century German mathematician Bernhard Riemann proposed a way to deal with this peculiarity that explains how prime numbers are distributed on the number line—at least from a statistical point of view.

A Periodic Table for Numbers

Proving this conjecture would provide mathematicians with nothing less than a kind of “periodic table of numbers.” Just as the basic building blocks of matter (such as quarks, electrons and photons) help us to understand the universe and our world, prime numbers also play an important role, not just in number theory but in almost all areas of mathematics.

There are now numerous theorems based on the Riemann conjecture. Proof of this conjecture would prove many other theorems as well—yet another incentive to tackle this stubborn problem.

Interest in prime numbers goes back thousands of years. Euclid proved as early as 300 B.C.E. that there are an infinite number of prime numbers. And although interest in prime numbers persisted, it was not until the 18th century that any further significant findings were made about these basic building blocks.

As a 15-year-old, physicist Carl Friedrich Gauss realized that the number of prime numbers decreases along the number line. His so-called prime number theorem (not proven until 100 years later) states that approximately n / ln( n ) prime numbers appear in the interval from 0 to n . In other words, the prime number theorem offers mathematicians a way of estimating the typical distribution of primes along a chunk of the number line.

The exact number of prime numbers may differ from the estimate given by the theorem, however. For example: According to the prime number theorem, there are approximately 100 / ln(100) ≈ 22 prime numbers in the interval between 1 and 100. But in reality there are 25. There is therefore a deviation of 3. This is where the Riemann hypothesis comes in. This hypothesis gives mathematicians a way to estimate the deviation. More specifically, it states that this deviation cannot become arbitrarily large but instead must scale at most with the square root of n , the length of the interval under consideration.

The Riemann hypothesis therefore does not predict exactly where prime numbers are located but posits that their appearance on the number line follows certain rules. According to the Riemann hypothesis, the density of primes decreases according to the prime number theorem, and the primes are evenly distributed according to this density. This means that there are no large areas in which there are no prime numbers at all, while others are full of them.

You can also imagine this idea by thinking about the distribution of molecules in the air of a room: the overall density on the floor is somewhat higher than on the ceiling, but the particles—following this density distribution—are nonetheless evenly scattered, and there is no vacuum anywhere.

A Strange Connection

Riemann formulated the conjecture named after him in 1859, in a slim, six-page publication (his only contribution to the field of number theory). At first glance, however, his work has little to do with prime numbers.

He dealt with a specific function, the so-called zeta function ζ( s ), an infinitely long sum that adds the reciprocal values of natural numbers that are raised to the power of s :

The zeta function

Even before Riemann’s work, experts knew that such zeta functions are related to prime numbers. Thus, the zeta function can also be expressed as a function of all prime numbers p as follows:

The zeta function as a function of all prime numbers

Riemann recognized the full significance of this connection with prime numbers when he used not only real values for s but also complex numbers. These numbers contain both a real part and roots from negative numbers, the so-called imaginary part.

You can imagine complex numbers as a two-dimensional construct. Rather than mark a point on the number line, they instead lie on the plane. The x coordinate corresponds to the real part and the y coordinate to the imaginary part:

The coordinates of z = x + iy illustrate a complex number

Никита Воробьев/Wikimedia

The complex zeta function that Riemann investigated can be visualized as a landscape above the plane. As it turns out, there are certain points amid the mountains and valleys that play an important role in relation to prime numbers. These are the points at which the zeta function becomes zero (so-called zeros), where the landscape sinks to sea level, so to speak.

A visual mapping of the zeta function looks like a mountainscape with peaks and troughs

The colors represent the values of the complex zeta function, with the white dots indicating its zeros.

Jan Homann/Wikimedia

Riemann quickly found that the zeta function has no zeros if the real part is greater than 1. This means that the area of the landscape to the right of the straight line x = 1 never sinks to sea level. The zeros of the zeta function are also known for negative values of the real part. They lie on the real axis at x = –2, –4, –6, and so on. But what really interested Riemann—and all mathematicians since—were the zeros of the zeta function in the “critical strip” between 0 ≤ x ≤ 1.

