CCRPS Clinical Research Taininrg

Clinical Research vs Lab Research: An In-depth Analysis

lab research

Clinical research , a cornerstone in advancing patient care, involves human subjects to test the safety and effectiveness of new treatments , ranging from drugs to diagnostic tools. Unlike clinical research , laboratory research focuses on the foundational science behind medicine without direct human involvement , contributing significantly to medical lab science.

The contrast between clinical research vs lab research highlights the diverse approaches in the scientific pursuit of better healthcare, where every medical advancement once relied on volunteer participation in clinical studies 1 . Bridging these two fields promises to accelerate the translation of lab discoveries into practical medical applications, underscoring the importance of collaboration in future developments in medical lab science 1 2 .

The Evolution of Clinical Research

The evolution of clinical research traces its origins back to ancient times, with the world's first recorded clinical tria l found in the "Book of Daniel" where a dietary intervention was observed to improve health after 10 days. This historical milestone was followed by significant advancements including Avicenna's rules for drug testing in his ‘ Canon of Medicine’ and Ambroise Pare's accidental trial in 1537 , which introduced a novel therapy for wounded soldiers. The modern era of clinical trials was marked by James Lind's controlled trial on scurvy in 1747 , laying the foundational principles for contemporary clinical research methodologies. The progression from these early experiments to the structured, ethical, and scientifically rigorous trials of today highlights the dynamic nature of clinical research. This evolution was further shaped by the introduction of the placebo in the early 1800s and the establishment of ethical frameworks , starting with the Hippocratic Oath and later formalized by the Nuremberg Code in 1947 . The development of clinical research has been instrumental in advancing medical science, with each phase of clinical trials meticulously designed to ensure the safety and efficacy of new treatments for the benefit of patient care.

Key Components of Laboratory Research

Clinical Research Facility Sciences, pivotal in the realm of medical lab science, leverage laboratory data and services extensively for disease diagnosis, monitoring, and treatment 2 4 . These sciences are underpinned by professionals who, after obtaining a Bachelor's degree in fields such as clinical research facility science or biomedical sciences from NAACLS-accredited programs, perform crucial laboratory tests, analyze specimens, and furnish healthcare providers with critical insights into the results' significance and validity 2 . Notably, these activities are conducted in laboratory settings without involving human subjects, emphasizing the distinction between clinical and laboratory research 2 .

The infrastructure of laboratories is meticulously designed to support the complex and sensitive nature of laboratory tests and analyses. This includes sturdy tables and ample counter space for heavy equipment, overhead and adjustable shelving for efficient space utilization, and cabinets and drawers for organized storage. Additionally, the deployment of fume hoods, customized for specific research needs, is essential for the safe handling of chemicals. Compliance with safety regulations and proper storage of flammable items underscore the operational standards necessary for high-quality testing and analysis in medical breakthroughs 6 .

The scientific process in laboratory research unfolds through several key steps: hypothesis formulation, experiment design, data collection, data analysis, and report writing. This structured approach begins with formulating a tentative explanation for a phenomenon, followed by planning and conducting experiments using appropriate methods and tools. The subsequent collection and analysis of data facilitate testing the hypothesis, culminating in the documentation of the entire process and findings in a formal report or paper 7 . This systematic methodology underscores the rigorous and methodical nature of laboratory research, contributing significantly to advancements in medical lab science.

Bridging the Gap: Collaboration between Clinical and Laboratory Research

Bridging the gap between clinical and laboratory research involves fostering collaborative environments that leverage the strengths of both fields to advance medical science. Medical scientific studies bifurcate into clinical laboratory scientists, who interpret critical data for healthcare professionals, and clinical researchers, who lay the groundwork for medical education and understanding 4 . This collaboration is pivotal for both building the future of medicine and administering its current benefits 4 . Enhanced operational efficiency is achieved through cross-departmental synergy, reducing redundancies in resource and personnel utilization, and fostering faster adoption of best practices and innovations across the lab 8 . These collaborations are exemplified by real-world success stories from renowned institutions like Mayo Clinic and Stanford Health Care, which have demonstrated the profound impact of integrated efforts on medical advancements 8 .

Key strategies for effective collaboration include regular meetings to address challenges, the integration of digital communication platforms with lab databases for swift sharing of results, and the establishment of clear guidelines for consistency in sample collection and result dissemination 8 . Unified objectives ensure that despite methodological differences, the end goals of improving patient care and advancing medical knowledge remain aligned 8 . Furthermore, the adoption of cloud-based data systems and AI technologies not only facilitates seamless data sharing but also automates routine tasks, thereby enhancing productivity and enabling the discovery of new insights 9 .

Challenges such as competition, ethics reviews, insufficient research funds, and the recruitment of project managers underscore the complexities of collaborative efforts 9 . However, the benefits, including improved reputation, publication quality, knowledge transfer, and acceleration of the research process, often outweigh the costs and risks associated with collaboration 9 . Collaborative relationships in Translational Medical Research (TMR) among clinicians highlight a strong willingness to collaborate, with preferences varying across different stages of research and between preferring independent and interdependent relationships 9 . This willingness to collaborate is crucial for bridging the gap between clinical and laboratory research, ultimately leading to groundbreaking advancements in medical science.

Future Trends in Clinical and Laboratory Research

The future of clinical and laboratory research is poised for transformative changes, driven by technological advancements and evolving healthcare needs. Notably:

Greater Efficiency through Automation : The integration of automation in research processes promises to streamline workflows, reducing manual labor and enhancing precision 13 .

Collaboration and Capacity Sharing : Partnerships between research institutions will facilitate shared resources and expertise, optimizing research outputs 13 .

Remote Sample Support and Diagnostic Data Interoperability : These advancements will enable more inclusive research and improved patient care by allowing data to flow seamlessly between different healthcare systems 13 .

Artificial Intelligence and Machine Learning : AI and machine learning are set to revolutionize both clinical and laboratory research by providing advanced data analysis, predictive modeling, and personalized medicine approaches 13 14 .

Staffing Solutions and Digital Workflows : Addressing staffing shortages through innovative solutions, alongside the adoption of digital workflows, will be crucial for maintaining research momentum 14 .

New Diagnostic Technologies : The development of novel diagnostic methods and technologies, including next-generation sequencing and biomarker-based screenings, will enhance disease diagnosis and treatment 14 .

Regulatory Changes and Patient-Centric Approaches : Increased FDA oversight of laboratory-developed tests and a shift towards patient-centric research models will ensure safer and more effective healthcare solutions 14 16 .

Precision Medicine and Big Data Analytics : The focus on precision medicine, supported by real-world evidence and big data analytics, will tailor treatments to individual patient needs, improving outcomes 15 .

Decentralized Clinical Trials and Digital Health Technologies : The rise of decentralized trials and digital health tools, including remote monitoring, will make research more accessible and patient-friendly 15 .

Innovation in Testing and Consumer Health : Laboratories will explore new frontiers in diagnostics, such as multi-drug-of-abuse testing and T-cell testing, while also responding to consumer health trends with at-home testing services 14 18 .

These trends underscore a dynamic shift towards more efficient, patient-centered, and technologically advanced clinical and laboratory research, setting the stage for groundbreaking discoveries and innovations in healthcare 13 14 15 16 18 .

Through this detailed exploration, we have seen the distinct yet intertwined roles that clinical and laboratory research play in the advancement of medical science and patient care. By comparing their methodologies, evolution, and collaborative potential, it becomes clear that both domains are crucial for fostering innovations that can bridge the gap between theoretical knowledge and practical healthcare solutions. The synergy between clinical and laboratory research, as highlighted by various examples and future trend predictions, establishes an essential framework for the continual improvement of medical practices and patient outcomes.

As we look toward the future, the significance of embracing technological advancements, enhancing collaboration, and adopting patient-centric approaches cannot be overstressed. These elements are pivotal in navigating the challenges and leveraging the opportunities within clinical and laboratory research landscapes. The potential impacts of such advancements on the field of medicine and on societal health as a whole are immense, underscoring the imperative for ongoing research, dialogue, and innovation in bridging the gap between the laboratory bench and the patient's bedside.

What distinguishes clinical research from laboratory research? Clinical research involves studies that include human participants, aiming to understand health and illness and answer medical questions. Laboratory research, on the other hand, takes place in environments such as chemistry or biology labs, typically at colleges or medical schools, and does not involve human subjects. Instead, it focuses on experiments conducted on non-human samples or models.

How does a clinical laboratory differ from a research laboratory? Clinical laboratories are specialized facilities where laboratory information and services are utilized to diagnose, monitor, and treat diseases. Research laboratories, in contrast, are settings where scientific investigation is conducted to study illness and health in humans to answer medical and behavioral questions.

In what ways do clinical research and scientific research differ? Clinical research is a branch of medical research that directly applies knowledge to improve patient care, often through the study of human subjects. Scientific research, including basic science research, aims to understand the mechanisms of diseases and biological processes, which may not have immediate applications in patient care.

Can you outline the various types of medical research analysis? Medical research can be categorized into three primary types based on the study's nature: basic (experimental) research, clinical research, and epidemiological research. Clinical and epidemiological research can be further divided into interventional studies, which actively involve treating or intervening in the study subjects, and noninterventional studies, which observe outcomes without intervention.

Medical Research Jobs

Prevent CRA Fraud: 5 Strategies to Protect Your CRO Team

Everything you need to know about clinical research studies.

The National Laboratories

lab research

Pushing the boundaries of science

The transformative science and technology solutions being discovered across the 17 National Laboratories are changing the way the world sees innovation.

Learn More →

lab research

Looking for the best & brightest

Internships, fellowships, and opportunities to further your research await you at the National Laboratories.

lab research

Innovation drives us

By recruiting and retaining a diverse workforce, the National Laboratories can better fulfill their mission to deliver scientific breakthroughs.

lab research

Get to know our workforce

The National Labs’ success depends on the unique insights and perspectives enabled by a diverse workforce.

lab research

Improving lives

Innovation is at the heart of everything done inside the National Laboratories. Our scientists strive to make our world a safer, better place for all.

The Department of Energy’s 17 National Laboratories are powerhouses of science and technology whose researchers tackle some of the world’s toughest challenges. The Laboratories support scientists and engineers from academia, government, and industry with access to specialized equipment, world-class research facilities, and skilled technical staff. Together, they are working to solve some of the world’s greatest scientific challenges.

Permalink to Innovation

From innovations in energy technologies and sustainable building design to medical discoveries and improved national security, National Laboratory scientists and engineers are inventing solutions that make America and the world safer, healthier, and more sustainable.

Permalink to Staff

The U.S. Department of Energy’s 17 National Laboratories lead the nation in advancing the frontiers of scientific knowledge, keeping our nation secure, and fueling our clean energy economy. The innovation at the heart of the Laboratories’ past and future success benefits from the fusion of diverse talents and inclusive perspectives.

Permalink to Our Labs

The Department of Energy’s 17 National Laboratories are powerhouses of science and technology.

Permalink to STEM Resources

STEM Resources

The National Laboratories are committed to advancing Science, Technology, Engineering, and Mathematics (STEM) in our nation’s schools.

Permalink to Work Here

The National Laboratories are a diverse and inclusive career destination for the next generation of scientists and engineers aspiring to make an impact through their research.

Appointments at Mayo Clinic

Laboratory medicine and pathology.

Mayo Clinic staff members are actively engaged in research on several areas within Laboratory Medicine and Pathology. Mayo Clinic researchers continually study new and more efficient medical testing techniques and reflect their advances in tests offered internally at Mayo Clinic as well as externally though Mayo Clinic Laboratories .

Publications

See a list of publications by Mayo Clinic physicians on PubMed, a service of the National Library of Medicine.

Research profiles

Anatomic pathology.

  • Keeney, Gary L. M.D. , Chair Minnesota
  • Aubry, Marie Christine M.D. Minnesota
  • Bell, Debra A. M.D. Minnesota
  • Boland Froemming, Jennifer M. M.D. Minnesota
  • Chen, Beiyun M.D., Ph.D. Minnesota
  • Cheville, John C. M.D. Minnesota
  • Cornell, Lynn D. M.D. Minnesota
  • Erickson, Lori A. M.D. Minnesota
  • Flotte, Thomas J. M.D. Minnesota
  • Garcia, Joaquin J. M.D. Minnesota
  • Giannini, Caterina M.D., Ph.D. Minnesota
  • Grande, Joseph P. M.D., Ph.D. Minnesota
  • Kipp, Benjamin R. Ph.D. Minnesota
  • Maleszewski, Joseph J. M.D. Minnesota
  • Mounajjed, Taofic M.D. Minnesota
  • Roden, Anja C. M.D. Minnesota
  • Salomao, Diva R. M.D. Minnesota
  • Smyrk, Thomas C. M.D. Minnesota
  • Visscher, Daniel W. M.D. Minnesota
  • Yi, Joanne (Eunhee) E. M.D. Minnesota
  • Zhang, Lizhi M.D. Minnesota

Clinical Biochemistry & Immunology

  • Algeciras-Schimnich, Alicia Ph.D. , Chair Minnesota
  • Baudhuin, Linnea M. Ph.D. Minnesota
  • Black, John Logan M.D. Minnesota
  • Grebe, Stefan K. M.D., Ph.D. Minnesota
  • Klein, Christopher J. M.D. Minnesota
  • Lachance, Daniel Honore M.D. Minnesota
  • Lennon, Vanda A., M.D., Ph.D. Minnesota
  • McKeon, Andrew M.B., B.Ch., M.D. Minnesota
  • Pittock, Sean J. M.D. Minnesota
  • Singh, Ravinder J. Ph.D. Minnesota

Clinical Core Laboratory Services

  • Jaffe, Allan S. M.D. , Chair Minnesota
  • Larson, Timothy S. M.D. Minnesota

Clinical Microbiology

  • Patel, Robin M.D. , Chair Minnesota
  • Pritt, Bobbi S. M.D. Minnesota
  • Theel, Elitza S. Ph.D. Minnesota
  • Wengenack, Nancy L. Ph.D. Minnesota
  • Yao, Joseph D. M.D. Minnesota

Experimental Pathology and Laboratory Medicine

  • Couch, Fergus J. Ph.D. , Chair Minnesota
  • Cicek, Mine M. Ph.D. Minnesota
  • Cunningham, Julie M. Ph.D. Minnesota
  • Jen, Jin M.D., Ph.D. Minnesota
  • Jenkins, Robert B. M.D., Ph.D. Minnesota
  • Klee, George G. M.D., Ph.D. Minnesota
  • Shridhar, Vijayalakshmi Ph.D. Minnesota
  • Smith, David I. Ph.D. Minnesota

Hematopathology

  • Chen, Dong M.D., Ph.D. Minnesota
  • Feldman, Andrew L. M.D. Minnesota
  • Hanson, Curtis A. M.D. Minnesota
  • Heit, John A. M.D. Minnesota
  • Kurtin, Paul J. M.D. Minnesota
  • Macon, William R. M.D. Minnesota
  • McPhail, Ellen D. M.D. Minnesota
  • Pruthi, Rajiv K. M.B.B.S. Minnesota
  • Rajkumar, S. Vincent M.D. Minnesota

Laboratory Genetics

  • Matern, Dietrich M.D., Ph.D. , Chair Minnesota

Biochemical Genetics Laboratory

  • Gavrilov, Dimitar K. M.D., Ph.D. Minnesota
  • Matern, Dietrich M.D., Ph.D. Minnesota
  • Oglesbee, Devin Ph.D. Minnesota
  • Rinaldo, Piero M.D., Ph.D. Minnesota
  • Tortorelli, Silvia M.D., Ph.D. Minnesota

Cytogenetics Laboratory

  • Greipp, Patricia T. D.O. Minnesota
  • Ketterling, Rhett P. M.D. Minnesota
  • Thorland, Erik C. Ph.D. Minnesota
  • Van Dyke, Daniel L. Ph.D. Minnesota

Molecular Genetics Laboratory

  • Ferber, Matthew J. Ph.D. Minnesota
  • Halling, Kevin C. M.D., Ph.D. Minnesota
  • Rumilla, Kandelaria M. M.D. Minnesota

Transfusion Medicine

  • Dietz, Allan B. Ph.D. Minnesota
  • Gandhi, Manish J. M.D. Minnesota
  • Santrach, Paula J. M.D. Minnesota
  • Winters, Jeffrey L. M.D. Minnesota
  • Medical Departments & Centers
  • Laboratory Medicine & Pathology

Your gift holds great power – donate today!

Make your tax-deductible gift and be part of the cutting-edge research and care that's changing medicine.

National Academies Press: OpenBook

America's Lab Report: Investigations in High School Science (2006)

Chapter: 1 introduction, history, and definition of laboratories, 1 introduction, history, and definition of laboratories.

Science laboratories have been part of high school education for two centuries, yet a clear articulation of their role in student learning of science remains elusive. This report evaluates the evidence about the role of laboratories in helping students attain science learning goals and discusses factors that currently limit science learning in high school laboratories. In this chap-

ter, the committee presents its charge, reviews the history of science laboratories in U.S. high schools, defines laboratories, and outlines the organization of the report.

CHARGE TO THE COMMITTEE

In the National Science Foundation (NSF) Authorization Act of 2002 (P.L. 107-368, authorizing funding for fiscal years 2003-2007), Congress called on NSF to launch a secondary school systemic initiative. The initiative was to “promote scientific and technological literacy” and to “meet the mathematics and science needs of students at risk of not achieving State student academic achievement standards.” Congress directed NSF to provide grants for such activities as “laboratory improvement and provision of instrumentation as part of a comprehensive program to enhance the quality of mathematics, science, engineering, and technology instruction” (P.L. 107-368, Section 8-E). In response, NSF turned to the National Research Council (NRC) of the National Academies. NSF requested that the NRC

nominate a committee to review the status of and future directions for the role of high school science laboratories in promoting the teaching and learning of science for all students. This committee will guide the conduct of a study and author a consensus report that will provide guidance on the question of the role and purpose of high school science laboratories with an emphasis on future directions…. Among the questions that may guide these activities are:

What is the current state of science laboratories and what do we know about how they are used in high schools?

What examples or alternatives are there to traditional approaches to labs and what is the evidence base as to their effectiveness?

If labs in high school never existed (i.e., if they were to be planned and designed de novo), what would that experience look like now, given modern advances in the natural and learning sciences?

In what ways can the integration of technologies into the curriculum augment and extend a new vision of high school science labs? What is known about high school science labs based on principles of design?

How do the structures and policies of high schools (course scheduling, curricular design, textbook adoption, and resource deployment) influence the organization of science labs? What kinds of changes might be needed in the infrastructure of high schools to enhance the effectiveness of science labs?

What are the costs (e.g., financial, personnel, space, scheduling) associated with different models of high school science labs? How might a new vision of laboratory experiences for high school students influence those costs?

In what way does the growing interdisciplinary nature of the work of scientists help to shape discussions of laboratories as contexts in high school for science learning?

How do high school lab experiences align with both middle school and postsecondary education? How is the role of teaching labs changing in the nation’s colleges and universities? Would a redesign of high school science labs enhance or limit articulation between high school and college-level science education?

The NRC convened the Committee on High School Science Laboratories: Role and Vision to address this charge.

SCOPE OF THE STUDY

The committee carried out its charge through an iterative process of gathering information, deliberating on it, identifying gaps and questions, gathering further information to fill these gaps, and holding further discussions. In the search for relevant information, the committee held three public fact-finding meetings, reviewed published reports and unpublished research, searched the Internet, and commissioned experts to prepare and present papers. At a fourth, private meeting, the committee intensely analyzed and discussed its findings and conclusions over the course of three days. Although the committee considered information from a variety of sources, its final report gives most weight to research published in peer-reviewed journals and books.

At an early stage in its deliberations, the committee chose to focus primarily on “the role of high school laboratories in promoting the teaching and learning of science for all students.” The committee soon became frustrated by the limited research evidence on the role of laboratories in learning. To address one of many problems in the research evidence—a lack of agreement about what constitutes a laboratory and about the purposes of laboratory education—the committee commissioned a paper to analyze the alternative definitions and goals of laboratories.

The committee developed a concept map outlining the main themes of the study (see Figure 1-1 ) and organized the three fact-finding meetings to gather information on each of these themes. For example, reflecting the committee’s focus on student learning (“how students learn science” on the concept map), all three fact-finding meetings included researchers who had developed innovative approaches to high school science laboratories. We also commissioned two experts to present papers reviewing available research on the role of laboratories in students’ learning of science.

At the fact-finding meetings, some researchers presented evidence of student learning following exposure to sequences of instruction that included laboratory experiences; others provided data on how various technologies

lab research

FIGURE 1-1 High school science laboratory experiences: Role and vision. Concept map with references to guiding questions in committee charge.

contribute to student learning in the laboratory. Responding to the congressional mandate to meet the mathematics and science needs of students at risk of not achieving state student academic achievement standards, the third fact-finding meeting included researchers who have studied laboratory teaching and learning among diverse students. Taken together, all of these activities enabled the committee to address questions 2, 3, and 4 of the charge.