The dark blue area demarcates a stretch along the x axis where the Riemann zeta function contains nontrivial zeros

In the critical strip (dark blue), the Riemann zeta function can have “nontrivial” zeros. The Riemann conjecture states that these are located exclusively on the line x = 1/2 (dashed line).

LoStrangolatore/Wikimedia ( CC BY-SA 3.0 )

Riemann knew that the zeta function has an infinite number of zeros within the critical strip. But interestingly, all appear to lie on the straight line x = 1 / 2 . Thus Riemann hypothesized that all zeros of the zeta function within the critical strip have a real part of x = 1 / 2 . That statement is actually at the crux of understanding the distribution of prime numbers. If correct, then the placement of prime numbers along the number line never deviates too much from the prime number set.

On the Hunt for Zeros

To date, billions and billions of zeta function zeros have now been examined— more than 10 13 of them —and all lie on the straight line x = 1 / 2 .

But that alone is not a valid proof. You would only have to find a single zero that deviates from this scheme to disprove the Riemann hypothesis. Therefore we are looking for a proof that clearly demonstrates that there are no zeros outside x = 1 / 2 in the critical strip.

Thus far, such a proof has been out of reach, so researchers took a different approach. They tried to show that there is, at most, a certain number N of zeros outside this straight line x = 1 / 2 . The hope is to reduce N until N = 0 at some point, thereby proving the Riemann conjecture. Unfortunately, this path also turns out to be extremely difficult. In 1940 mathematician Albert Ingham was able to show that between 0.75 ≤ x ≤ 1 there are at most y 3/5+ c zeros with an imaginary part of at most y , where c is a constant between 0 and 9.

In the following 80 years, this estimation barely improved. The last notable progress came from mathematician Martin Huxley in 1972 . “This has limited us from doing many things in analytic number theory,” Tao wrote in his social media post . For example, if you wanted to apply the prime number theorem to short intervals of the type [ x , x + x θ ], you were limited by Ingham’s estimate to θ > 1 / 6 .

Yet if Riemann’s conjecture is true, then the prime number theorem applies to any interval (or θ = 0), no matter how small (because [ x , x + x θ ] = [ x , x + 1] applies to θ = 0).

Now Maynard, who was awarded the prestigious Fields Medal in 2022 , and Guth have succeeded in significantly improving Ingham’s estimate for the first time. According to their work, the zeta function in the range 0.75 ≤ x ≤ 1 has at most y (13/25)+ c zeros with an imaginary part of at most y . What does that mean exactly? Blomer explains: “The authors show in a quantitative sense that zeros of the Riemann zeta function become rarer the further away they are from the critical straight line. In other words, the worse the possible violations of the Riemann conjecture are, the more rarely they would occur.”

“This propagates to many corresponding improvements in analytic number theory,” Tao wrote . It makes it possible to reduce the size of the intervals for which the prime number theorem applies. The theorem is valid for [ x , x + x 2/15 ], so θ > 1 / 6 = 0.166... becomes θ > 2 ⁄ 15 = 0.133...

For this advance, Maynard and Guth initially used well-known methods from Fourier analysis for their result. These are similar techniques to what is used to break down a sound into its overtones. “The first few steps are standard, and many analytic number theorists, including myself, who have attempted to break the Ingham bound, will recognize them,” Tao explained . From there, however, Maynard and Guth “do a number of clever and unexpected maneuvers,” Tao wrote.

Blomer agrees. “The work provides a whole new set of ideas that—as the authors rightly say—can probably be applied to other problems. From a research point of view, that’s the most decisive contribution of the work,” he says.

So even if Maynard and Guth have not solved Riemann’s conjecture, they have at least provided new food for thought to tackle the 160-year-old puzzle. And who knows—perhaps their efforts hold the key to finally cracking the conjecture.