The committee took several steps to ensure that the study reflected the current realities of science laboratories in U.S high schools, addressing the themes of “how science teachers learn and work” and “constraints and enablers of laboratory experiences” on the concept map. At the first fact-finding meeting, representatives of associations of scientists and science teachers described their efforts to help science teachers learn to lead effective labora-

tory activities. They noted constraints on laboratory learning, including poorly designed, overcrowded laboratory classrooms and inadequate preparation of science teachers. This first meeting also included a presentation about laboratory scheduling, supplies, and equipment drawn from a national survey of science teachers conducted in 2000. At the second fact-finding meeting, an architect spoke about the design of laboratory facilities, and a sociologist described how the organization of work and authority in schools may enable or constrain innovative approaches to laboratory teaching. Two meetings included panel discussions about laboratory teaching among groups of science teachers and school administrators. Through these presentations, review of additional literature, and internal discussions, the committee was able to respond to questions 1, 5, and 6 of the charge. The agendas for each fact-finding meeting, including the guiding questions that were sent to each presenter, appear in Appendix A .

The committee recognized that the question in its charge about the increasingly interdisciplinary nature of science (question 7) is important to the future of science and to high school science laboratories. In presentations and commissioned papers, several experts offered suggestions for how laboratory activities could be designed to more accurately reflect the work of scientists and to improve students’ understanding of the way scientists work today. Based on our analysis of this information, the committee partially addresses this question from the perspective of how scientists conduct their work (in this chapter). The committee also identifies design principles for laboratory activities that may increase students’ understanding of the nature of science (in Chapter 3 ). However, in order to maintain our focus on the key question of student learning in laboratories, the committee did not fully address question 7.

Another important question in the committee’s charge (question 8) addresses the alignment of laboratory learning in middle school, high school, and undergraduate science education. Within the short time frame of this study, the committee focused on identifying, assembling, and analyzing the limited research available on high school science laboratories and did not attempt to do the same analysis for middle school and undergraduate science laboratories. However, this report does discuss several studies of student laboratory learning in middle school (see Chapter 3 ) and describes undergraduate science laboratories briefly in its analysis of the preparation of high school science teachers (see in Chapter 5 ). The committee thinks questions about the alignment of laboratory learning merit more sustained attention than was possible in this study.

During the course of our deliberations, other important questions emerged. For example, it is apparent that the scientific community is engaged in an array of efforts to strengthen teaching and learning in high school science laboratories, but little information is available on the extent

of these efforts and on their effectiveness at enhancing student learning. As a result, we address the role of the scientific community in high school laboratories only briefly in Chapters 1 and 5 . Another issue that arose over the course of this study is laboratory safety. We became convinced that laboratory safety is critical, but we did not fully analyze safety issues, which lay outside our charge. Finally, although engaging students in design or engineering laboratory activities appears to hold promising connections with science laboratory activities, the committee did not explore this possibility. Although all of these issues and questions are important, taking time and energy to address them would have deterred us from a central focus on the role of high school laboratories in promoting the teaching and learning of science for all students.

One important step in defining the scope of the study was to review the history of laboratories. Examining the history of laboratory education helped to illuminate persistent tensions, provided insight into approaches to be avoided in the future, and allowed the committee to more clearly frame key questions for the future.

HISTORY OF LABORATORY EDUCATION

The history of laboratories in U.S. high schools has been affected by changing views of the nature of science and by society’s changing goals for science education. Between 1850 and the present, educators, scientists, and the public have, at different times, placed more or less emphasis on three sometimes-competing goals for school science education: (1) a theoretical emphasis, stressing the structure of scientific disciplines, the benefits of basic scientific research, and the importance of preparing young people for higher education in science; (2) an applied or practical emphasis, stressing high school students’ ability to understand and apply the science and workings of everyday things; and (3) a liberal or contextual emphasis, stressing the historical development and cultural implications of science (Matthews, 1994). These changing goals have affected the nature and extent of laboratory education.

By the mid-19th century, British writers and philosophers had articulated a view of science as an inductive process (Mill, 1843; Whewell, 1840, 1858). They believed that scientists engaged in painstaking observation of nature to identify and accumulate facts, and only very cautiously did they draw conclusions from these facts to propose new theories. British and American scientists portrayed the newest scientific discoveries—such as the laws of thermodynamics and Darwin’s theory of evolution—to an increas-

ingly interested public as certain knowledge derived through well-established inductive methods. However, scientists and teachers made few efforts to teach students about these methods. High school and undergraduate science courses, like those in history and other subjects, were taught through lectures and textbooks, followed by rote memorization and recitation (Rudolph, 2005). Lecturers emphasized student knowledge of the facts, and science laboratories were not yet accepted as part of higher education. For example, when Benjamin Silliman set up the first chemistry laboratory at Yale in 1847, he paid rent to the college for use of the building and equipped it at his own expense (Whitman, 1898, p. 201). Few students were allowed into these laboratories, which were reserved for scientists’ research, although some apparatus from the laboratory was occasionally brought into the lecture room for demonstrations.

During the 1880s, the situation changed rapidly. Influenced by the example of chemist Justus von Liebig in Germany, leading American universities embraced the German model. In this model, laboratories played a central role as the setting for faculty research and for advanced scientific study by students. Johns Hopkins University established itself as a research institution with student laboratories. Other leading colleges and universities followed suit, and high schools—which were just being established as educational institutions—soon began to create student science laboratories as well.

The primary goal of these early high school laboratories was to prepare students for higher science education in college and university laboratories. The National Education Association produced an influential report noting the “absolute necessity of laboratory work” in the high school science curriculum (National Education Association, 1894) in order to prepare students for undergraduate science studies. As demand for secondary school teachers trained in laboratory methods grew, colleges and universities began offering summer laboratory courses for teachers. In 1895, a zoology professor at Brown University described “large and increasing attendance at our summer schools,” which focused on the dissection of cats and other animals (Bump, 1895, p. 260).

In these early years, American educators emphasized the theoretical, disciplinary goals of science education in order to prepare graduates for further science education. Because of this emphasis, high schools quickly embraced a detailed list of 40 physics experiments published by Harvard instructor Edwin Hall (Harvard University, 1889). The list outlined the experiments, procedures, and equipment necessary to successfully complete all 40 experiments as a condition of admission to study physics at Harvard. Scientific supply companies began selling complete sets of the required equipment to schools and successful completion of the exercises was soon required for admission to study physics at other colleges and universities (Rudolph, 2005).

At that time, most educators and scientists believed that participating in laboratory experiments would help students learn methods of accurate observation and inductive reasoning. However, the focus on prescribing specific experiments and procedures, illustrated by the embrace of the Harvard list, limited the effectiveness of early laboratory education. In the rush to specify laboratory experiments, procedures, and equipment, little attention had been paid to how students might learn from these experiences. Students were expected to simply absorb the methods of inductive reasoning by carrying out experiments according to prescribed procedures (Rudolph, 2005).

Between 1890 and 1910, as U.S. high schools expanded rapidly to absorb a huge influx of new students, a backlash began to develop against the prevailing approach to laboratory education. In a 1901 lecture at the New England Association of College and Secondary Schools, G. Stanley Hall, one of the first American psychologists, criticized high school physics education based on the Harvard list, saying that “boys of this age … want more dynamic physics” (Hall, 1901). Building on Hall’s critique, University of Chicago physicist Charles Mann and other members of the Central Association for Science and Mathematics Teaching launched a complete overhaul of high school physics teaching. Mann and others attacked the “dry bones” of the Harvard experiments, calling for a high school physics curriculum with more personal and social relevance to students. One described lab work as “at best a very artificial means of supplying experiences upon which to build physical concepts” (Woodhull, 1909). Other educators argued that science teaching could be improved by providing more historical perspective, and high schools began reducing the number of laboratory exercises.

By 1910, a clear tension had emerged between those emphasizing laboratory experiments and reformers favoring an emphasis on interesting, practical science content in high school science. However, the focus on content also led to problems, as students became overwhelmed with “interesting” facts. New York’s experience illustrates this tension. In 1890, the New York State Regents exam included questions asking students to design experiments (Champagne and Shiland, 2004). In 1905, the state introduced a new syllabus of physics topics. The content to be covered was so extensive that, over the course of a year, an average of half an hour could be devoted to each topic, virtually eliminating the possibility of including laboratory activities (Matthews, 1994). An outcry to return to more experimentation in science courses resulted, and in 1910 New York State instituted a requirement for 30 science laboratory sessions taking double periods in the syllabus for Regents science courses (courses preparing students for the New York State Regents examinations) (Champagne and Shiland, 2004).

In an influential speech to the American Association for the Advancement of Science (AAAS) in 1909, philosopher and educator John Dewey proposed a solution to the tension between advocates for more laboratory

experimentation and advocates for science education emphasizing practical content. While criticizing science teaching focused strictly on covering large amounts of known content, Dewey also pointed to the flaws in rigid laboratory exercises: “A student may acquire laboratory methods as so much isolated and final stuff, just as he may so acquire material from a textbook…. Many a student had acquired dexterity and skill in laboratory methods without it ever occurring to him that they have anything to do with constructing beliefs that are alone worthy of the title of knowledge” (Dewey, 1910b). Dewey believed that people should leave school with some understanding of the kinds of evidence required to substantiate scientific beliefs. However, he never explicitly described his view of the process by which scientists develop and substantiate such evidence.

In 1910, Dewey wrote a short textbook aimed at helping teachers deal with students as individuals despite rapidly growing enrollments. He analyzed what he called “a complete act of thought,” including five steps: (1) a felt difficulty, (2) its location and definition, (3) suggestion of possible solution, (4) development by reasoning of the bearing of the suggestion, and (5) further observation and experiment leading to its acceptance or rejection (Dewey, 1910a, pp. 68-78). Educators quickly misinterpreted these five steps as a description of the scientific method that could be applied to practical problems. In 1918, William Kilpatrick of Teachers College published a seminal article on the “project method,” which used Dewey’s five steps to address problems of everyday life. The article was eventually reprinted 60,000 times as reformers embraced the idea of engaging students with practical problems, while at the same time teaching them about what were seen as the methods of science (Rudolph, 2005).

During the 1920s, reform-minded teachers struggled to use the project method. Faced with ever-larger classes and state requirements for coverage of science content, they began to look for lists of specific projects that students could undertake, the procedures they could use, and the expected results. Soon, standardized lists of projects were published, and students who had previously been freed from rigid laboratory procedures were now engaged in rigid, specified projects, leading one writer to observe, “the project is little more than a new cloak for the inductive method” (Downing, 1919, p. 571).