This article originally appeared in Spektrum der Wissenschaft and was reproduced with permission.

*Editor’s Note (7/9/24): This sentence was edited after posting to better clarify that prime numbers exclude 1.

COMMENTS

  1. Microsoft Math Solver

    Online math solver with free step by step solutions to algebra, calculus, and other math problems. ... Try Math Solver. Type a math problem. Quadratic equation { x } ^ { 2 } - 4 x - 5 = 0. Trigonometry. 4 \sin \theta \cos \theta = 2 \sin \theta . Linear equation. y = 3x + 4 ... Draw, Scan, Solve, and Learn! Solve long equations, draw in ...

  2. Mathway

    Free math problem solver answers your algebra homework questions with step-by-step explanations. Mathway. Visit Mathway on the web. Start 7-day free trial on the app. Start 7-day free trial on the app. Download free on Amazon. Download free in Windows Store. Take a photo of your math problem on the app. get Go. Algebra. Basic Math.

  3. GeoGebra Math Solver

    Download our apps here: English / English (United States) Get accurate solutions and step-by-step explanations for algebra and other math problems with the free GeoGebra Math Solver. Enhance your problem-solving skills while learning how to solve equations on your own. Try it now!

  4. Step-by-Step Math Problem Solver

    QuickMath is a web-based tool that can solve various math problems in algebra, equations, calculus, matrices and more. You can enter your problem, see the solution steps and get instant feedback.

  5. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  6. Solving equations & inequalities

    Unit test. Level up on all the skills in this unit and collect up to 1,100 Mastery points! There are lots of strategies we can use to solve equations. Let's explore some different ways to solve equations and inequalities. We'll also see what it takes for an equation to have no solution, or infinite solutions.

  7. Step-by-Step Calculator

    To solve math problems step-by-step start by reading the problem carefully and understand what you are being asked to find. Next, identify the relevant information, define the variables, and plan a strategy for solving the problem. en. Related Symbolab blog posts.

  8. 1.1: Introduction to Problem Solving

    The very first Mathematical Practice is: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of ...

  9. Symbolab

    Symbolab helps you solve math problems with step-by-step solutions, graphs, and geometry tools. You can also practice and improve your math skills with interactive exercises and quizzes.

  10. Free Mathematics Tutorials, Problems and Worksheets

    Thousands of math problems and questions with solutions and detailed explanations are included. Free math tutorials and problems to help you explore and gain deep understanding of math topics such as: Algebra and graphing , Precalculus , Practice tests and worksheets , Calculus , Linear Algebra , Geometry , Trigonometry , Math Videos , Math ...

  11. Math Problem Solving Strategies

    The following video shows more examples of using problem solving strategies and models. Question 2: The table shows the number of seats in each of the first four rows in an auditorium. The remaining ten rows follow the same pattern. Find the number of seats in the last row. Question 3: You are hanging three pictures in the wall of your home ...

  12. Wolfram Problem Generator: Unlimited AI-generated Practice Problems

    Wolfram Demonstrations. Mathematica. MathWorld. Online practice problems with answers for students and teachers. Pick a topic and start practicing, or print a worksheet for study sessions or quizzes.

  13. Module 1: Problem Solving Strategies

    Step 1: Understanding the problem. We are given in the problem that there are 25 chickens and cows. All together there are 76 feet. Chickens have 2 feet and cows have 4 feet. We are trying to determine how many cows and how many chickens Mr. Jones has on his farm. Step 2: Devise a plan.

  14. Problem Solving in Mathematics

    Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

  15. Mathway

    Free math problem solver answers your algebra, geometry, trigonometry, calculus, and statistics homework questions with step-by-step explanations, just like a math tutor. ... Solving the System of Equations Using an Inverse Matrix. Finding the Dimensions. Multiplication by a Scalar. Multiplication.