Despite these unresolved tensions, laboratory education had become firmly established, and growing numbers of future high school teachers were instructed in teaching laboratory activities. For example, a 1925 textbook for preservice science teachers included a chapter titled “Place of Laboratory Work in the Teaching of Science” followed by three additional chapters on how to teach laboratory science (Brownell and Wade, 1925). Over the following decades, high school science education (including laboratory education) increasingly emphasized practical goals and the benefits of science in everyday life. During World War II, as scientists focused on federally funded

research programs aimed at defense and public health needs, high school science education also emphasized applications of scientific knowledge (Rudolph, 2002).

Changing Goals of Science Education

Following World War II, the flood of “baby boomers” strained the physical and financial resources of public schools. Requests for increased taxes and bond issues led to increasing questions about public schooling. Some academics and policy makers began to criticize the “life adjustment” high school curriculum, which had been designed to meet adolescents’ social, personal, and vocational needs. Instead, they called for a renewed emphasis on the academic disciplines. At the same time, the nation was shaken by the Soviet Union’s explosion of an atomic bomb and the communist takeover of China. By the early 1950s, some federal policy makers began to view a more rigorous, academic high school science curriculum as critical to respond to the Soviet threat.

In 1956, physicist Jerrold Zacharias received a small grant from NSF to establish the Physical Science Study Committee (PSSC) in order to develop a curriculum focusing on physics as a scientific discipline. When the Union of Soviet Socialist Republics launched the space satellite Sputnik the following year, those who had argued that U.S. science education was not rigorous enough appeared vindicated, and a new era of science education began.

Although most historians believe that the overriding goal of the post-Sputnik science education reforms was to create a new generation of U.S. scientists and engineers capable of defending the nation from the Soviet Union, the actual goals were more complex and varied (Rudolph, 2002). Clearly, Congress, the president, and NSF were focused on the goal of preparing more scientists and engineers, as reflected in NSF director Alan Waterman’s 1957 statement (National Science Foundation, 1957, pp. xv-xvi):

Our schools and colleges are badly in need of modern science laboratories and laboratory, demonstration, and research equipment. Most important of all, we need more trained scientists and engineers in many special fields, and especially very many more competent, fully trained teachers of science, notably in our secondary schools. Undoubtedly, by a determined campaign, we can accomplish these ends in our traditional way, but how soon? The process is usually a lengthy one, and there is no time to be lost. Therefore, the pressing question is how quickly can our people act to accomplish these things?

The scientists, however, had another agenda. Over the course of World War II, their research had become increasingly dependent on federal fund-

ing and influenced by federal needs. In physics, for example, federally funded efforts to develop nuclear weapons led research to focus increasingly at the atomic level. In order to maintain public funding while reducing unwanted public pressure on research directions, the scientists sought to use curriculum redesign as a way to build the public’s faith in the expertise of professional scientists (Rudolph, 2002). They wanted to emphasize the humanistic aspects of science, portraying science as an essential element in a broad liberal education. Some scientists sought to reach not only the select group who might become future scientists but also a slightly larger group of elite, mostly white male students who would be future leaders in government and business. They hoped to help these students appreciate the empirical grounding of scientific knowledge and to value and appreciate the role of science in society (Rudolph, 2002).

Changing Views of the Nature of Science

While this shift in the goals of science education was taking place, historians and philosophers were proposing new views of science. In 1958, British chemist Michael Polanyi questioned the ideal of scientific detachment and objectivity, arguing that scientific discovery relies on the personal participation and the creative, original thoughts of scientists (Polanyi, 1958). In the United States, geneticist and science educator Joseph Schwab suggested that scientific methods were specific to each discipline and that all scientific “inquiry” (his term for scientific research) was guided by the current theories and concepts within the discipline (Schwab, 1964). Publication of The Structure of Scientific Revolutions (Kuhn, 1962) a few years later fueled the debate about whether science was truly rational, and whether theory or observation was more important to the scientific enterprise. Over time, this debate subsided, as historians and philosophers of science came to focus on the process of scientific discovery. Increasingly, they recognized that this process involves deductive reasoning (developing inferences from known scientific principles and theories) as well as inductive reasoning (proceeding from particular observations to reach more general theories or conclusions).

Development of New Science Curricula

Although these changing views of the nature of science later led to changes in science education, they had little influence in the immediate aftermath of Sputnik. With NSF support, scientists led a flurry of curriculum development over the next three decades (Matthews, 1994). In addition to the physics text developed by the PSSC, the Biological Sciences Curriculum Study (BSCS) created biology curricula, the Chemical Education Materials group created chemistry materials, and groups of physicists created Intro-

ductory Physical Science and Project Physics. By 1975, NSF supported 28 science curriculum reform projects.

By 1977 over 60 percent of school districts had adopted at least one of the new curricula (Rudolph, 2002). The PSSC program employed high school teachers to train their peers in how to use the curriculum, reaching over half of all high school physics teachers by the late 1960s. However, due to implementation problems that we discuss further below, most schools soon shifted to other texts, and the federal goal of attracting a larger proportion of students to undergraduate science was not achieved (Linn, 1997).

Dissemination of the NSF-funded curriculum development efforts was limited by several weaknesses. Some curriculum developers tried to “teacher proof” their curricula, providing detailed texts, teacher guides, and filmstrips designed to ensure that students faithfully carried out the experiments as intended (Matthews, 1994). Physics teacher and curriculum developer Arnold Arons attributed the limited implementation of most of the NSF-funded curricula to lack of logistical support for science teachers and inadequate teacher training, since “curricular materials, however skilful and imaginative, cannot ‘teach themselves’” (Arons, 1983, p. 117). Case studies showed that schools were slow to change in response to the new curricula and highlighted the central role of the teacher in carrying them out (Stake and Easley, 1978). In his analysis of Project Physics, Welch concluded that the new curriculum accounted for only 5 percent of the variance in student achievement, while other factors, such as teacher effectiveness, student ability, and time on task, played a larger role (Welch, 1979).

Despite their limited diffusion, the new curricula pioneered important new approaches to science education, including elevating the role of laboratory activities in order to help students understand the nature of modern scientific research (Rudolph, 2002). For example, in the PSSC curriculum, Massachusetts Institute of Technology physicist Jerrold Zacharias coordinated laboratory activities with the textbook in order to deepen students’ understanding of the links between theory and experiments. As part of that curriculum, students experimented with a ripple tank, generating wave patterns in water in order to gain understanding of wave models of light. A new definition of the scientific laboratory informed these efforts. The PSSC text explained that a “laboratory” was a way of thinking about scientific investigations—an intellectual process rather than a building with specialized equipment (Rudolph, 2002, p. 131).

The new approach to using laboratory experiences was also apparent in the Science Curriculum Improvement Study. The study group drew on the developmental psychology of Jean Piaget to integrate laboratory experiences with other forms of instruction in a “learning cycle” (Atkin and Karplus, 1962). The learning cycle included (1) exploration of a concept, often through a laboratory experiment; (2) conceptual invention, in which the student or

TABLE 1-1 New Approaches Included in Post-Sputnik Science Curricula

 

New Post-Sputnik Curricula

Traditional Science Curricula

Time of development

After 1955

Before 1955

Emphasis

Nature, structure, processes of science

Knowledge of scientific facts, laws, theories, applications

Role of laboratories

Integrated into the class routine

Secondary applications of concepts previously covered

Goals for students

Higher cognitive skills, appreciation of science

 

SOURCE: Shymansky, Kyle, and Alport (1983). Reprinted with permission of Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc.

teacher (or both) derived the concept from the experimental data, usually during a classroom discussion; and (3) concept application in which the student applied the concept (Karplus and Their, 1967). Evaluations of the instructional materials, which were targeted to elementary school students, revealed that they were more successful than traditional forms of science instruction at enhancing students’ understanding of science concepts, their understanding of the processes of science, and their positive attitudes toward science (Abraham, 1998). Subsequently, the learning cycle approach was applied to development of science curricula for high school and undergraduate students. Research into these more recent curricula confirms that “merely providing students with hands-on laboratory experiences is not by itself enough” (Abraham, 1998, p. 520) to motivate and help them understand science concepts and the nature of science.

In sum, the new approach of integrating laboratory experiences represented a marked change from earlier science education. In contrast to earlier curricula, which included laboratory experiences as secondary applications of concepts previously addressed by the teacher, the new curricula integrated laboratory activities into class routines in order to emphasize the nature and processes of science (Shymansky, Kyle, and Alport, 1983; see Table 1-1 ). Large meta-analyses of evaluations of the post-Sputnik curricula (Shymansky et al., 1983; Shymansky, Hedges, and Woodworth, 1990) found they were more effective than the traditional curriculum in boosting students’ science achievement and interest in science. As we discuss in Chapter 3 , current designs of science curricula that integrate laboratory experiences

into ongoing classroom instruction have proven effective in enhancing students’ science achievement and interest in science.

Discovery Learning and Inquiry

One offshoot of the curriculum development efforts in the 1960s and 1970s was the development of an approach to science learning termed “discovery learning.” In 1959, Harvard cognitive psychologist Jerome Bruner began to develop his ideas about discovery learning as director of an NRC committee convened to evaluate the new NSF-funded curricula. In a book drawing in part on that experience, Bruner suggested that young students are active problem solvers, ready and motivated to learn science by their natural interest in the material world (Bruner, 1960). He argued that children should not be taught isolated science facts, but rather should be helped to discover the structures, or underlying concepts and theories, of science. Bruner’s emphasis on helping students to understand the theoretical structures of the scientific disciplines became confounded with the idea of engaging students with the physical structures of natural phenomena in the laboratory (Matthews, 1994). Developers of NSF-funded curricula embraced this interpretation of Bruner’s ideas, as it leant support to their emphasis on laboratory activities.

On the basis of his observation that scientific knowledge was changing rapidly through large-scale research and development during this postwar period, Joseph Schwab advocated the closely related idea of an “inquiry approach” to science education (Rudolph, 2003). In a seminal article, Schwab argued against teaching science facts, which he termed a “rhetoric of conclusions” (Schwab, 1962, p. 25). Instead, he proposed that teachers engage students with materials that would motivate them to learn about natural phenomena through inquiry while also learning about some of the strengths and weaknesses of the processes of scientific inquiry. He developed a framework to describe the inquiry approach in a biology laboratory. At the highest level of inquiry, the student simply confronts the “raw phenomenon” (Schwab, 1962, p. 55) with no guidance. At the other end of the spectrum, biology students would experience low levels of inquiry, or none at all, if the laboratory manual provides the problem to be investigated, the methods to address the problem, and the solutions. When Herron applied Schwab’s framework to analyze the laboratory manuals included in the PSSC and the BSCS curricula, he found that most of the manuals provided extensive guidance to students and thus did not follow the inquiry approach (Herron, 1971).

The NRC defines inquiry somewhat differently in the National Science Education Standards . Rather than using “inquiry” as an indicator of the amount of guidance provided to students, the NRC described inquiry as

encompassing both “the diverse ways in which scientists study the natural world” (National Research Council, 1996, p. 23) and also students’ activities that support the learning of science concepts and the processes of science. In the NRC definition, student inquiry may include reading about known scientific theories and ideas, posing questions, planning investigations, making observations, using tools to gather and analyze data, proposing explanations, reviewing known theories and concepts in light of empirical data, and communicating the results. The Standards caution that emphasizing inquiry does not mean relying on a single approach to science teaching, suggesting that teachers use a variety of strategies, including reading, laboratory activities, and other approaches to help students learn science (National Research Council, 1996).

Diversity in Schools

During the 1950s, as some scientists developed new science curricula for teaching a small group of mostly white male students, other Americans were much more concerned about the weak quality of racially segregated schools for black children. In 1954, the Supreme Court ruled unanimously that the Topeka, Kansas Board of Education was in violation of the U.S. Constitution because it provided black students with “separate but equal” education. Schools in both the North and the South changed dramatically as formerly all-white schools were integrated. Following the example of the civil rights movement, in the 1970s and the 1980s the women’s liberation movement sought improved education and employment opportunities for girls and women, including opportunities in science. In response, some educators began to seek ways to improve science education for all students, regardless of their race or gender.

1975 to Present

By 1975, the United States had put a man on the moon, concerns about the “space race” had subsided, and substantial NSF funding for science education reform ended. These changes, together with increased concern for equity in science education, heralded a shift in society’s goals for science education. Science educators became less focused on the goal of disciplinary knowledge for science specialists and began to place greater emphasis on a liberal, humanistic view of science education.

Many of the tensions evident in the first 100 years of U.S. high school laboratories have continued over the past 30 years. Scientists, educators, and policy makers continue to disagree about the nature of science, the goals of science education, and the role of the curriculum and the teacher in student

learning. Within this larger dialogue, debate about the value of laboratory activities continues.

Changing Goals for Science Education

National reports issued during the 1980s and 1990s illustrate new views of the nature of science and increased emphasis on liberal goals for science education. In Science for All Americans , the AAAS advocated the achievement of scientific literacy by all U.S. high school students, in order to increase their awareness and understanding of science and the natural world and to develop their ability to think scientifically (American Association for the Advancement of Science, 1989). This seminal report described science as tentative (striving toward objectivity within the constraints of human fallibility) and as a social enterprise, while also discussing the durability of scientific theories, the importance of logical reasoning, and the lack of a single scientific method. In the ongoing debate about the coverage of science content, the AAAS took the position that “curricula must be changed to reduce the sheer amount of material covered” (American Association for the Advancement of Science, 1989, p. 5). Four years later, the AAAS published Benchmarks for Science Literacy , which identified expected competencies at each school grade level in each of the earlier report’s 10 areas of scientific literacy (American Association for the Advancement of Science, 1993).

The NRC’s National Science Education Standards (National Research Council, 1996) built on the AAAS reports, opening with the statement: “This nation has established as a goal that all students should achieve scientific literacy” (p. ix). The NRC proposed national science standards for high school students designed to help all students develop (1) abilities necessary to do scientific inquiry and (2) understandings about scientific inquiry (National Research Council, 1996, p. 173).

In the standards, the NRC suggested a new approach to laboratories that went beyond simply engaging students in experiments. The NRC explicitly recognized that laboratory investigations should be learning experiences, stating that high school students must “actively participate in scientific investigations, and … use the cognitive and manipulative skills associated with the formulation of scientific explanations” (National Research Council, 1996, p. 173).

According to the standards, regardless of the scientific investigation performed, students must use evidence, apply logic, and construct an argument for their proposed explanations. These standards emphasize the importance of creating scientific arguments and explanations for observations made in the laboratory.

While most educators, scientists, and policy makers now agree that scientific literacy for all students is the primary goal of high school science

education, the secondary goals of preparing the future scientific and technical workforce and including science as an essential part of a broad liberal education remain important. In 2004, the NSF National Science Board released a report describing a “troubling decline” in the number of U.S. citizens training to become scientists and engineers at a time when many current scientists and engineers are soon to retire. NSF called for improvements in science education to reverse these trends, which “threaten the economic welfare and security of our country” (National Science Foundation, 2004, p. 1). Another recent study found that secure, well-paying jobs that do not require postsecondary education nonetheless require abilities that may be developed in science laboratories. These include the ability to use inductive and deductive reasoning to arrive at valid conclusions; distinguish among facts and opinions; identify false premises in an argument; and use mathematics to solve problems (Achieve, 2004).

Achieving the goal of scientific literacy for all students, as well as motivating some students to study further in science, may require diverse approaches for the increasingly diverse body of science students, as we discuss in Chapter 2 .

Changing Role of Teachers and Curriculum

Over the past 20 years, science educators have increasingly recognized the complementary roles of curriculum and teachers in helping students learn science. Both evaluations of NSF-funded curricula from the 1960s and more recent research on science learning have highlighted the important role of the teacher in helping students learn through laboratory activities. Cognitive psychologists and science educators have found that the teacher’s expectations, interventions, and actions can help students develop understanding of scientific concepts and ideas (Driver, 1995; Penner, Lehrer, and Schauble, 1998; Roth and Roychoudhury, 1993). In response to this growing awareness, some school districts and institutions of higher education have made efforts to improve laboratory education for current teachers as well as to improve the undergraduate education of future teachers (National Research Council, 2001).

In the early 1980s, NSF began again to fund the development of laboratory-centered high school science curricula. Today, several publishers offer comprehensive packages developed with NSF support, including textbooks, teacher guides, and laboratory materials (and, in some cases, videos and web sites). In 2001, one earth science curriculum, five physical science curricula, five life science curricula, and six integrated science curricula were available for sale, while several others in various science disciplines were still under development (Biological Sciences Curriculum Study, 2001). In contrast to the curriculum development approach of the 1960s, teachers have played an important role in developing and field-testing these newer

curricula and in designing the teacher professional development courses that accompany most of them. However, as in the 1960s and 1970s, only a few of these NSF-funded curricula have been widely adopted. Private publishers have also developed a multitude of new textbooks, laboratory manuals, and laboratory equipment kits in response to the national education standards and the growing national concern about scientific literacy. Nevertheless, most schools today use science curricula that have not been developed, field-tested, or refined on the basis of specific education research (see Chapter 2 ).

CURRENT DEBATES

Clearly, the United States needs high school graduates with scientific literacy—both to meet the economy’s need for skilled workers and future scientists and to develop the scientific habits of mind that can help citizens in their everyday lives. Science is also important as part of a liberal high school education that conveys an important aspect of modern culture. However, the value of laboratory experiences in meeting these national goals has not been clearly established.

Researchers agree neither on the desired learning outcomes of laboratory experiences nor on whether those outcomes are attained. For example, on the basis of a 1978 review of over 80 studies, Bates concluded that there was no conclusive answer to the question, “What does the laboratory accomplish that could not be accomplished as well by less expensive and less time-consuming alternatives?” (Bates, 1978, p. 75). Some experts have suggested that the only contribution of laboratories lies in helping students develop skills in manipulating equipment and acquiring a feel for phenomena but that laboratories cannot help students understand science concepts (Woolnough, 1983; Klopfer, 1990). Others, however, argue that laboratory experiences have the potential to help students understand complex science concepts, but the potential has not been realized (Tobin, 1990; Gunstone and Champagne, 1990).

These debates in the research are reflected in practice. On one hand, most states and school districts continue to invest in laboratory facilities and equipment, many undergraduate institutions require completion of laboratory courses to qualify for admission, and some states require completion of science laboratory courses as a condition of high school graduation. On the other hand, in early 2004, the California Department of Education considered draft criteria for the evaluation of science instructional materials that reflected skepticism about the value of laboratory experiences or other hands-on learning activities. The proposed criteria would have required materials to demonstrate that the state science standards could be comprehensively covered with hands-on activities composing no more than 20 to 25 percent

of instructional time (Linn, 2004). However, in response to opposition, the criteria were changed to require that the instructional materials would comprehensively cover the California science standards with “hands-on activities composing at least 20 to 25 percent of the science instructional program” (California Department of Education, 2004, p. 4, italics added).

The growing variety in laboratory experiences—which may be designed to achieve a variety of different learning outcomes—poses a challenge to resolving these debates. In a recent review of the literature, Hofstein and Lunetta (2004, p. 46) call attention to this variety:

The assumption that laboratory experiences help students understand materials, phenomena, concepts, models and relationships, almost independent of the nature of the laboratory experience, continues to be widespread in spite of sparse data from carefully designed and conducted studies.

As a first step toward understanding the nature of the laboratory experience, the committee developed a definition and a typology of high school science laboratory experiences.

DEFINITION OF LABORATORY EXPERIENCES

Rapid developments in science, technology, and cognitive research have made the traditional definition of science laboratories—as rooms in which students use special equipment to carry out well-defined procedures—obsolete. The committee gathered information on a wide variety of approaches to laboratory education, arriving at the term “laboratory experiences” to describe teaching and learning that may take place in a laboratory room or in other settings:

Laboratory experiences provide opportunities for students to interact directly with the material world (or with data drawn from the material world), using the tools, data collection techniques, models, and theories of science.

This definition includes the following student activities:

Physical manipulation of the real-world substances or systems under investigation. This may include such activities as chemistry experiments, plant or animal dissections in biology, and investigation of rocks or minerals for identification in earth science.

Interaction with simulations. Physical models have been used throughout the history of science teaching (Lunetta, 1998). Today, students can work

with computerized models, or simulations, representing aspects of natural phenomena that cannot be observed directly, because they are very large, very small, very slow, very fast, or very complex. Using simulations, students may model the interaction of molecules in chemistry or manipulate models of cells, animal or plant systems, wave motion, weather patterns, or geological formations.

Interaction with data drawn from the real world. Students may interact with real-world data that are obtained and represented in a variety of forms. For example, they may study photographs to examine characteristics of the moon or other heavenly bodies or analyze emission and absorption spectra in the light from stars. Data may be incorporated in films, DVDs, computer programs, or other formats.

Access to large databases. In many fields of science, researchers have arranged for empirical data to be normalized and aggregated—for example, genome databases, astronomy image collections, databases of climatic events over long time periods, biological field observations. With the help of the Internet, some students sitting in science class can now access these authentic and timely scientific data. Students can manipulate and analyze these data drawn from the real world in new forms of laboratory experiences (Bell, 2005).

Remote access to scientific instruments and observations. A few classrooms around the nation experience laboratory activities enabled by Internet links to remote instruments. Some students and teachers study insects by accessing and controlling an environmental scanning electron microscope (Thakkar et al., 2000), while others control automated telescopes (Gould, 2004).