  16. Practice Math Problems with Answers

    Even simple math problems become easier to solve when broken down into steps. From basic additions to calculus, the process of problem solving usually takes a lot of practice before answers could come easily. As problems become more complex, it becomes even more important to understand the step-by-step process by which we solve them.

  17. Unlocking the Power of Math Learning: Strategies and Tools for Success

    A 2014 study by the National Council of Teachers of Mathematics found that the use of multiple representations, such as visual aids, graphs, and real-world examples, supports the development of mathematical connections, reasoning, and problem-solving skills. Moreover, the importance of math learning goes beyond solving equations and formulas.

  18. Mathematical Problem Solving: Current Themes, Trends, and Research

    This book contributes to the field of mathematical problem solving by exploring current themes, trends and research perspectives. It does so by addressing five broad and related dimensions: problem solving heuristics, problem solving and technology, inquiry and problem posing in mathematics education, assessment of and through problem solving, and the problem solving environment.

  19. 1.3: Problem Solving Strategies

    Problem Solving Strategy 9 (Find the Math, Remove the Context). Sometimes the problem has a lot of details in it that are unimportant, or at least unimportant for getting started. The goal is to find the underlying math problem, then come back to the original question and see if you can solve it using the math.

  20. Teaching Mathematics Through Problem Solving

    Teaching about problem solving begins with suggested strategies to solve a problem. For example, "draw a picture," "make a table," etc. You may see posters in teachers' classrooms of the "Problem Solving Method" such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no ...

  21. Mathematics Through Problem Solving

    The Role of Problem Solving in Teaching Mathematics as a Process. Problem solving is an important component of mathematics education because it is the single vehicle which seems to be able to achieve at school level all three of the values of mathematics listed at the outset of this article: functional, logical and aesthetic.

  22. Problem-Solving Strategies

    There are many different ways to solve a math problem, and equipping students with problem-solving strategies is just as important as teaching computation and algorithms. Problem-solving strategies help students visualize the problem or present the given information in a way that can lead them to the solution. Solving word problems using …</p>

  23. Mathematical Problem Solving

    Description. Mathematical Problem Solving provides information pertinent to the nature of mathematical thinking at any level. This book provides a framework for the analysis of complex problem-solving behavior. Organized into two parts encompassing 10 chapters, this book begins with an overview of the four qualitatively different aspects of ...

  24. Are Mathematicians Close to Solving This Notorious Math Problem?

    Mathematicians Are Edging Close to Solving One of the World's 7 Hardest Math Problems And there's $1 million at stake. By Caroline Delbert Published: Jul 09, 2024 10:15 AM EDT

  25. 7 of the hardest problems in mathematics that have been solved

    Mathematicians are often haunted by problems that elude solutions and take centuries of effort to solve. Here we review 7 of the hardest math problems ever solved.

  26. Millennium Prize Problems

    The Millennium Prize Problems are seven well-known complex mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US$1 million prize for the first correct solution to each problem.. The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer ...

  27. The Most Rigorous Math Program You've Never Heard Of

    Ruvim Breydo, founder of Math-M-Addicts, advocates for math education focused on cognitive reasoning and problem-solving to nurture fearless, challenge-ready students.

  28. Art of Problem Solving

    The Carnegie Mellon Informatics and Mathematics Competition (CMIMC) is an annual high school math competition organized by students at Carnegie Mellon University. The math competition has run annually in the spring since 2016 and was last held on April 6, 2024.. Format. The tournament consists of a TCS round, a team round, and individual rounds.

  29. The Riemann Hypothesis, the Biggest Problem in Mathematics, Is a Step

    The Biggest Problem in Mathematics Is Finally a Step Closer to Being Solved. Number theorists have been trying to prove a conjecture about the distribution of prime numbers for more than 160 years.

  30. Mom Shares Her 2nd Grader's Math Homework Online And Almost No One Can

    WTAJ News took a shot at solving the math homework. "You first subtract the 36 to group them as small dogs since you need at least 36 small dogs. ... In 2023, a math homework problem stumped the ...