Although we include all of these types of direct and indirect interaction with the material world in this definition, it does not include student manipulation or analysis of data created by a teacher to replace or substitute for direct interaction with the material world. For example, if a physics teacher presented students with a constructed data set on the weight and required pulling force for boxes pulled across desks with different surfaces, asking the students to analyze these data, the students’ problem-solving activity would not constitute a laboratory experience according to the committee’s definition.

Previous Definitions of Laboratories

In developing its definition, the committee reviewed previous definitions of student laboratories. Hegarty-Hazel (1990, p. 4) defined laboratory work as:

a form of practical work taking place in a purposely assigned environment where students engage in planned learning experiences … [and] interact

with materials to observe and understand phenomena (Some forms of practical work such as field trips are thus excluded).

Lunetta defined laboratories as “experiences in school settings in which students interact with materials to observe and understand the natural world” (Lunetta, 1998, p. 249). However, these definitions include only students’ direct interactions with natural phenomena, whereas we include both such direct interactions and also student interactions with data drawn from the material world. In addition, these earlier definitions confine laboratory experiences to schools or other “purposely assigned environments,” but our definition encompasses student observation and manipulation of natural phenomena in a variety of settings, including science museums and science centers, school gardens, local streams, or nearby geological formations. The committee’s definition also includes students who work as interns in research laboratories, after school or during the summer months. All of these experiences, as well as those that take place in traditional school science laboratories, are included in our definition of laboratory experiences.

Variety in Laboratory Experiences

Both the preceding review of the history of laboratories and the committee’s review of the evidence of student learning in laboratories reveal the limitations of engaging students in replicating the work of scientists. It has become increasingly clear that it is not realistic to expect students to arrive at accepted scientific concepts and ideas by simply experiencing some aspects of scientific research (Millar, 2004). While recognizing these limitations, the committee thinks that laboratory experiences should at least partially reflect the range of activities involved in real scientific research. Providing students with opportunities to participate in a range of scientific activities represents a step toward achieving the learning goals of laboratories identified in Chapter 3 . 1

Historians and philosophers of science now recognize that the well-ordered scientific method taught in many high school classes does not exist. Scientists’ empirical research in the laboratory or the field is one part of a larger process that may include reading and attending conferences to stay abreast of current developments in the discipline and to present work in progress. As Schwab recognized (1964), the “structure” of current theories and concepts in a discipline acts as a guide to further empirical research. The work of scientists may include formulating research questions, generat-

  

The goals of laboratory learning are unlikely to be reached, regardless of what type of laboratory experience is provided, unless the experience is well integrated into a coherent stream of science instruction, incorporates other design elements, and is led by a knowledgeable teacher, as discussed in Chapters and .

ing alternative hypotheses, designing and conducting investigations, and building and revising models to explain the results of their investigations. The process of evaluating and revising models may generate new questions and new investigations (see Table 1-2 ). Recent studies of science indicate that scientists’ interactions with their peers, particularly their response to questions from other scientists, as well as their use of analogies in formulating hypotheses and solving problems, and their responses to unexplained results, all influence their success in making discoveries (Dunbar, 2000). Some scientists concentrate their efforts on developing theory, reading, or conducting thought experiments, while others specialize in direct interactions with the material world (Bell, 2005).

Student laboratory experiences that reflect these aspects of the work of scientists would include learning about the most current concepts and theories through reading, lectures, or discussions; formulating questions; designing and carrying out investigations; creating and revising explanatory models; and presenting their evolving ideas and scientific arguments to others for discussion and evaluation (see Table 1-3 ).

Currently, however, most high schools provide a narrow range of laboratory activities, engaging students primarily in using tools to make observations and gather data, often in order to verify established scientific knowledge. Students rarely have opportunities to formulate research questions or to build and revise explanatory models (see Chapter 4 ).

ORGANIZATION OF THE REPORT

The ability of high school science laboratories to help improve all citizens’ understanding and appreciation of science and prepare the next generation of scientists and engineers is affected by the context in which laboratory experiences take place. Laboratory experiences do not take place in isolation, but are part of the larger fabric of students’ experiences during their high school years. Following this introduction, Chapter 2 describes recent trends in U.S. science education and policies influencing science education, including laboratory experiences. In Chapter 3 we turn to a review of available evidence on student learning in laboratories and identify principles for design of effective laboratory learning environments. Chapter 4 describes current laboratory experiences in U.S. high schools, and Chapter 5 discusses teacher and school readiness for laboratory experiences. In Chapter 6 , we describe the current state of laboratory facilities, equipment, and safety. Finally, in Chapter 7 , we present our conclusions and an agenda designed to help laboratory experiences fulfill their potential role in the high school science curriculum.

TABLE 1-2 A Typology of Scientists’ Activities

Type of Activity

Explanation

Posing a research question

One of the most difficult steps in science is to define a research question. A researchable question may arise out of analysis of data collected, or be based on already known scientific theories and laws, or both. While the initial question is important as a goal to guide the study, flexibility is also valuable. Scientists who respond to unexpected results (that do not fit current theories about the phenomena) by conducting further research to try to explain them are more likely to make discoveries than scientists whose goal is to find evidence consistent with their current knowledge (Dunbar, 1993, 2000; Merton and Barber, 2004).

Formulating hypotheses

Scientists sometimes generate one or more competing hypotheses related to a research question. However, not all scientific research is hypothesis-driven. The human genome project is an example of bulk data collection not driven by a hypothesis (Davies, 2001).

Designing investigations

Scientists design investigations—which may involve experimental or observational methods—to answer their research questions. Investigations may be designed to test one or more competing hypotheses.

Making observations, gathering, and analyzing data

Observing natural phenomena is often an essential part of a research project. Scientists use a variety of tools and procedures to make observations and gather data, searching for patterns and possible cause-and-effect relationships that may be studied further. Observations may be guided by theory, may be designed to test a hypothesis, or may explore unknown phenomena (Duschl, 2004).

Building or revising scientific models

Although modeling scientific phenomena has always been a central practice of science, it has only been recognized as a driving force in generating scientific knowledge over the past 50 years (Duschl, 2004). Scientists draw on their imagination and existing knowledge as they interpret data in order to develop explanatory models or theories (Driver et al., 1996). These models serve as tentative explanations for observations, subject to revision based on further observations or further study of known scientific principles or theories.

Evaluating, testing or verifying models

One of the defining characteristics of science is that the evidence, methods, and assumptions used to arrive at a proposed discovery are described and publicly disclosed so that other scientists can judge their validity (Hull, 1988; Longino, 1990, 1994). In one recent example, astronomers at the Green Bank radio telescope in West Virginia identified glycoaldehyde, a building block of DNA and RNA, in an extremely cold area of the Milky Way (Hollis et al., 2004). The discovery of this substance in an area of the galaxy where comets form suggests the possibility that the ingredients necessary to create life might have been carried to Earth by a comet billions of years ago. In a news report of the discovery, the director of the Arizona Radio Observatory, who had criticized the Green Bank astronomers for not being thorough enough, said her students had replicated the Green Bank observations (Gugliotta, 2004, p. A7).

TABLE 1-3 A Typology of School Laboratory Experiences

Type of Laboratory Experience

Description

Posing a research question

Formulating a testable question can be a great challenge for high school students. Some laboratory experiences may engage students in formulating and assessing the importance of alternative questions.

Using laboratory tools and procedures

Some laboratory experiences may be designed primarily to develop students’ skills in making measurements and safely and correctly handling materials and equipment (Lunetta, 1998). These “prelab” exercises can help reduce errors and increase safety in subsequent laboratory experiences (Millar, 2004).

Formulating hypotheses

Like formulating a research question, formulating alternative hypotheses is challenging for high school students. However, some new curricula have led to improvement in formulating hypotheses (see ).

Designing investigations

Laboratory experiences integrated with other forms of instruction and explicitly designed with this goal in mind can help students learn to design investigations (White and Frederiksen, 1998).

Making observations, gathering, and analyzing data

Science teachers may engage students in laboratory activities that involve observing phenomena and in gathering, recording, and analyzing data in search of possible patterns or explanations.

Building or revising models

Laboratory experiences may engage students in interpreting data that they gather directly from the material world or data drawn from large scientific data sets in order to create, test, and refine models. Scientific modeling is a core element in several innovative laboratory-centered science curricula that appear to enhance student learning (Bell, 2005).

Evaluating, testing, or verifying explanatory models (including known scientific theories and models)

Laboratory experiences may be designed to engage students in verifying scientific ideas that they have learned about through reading, lectures, or work with computer simulations. Such experiences can help students to understand accepted scientific concepts through their own direct experiences (Millar, 2004). However, verification laboratory activities are quite different from the activities of scientists who rigorously test a proposed scientific theory or discovery in order to defend, refute, or revise it.

Since the late 19th century, high school students in the United States have carried out laboratory investigations as part of their science classes. Since that time, changes in science, education, and American society have influenced the role of laboratory experiences in the high school science curriculum. At the turn of the 20th century, high school science laboratory experiences were designed primarily to prepare a select group of young people for further scientific study at research universities. During the period between World War I and World War II, many high schools emphasized the more practical aspects of science, engaging students in laboratory projects related to daily life. In the 1950s and 1960s, science curricula were redesigned to integrate laboratory experiences into classroom instruction, with the goal of increasing public appreciation of science.

Policy makers, scientists, and educators agree that high school graduates today, more than ever, need a basic understanding of science and technology to function effectively in an increasingly complex, technological society. They seek to help students understand the nature of science and to develop both the inductive and deductive reasoning skills that scientists apply in their work. However, researchers and educators do not agree on how to define high school science laboratories or on their purposes, hampering the accumulation of evidence that might guide improvements in laboratory education. Gaps in the research and in capturing the knowledge of expert science teachers make it difficult to reach precise conclusions on the best approaches to laboratory teaching and learning.

In order to provide a focus for the study, the committee defines laboratory experiences as follows: laboratory experiences provide opportunities for students to interact directly with the material world (or with data drawn from the material world), using the tools, data collection techniques, models, and theories of science. This definition includes a variety of types of laboratory experiences, reflecting the range of activities that scientists engage in. The following chapters discuss the educational context; laboratory experiences and student learning; current laboratory experiences, teacher and school readiness, facilities, equipment, and safety; and laboratory experiences for the 21st century.

Abraham, M.R. (1998). The learning cycle approach as a strategy for instruction in science. In B.J. Fraser and K.G. Tobin (Eds.), International handbook of science education . London, England: Kluwer Academic.

Achieve. (2004). Ready or not: Creating a high school diploma that counts . (The American Diploma Project.) Washington, DC: Author.

American Association for the Advancement of Science. (1989). Science for all Americans . Washington, DC: Author.

American Association for the Advancement of Science. (1993). Benchmarks for science literacy . Washington, DC: Author.

Arons, A. (1983). Achieving wider scientific literacy. Daedalus , 112 (2), 91-122.

Atkin, J.M., and Karplus, R. (1962). Discovery or invention? The Science Teacher , 29 , 45-51.

Bates, G.R. (1978). The role of the laboratory in science teaching. School Science and Mathematics , 83 , 165-169.

Bell, P. (2005). The school science laboratory: Considerations of learning, technology , and scientific practice . Paper prepared for the Committee on High School Science Laboratories: Role and Vision. Available at: http://www7.nationalacademies.org/bose/July_12-13_2004_High_School_Labs_Meeting_Agenda.html .

Biological Sciences Curriculum Study. (2001). Profiles in science: A guide to NSF - funded high school instructional materials . Colorado Springs, CO: Author. Available at: http://www.bscs.org/page.asp?id=Professional_Development|Resources|Profiles_In_Science [accessed Sept. 2004].

Brownell, H., and Wade, F.B. (1925). The teaching of science and the science teacher . New York: Century Company.

Bruner, J.S. (1960). The process of education . New York: Vintage.

Bump, H.C. (1895). Laboratory teaching of large classes—Zoology. [Letter to the editor]. Science, New Series , 1 (10), 260.

California Department of Education. (2004). Criteria for evaluating instructional materials in science, kindergarten through grade eight . Available at: http://www.cde.ca.gov/ci/sc/cf/documents/scicriteria04.pdf [accessed Nov. 2004].

Champagne, A., and Shiland, T. (2004). Large-scale assessment and the high school science laboratory . Presentation to the Committee on High School Science Laboratories: Role and Vision, June 3-4, National Research Council, Washington, DC. Available at: http://www7.nationalacademies.org/bose/June_3-4_2004_High_School_Labs_Meeting_Agenda.html [accessed Jan. 2004].

Davies, K. (2001). Cracking the genome: Inside the race to unlock human DNA . New York: Free Press.

Dewey, J. (1910a). How we think . Boston, MA: D.C. Heath.

Dewey, J. (1910b). Science as subject-matter and method. Science, New Series , 31 , 122, 125.

Downing, E.R. (1919). The scientific method and the problems of school science. School and Society , 10 , 571.

Driver, R. (1995). Constructivist approaches to science teaching. In L.P. Steffe and J. Gale (Eds.), Constructivism in education (pp. 385-400). Hillsdale, NJ: Lawrence Erlbaum.

Driver, R., Leach, J., Millar, R., and Scott, P. (1996). Young people’s images of science . Buckingham, U.K.: Open University Press.

Dunbar, K. (1993). Concept discovery in a scientific domain. Cognitive Science , 17 , 397-434.

Dunbar, K. (2000). How scientists think in the real world: Implications for science education. Journal of Applied Developmental Psychology 21 (1), 49-58.

Duschl, R. (2004). The HS lab experience: Reconsidering the role of evidence, explanation, and the language of science . Paper prepared for the Committee on High School Science Laboratories: Role and Vision, July 12-13, National Research Council, Washington, DC. Available at: http://www7.nationalacademies.org/bose/July_12-13_2004_High_School_Labs_Meeting_Agenda.html [accessed Nov. 2004].

Gould, R. (2004). About micro observatory . Cambridge, MA: Harvard University. Available at: http://mo-www.harvard.edu/MicroObservatory/ [accessed Sept. 2004].

Gugliotta, G. (2004). Space sugar a clue to life’s origins. The Washington Post , September 27.

Gunstone, R.F., and Champagne, A.B. (1990). Promoting conceptual change in the laboratory. In E. Hegarty-Hazel (Ed.), The student laboratory and the science curriculum (pp. 159-182). London, England: Routledge.

Hall, G.S. (1901). How far is the present high-school and early college training adapted to the nature and needs of adolescents? School Review , 9 , 652.

Harvard University. (1889). Descriptive list of elementary physical experiments intended for use in preparing students for Harvard College . Cambridge, MA: Author.

Hegarty-Hazel, E. (1990). Overview. In E. Hegarty-Hazel (Ed.), The student laboratory and the science curriculum . London, England: Routledge.

Herron, M.D. (1971). The nature of scientific enquiry. School Review, 79, 171-212.

Hilosky, A., Sutman, F., and Schmuckler, J. (1998). Is laboratory-based instruction in beginning college-level chemistry worth the effort and expense? Journal of Chemical Education , 75 (1), 103.

Hofstein, A., and Lunetta, V.N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education , 88 , 28-54.

Hollis, J.M., Jewell, P.R., Lovas, F.J., and Remijan, J. (2004, September 20). Green Bank telescope observations of interstellar glycolaldehyde: Low-temperature sugar. Astrophysical Journal , 613 , L45-L48.

Hull, D. (1988). Science as a process . Chicago: University of Chicago Press.

Karplus, R., and Their, H.D. (1967). A new look at elementary school science . Chicago: Rand McNally.

Klopfer, L.E. (1990). Learning scientific enquiry in the student laboratory. In E. Hegarty-Hazel (Ed.), The student laboratory and the science curriculum (pp. 95-118). London, England: Routledge.

Kuhn, T.S. (1962). The structure of scientific revolutions . Chicago: University of Chicago Press.

Linn, M. (2004). High school science laboratories: How can technology contribute? Presentation to the Committee on High School Science Laboratories: Role and Vision. June 3-4, National Research Council, Washington, DC. Available at: http://www7.nationalacademies.org/bose/June_3-4_2004_High_School_Labs_Meeting_Agenda.html [accessed April 2005].

Linn, M.C. (1997). The role of the laboratory in science learning. Elementary School Journal , 97 (4), 401-417.

Longino, H. (1990). Science as social knowledge . Princeton, NJ: Princeton University Press.

Longino, H. (1994). The fate of knowledge in social theories of science. In F.F. Schmitt (Ed.), Socializing epistemology: The social dimensions of knowledge (pp. 135-158). Lanham, MD: Rowman and Littlefield.

Lunetta, V. (1998). The school science laboratory: Historical perspectives and contexts for contemporary teaching . In B.J. Fraser and K.G. Tobin (Eds.), International handbook of science education (pp. 249-262). London, England: Kluwer Academic.

Matthews, M.R. (1994). Science teaching: The role of history and philosophy of science . New York: Routledge.

Merton, R.K., and Barber, E. (2004). The travels and adventures of serendipity . Princeton, NJ: Princeton University Press.

Mill, J.S. (1963). System of logic, ratiocinative and inductive. In J.M. Robson (Ed.), Collected works of John Stuart Mill . Toronto: University of Toronto Press (Original work published 1843).

Millar, R. (2004). The role of practical work in the teaching and learning of science . Paper prepared for the Committee on High School Science Laboratories: Role and Vision, June 3-4, National Research Council, Washington, DC. Available at: http://www7.nationalacademies.org/bose/June3-4_2004_High_School_Labs_Meeting_Agenda.html [accessed April 2005].

National Education Association. (1894). Report of the Committee of Ten on secondary school studies . New York: American Book Company.

National Research Council. (1996). National science education standards . National Committee on Science Education Standards and Assessment, Center for Science, Mathematics, and Engineering Education. Washington, DC: National Academy Press.

National Research Council. (2001). Educating teachers of science, mathematics, and technology: New practices for the new millennium . Committee on Science and Mathematics Teacher Preparation, Center for Education. Washington, DC: National Academy Press.

National Science Foundation. (1957). Annual report . Available at: http://www.nsf.gov/pubs/1957/annualreports/start.htm [accessed Nov. 2004].

National Science Foundation. (2004). An emerging and critical problem of the science and engineering workforce . Washington, DC: Author. Available at: http://www.nsf.gov/sbe/srs/nsb0407/start.htm [accessed Sept. 2003].

Penner, D.E., Lehrer, R., and Schauble, L. (1998). From physical models to biomechanics: A design based modeling approach. Journal of the Learning Sciences , 7 , 429-449.

Polanyi, M. (1958). Personal knowledge: Towards a post-critical philosophy . London, England: Routledge.

Roth, W.M., and Roychoudhury, A. (1993). The development of science process skills in authentic contexts. Journal of Research in Science Teaching , 30 , 127-152.

Rudolph, J.L. (2002). Scientists in the classroom: The cold war reconstruction of American science education . New York: Palgrave.

Rudolph, J.L. (2003). Portraying epistemology: School science in historical context. Science Education , 87 , 64-79.

Rudolph, J.L. (2005). Epistemology for the masses: The origins of the “scientific method” in American schools. History of Education Quarterly , 45(2), 341-376.

Schwab, J.J. (1962). The teaching of science as enquiry. In P.F. Brandwein (Ed.), The teaching of science (pp. 1-103). Cambridge, MA: Harvard University Press.

Schwab, J.J. (1964). The structure of the natural sciences. In G.W. Ford and L. Pugno (Eds.), The structure of knowledge and the curriculum (pp. 31-49). Chicago: Rand McNally.

Shymansky, J.A., Hedges, L.B., and Woodworth, G. (1990). A re-assessment of the effects of inquiry-based science curriculum of the sixties on student achievement. Journal of Research in Science Teaching , 20 , 387-404.

Shymansky, J.A., Kyle, W.C., and Alport, J.M. (1983). The effects of new science curricula on student performance. Journal of Research in Science Teaching , 20 , 387-404.

Stake, R.E., and Easley, J.A. (1978). Case studies in science education . Center for Instructional Research and Curriculum Evaluation and Committee on Culture and Cognition. Urbana: University of Illinois at Urbana-Champagne.

Thakkar, U., Carragher, B., Carroll, L., Conway, C., Grosser, B., Kisseberth, N., Potter, C.S., Robinson, S., Sinn-Hanlon, J., Stone, D., and Weber, D. (2000). Formative evaluation of Bugscope: A sustainable world wide laboratory for K-12 . Paper prepared for the annual meeting of the American Educational Research Association, Special Interest Group on Advanced Technologies for Learning, April 24-28, New Orleans, LA. Available at: http://bugscope.beckman.uiuc.edu/publications/index.htm#papers [accessed May 2005].

Tobin, K. 1990. Research on science laboratory activities: In pursuit of better questions and answers to improve learning. School Science and Mathematics , 90 (5), 403-418.

Welch, W.W. (1979). Twenty years of science education development: A look back. Review of Research in Education , 7 , 282-306.

Whewell, W. (1840). Philosophy of the inductive sciences, founded upon their history . London, England: John W. Parker.

Whewell, W. (1858). The history of the inductive sciences, from the earliest to the present time (3rd edition). New York: Appleton.

White, B.Y., and Frederiksen, J.R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction , 16 (1), 3-118.

Whitman, F.P. (1898). The beginnings of laboratory teaching in America. Science , New Series , 8 (190), 201-206.

Woodhull, J.F. (1909). How the public will solve the problems of science teaching. School Science and Mathematics , 9 , 276.

Woolnough, B.E. (1983). Exercises, investigations and experiences. Physics Education , 18 , 60-63.

Laboratory experiences as a part of most U.S. high school science curricula have been taken for granted for decades, but they have rarely been carefully examined. What do they contribute to science learning? What can they contribute to science learning? What is the current status of labs in our nation�s high schools as a context for learning science? This book looks at a range of questions about how laboratory experiences fit into U.S. high schools:

  • What is effective laboratory teaching?
  • What does research tell us about learning in high school science labs?
  • How should student learning in laboratory experiences be assessed?
  • Do all student have access to laboratory experiences?
  • What changes need to be made to improve laboratory experiences for high school students?
  • How can school organization contribute to effective laboratory teaching?

With increased attention to the U.S. education system and student outcomes, no part of the high school curriculum should escape scrutiny. This timely book investigates factors that influence a high school laboratory experience, looking closely at what currently takes place and what the goals of those experiences are and should be. Science educators, school administrators, policy makers, and parents will all benefit from a better understanding of the need for laboratory experiences to be an integral part of the science curriculum—and how that can be accomplished.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction
  • Introduction and definitions
  • History and importance

Company laboratories

Government laboratories.

  • Independent laboratories
  • Research associations
  • University laboratories
  • The role of government
  • The management of research and development activities
  • Value engineering and cost-benefit analysis
  • PERT and CPM

network diagram for the Critical Path Method problem

Types of laboratories

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Corporate Finance Institiute - Research and Development
  • Business LibreTexts - An Introduction to Research and Development
  • Econlib - Research and Development
  • The Canadian Encyclopedia - Industrial Research and Development
  • University of California at Berkeley - Econometrics Laboratory - Research and Development
  • Table Of Contents

Company laboratories fall into three clear categories: research laboratories, development laboratories, and test laboratories.

Recent News

Research laboratories carry out both basic and applied research work. They usually support a company as a whole, rather than any one division or department. They may be located at a considerable distance from any other part of the company and report to the highest levels of corporate management or even to the board of directors. AT&T Bell Laboratories , the research arm of American Telephone & Telegraph Company (AT&T), is an outstanding example. There the transistor and coaxial cable were developed, pioneer work in satellite communications was carried out, and many computer innovations have been developed.

Development laboratories are specifically committed to the support of particular processes or product lines. They are normally under the direct control of the division responsible for manufacture and marketing and are often located close to the manufacturing area. Frequently used as problem solvers by many sections of each company, development laboratories maintain close contacts with people in manufacturing, advertising, marketing, sales, and other departments with responsibilities for products or processes.

Test laboratories may serve a whole company or group of companies or only a single manufacturing establishment. They are responsible for monitoring the quality of output. This often requires chemical, physical, and metallurgical analyses of incoming materials, as well as checks at every stage of a process. These laboratories may be a part of a manufacturing organization, but many companies give them an independent status.

The pattern followed by different countries varies widely. The general policy of the U.S . government has been not to set up laboratories of its own, even for military work, but to offer research and development contracts, usually on the basis of competitive bidding, to private companies. The most important reason for this has been a belief that the right place to develop equipment is very close to the place at which it will eventually be manufactured.

There are exceptions to the rule. One is the type of laboratory represented by the National Bureau of Standards , a central authority on problems of measurement and standardization . Another is the type of laboratory supported by the U.S. Department of Agriculture , set up by the government in the belief that research in this field is necessary but that the industry had neither the finances nor the organization to maintain it. The continuing support of successive administrations has resulted in a large and authoritative body carrying out research over a wide field for the benefit of the farming community and thus, indirectly, of the whole nation.

A third type of government laboratory is represented by the U.S. Atomic Energy Commission and its successors, the Energy Research and Development Administration and the Department of Energy’s Office of Energy Research. In this case the U.S. government recognized a situation of potential danger and also opportunity of such a nature that it was not practicable for it to be handled by private individuals. It therefore set up a body to deal with the situation, allocating funds directly and maintaining close control of the objectives and timing of research. A similar challenge is faced by the National Aeronautics and Space Administration . Although much of the detailed research and development work is contracted to private industry, overall control, as well as much of the most important work, is handled directly by the central organization.

A different type of policy has been followed in the United Kingdom . A chain of government laboratories supports the requirements of the armed forces and carries out a great deal of the basic and applied research from which new weapons and military techniques emerge. The government laboratories play a major part in negotiating and monitoring the contracts placed with private industry for the eventual development and production of equipment for the armed forces.

In addition to the government laboratories that focus on military R and D, the U.K. government supports civilian establishments such as the National Engineering Laboratory. These have a considerable degree of independence in selecting projects that will bring the greatest benefit to industry as a whole, and their results are made available to all. They maintain close liaison with the research associations (see below Research associations ) and with private industry and attempt to concentrate their work in areas that for one reason or another are not covered elsewhere.

In Germany , as in the United Kingdom, defense research is the responsibility of a chain of government laboratories, but they are much smaller. Most of the work is done for them on contract by the research associations. They place very little research with private industry and call upon it only in the later stages of development.

In Japan there is a chain of laboratories that serves the needs of government departments. They work closely with the research associations that support particular industries. The military laboratories carry out the bulk of defense research and development themselves, and they are also responsible for the placing of contracts with private industry. These are usually confined to the later stages of development and are expected to lead almost directly to production.

The French system is similar, but the directly controlled government laboratories are even smaller and do little more than direct and coordinate work done by the research associations.

In spite of differences in organization, the day-to-day conduct of government-sponsored research and development in all countries has much in common. In every case, a comparatively small number of government employees keep in constant touch with the whole of the scientific and technical community and dispense contracts in the way they consider will make the best use of the resources available in the broad national interest. The fact that in some countries it is done in laboratories under direct governmental control, in others in those under private control, and in yet others in those in which responsibility is split is of secondary importance. In every case, government support is important. Even in the United States , with its relatively few government laboratories, government research contracts account for almost half of all R and D expenditures.

Steven R. Shaw Ph.D.

Building a Successful Research Lab Culture

A productive, joyful, and positive research group does not happen accidentally..

Posted July 2, 2022 | Reviewed by Vanessa Lancaster

  • The difference between a positive graduate school experience and a miserable one is the quality of the research supervisor and lab environment.
  • Creating a productive and humane lab culture requires planning, communication, and modeling.
  • Communicating a set of values is a start to creating a productive and positive research lab culture.

A research lab in psychology is the general term for a team of students, scholars, and colleagues working together under a principal investigator's leadership .

The fall term brings new graduate students, visiting scholars, post-docs, and undergraduate research volunteers into research labs. Integrating new people into the lab and re-incorporating returning students and collaborators creates new issues. It is important to establish a culture quickly so the work can be done efficiently, cooperatively, and joyfully.

It is easy to assume that returning members of the lab remember the key features of the lab culture and that new members will somehow magically absorb key values. In the hustle of day-to-day work, values and culture can be forgotten or lost. Labs can easily find themselves adrift, unhappy, unproductive, and stagnant. The difference between a positive student experience and a miserable one is often the culture of the research lab.

There is nothing that replaces the modeling of values by the principal investigator. In addition, these values must be explicit, implemented, evaluated, and rewarded. Building a culture is a long-term process. However, a quick overview of the credo of the lab can be a starting place for setting expectations for all lab work. Below are ten values for establishing a productive lab culture.

Strive to become a professional, but do not forget to be a human

Work every single day to become a useful professional. That is, conscientious , independent, skilled, knowledgeable, ethical, and courageous, but realize that everyone will fall short some days. Always focus on being better tomorrow than you were today. Lab members will never have a problem with me if they do something every day to improve.

You will need to trust that I define my success by your success

My job is to prepare students as professionals. I know what it takes to be a successful psychologist, and the more successful members are, the more successful I am. I welcome challenges. A reasonable question lab members should ask me frequently is, “how will this task help me achieve my professional goals ?”

Consider mental and physical well-being a central part of graduate education . Lab members should feel comfortable discussing issues and concerns. Long-term development as a person and as a professional requires attention to physical and emotional well-being. At the first sign of any issues, let me know, and we will develop a plan. In addition, look after peers. We are a team and need to take care of each other. Although it may be obvious, harassment, sabotage, creating a hostile environment, or any other behaviors detrimental to the team's wellness, our clients or individuals will result in removal from the lab.

Write it down or it did not happen

Writing is an essential component of graduate school. Any thoughts, ideas, findings, notions, and other contributions are only real if they are written. This is the most effective way to remember, communicate, and create a trail of thinking that will have an important influence on open research and clinical practice. Writing in a lab diary is also a mechanism of accountability and minimizing misunderstandings.

We all do better when we all do better

There is inevitable competition for authorship, grants, fellowships, and the time and attention of senior members. However, this lab is a team. The success of any one of us reflects on all. Share credit, be generous with authorship, listen to the ideas of others, be genuinely happy for peers' success, and assist others' work. When this becomes a habit, everyone benefits.

Do more. Everything takes three times longer than you expect

Doing more than the bare minimum is an essential part of professionalism. In addition, it is nearly impossible to plan time and work accurately. No matter how much time is devoted and planned for a specific task, the number of hours can be multiplied by three. Just achieving minimum expectations will require much more time and energy than expected.

lab research

Attention to detail

I completely dismiss the concept that “idea people” are important and effective parts of the lab. Ideas are only important if paired with an intense work habit, focus on implementation, and single-minded attention to detail. The focus on detail will certainly annoy most lab members at some point. Attention to detail is the difference between a vague idea floating in the ether and high-quality research and clinical practice.

Ethical behavior

Too often, students and professionals gloss over ethics because they believe they are good people who would never do anything evil or wrong. Ethical violations are not usually due to bad actors. Ethical violations are typically committed by good people who are tired, emotionally overwhelmed, stressed , overloaded with work, up against timelines, or ignorant of the exact ethical standards and procedures to be followed. Ethical guidelines need to be memorized, automatized, and second nature.

Invest in preparation

Writing activity is the tip of the iceberg. For every hour of writing, there are at least two hours of planning and four hours of reading (not to mention: seemingly endless hours of data collection and analysis). Be prepared for every meeting by having questions or information to present. Investment in preparation allows for improved scholarship, reduced stress, clearer thinking, and improved overall productivity and success.

Develop productive habits

Inspiration comes and goes, but habit remains. To be an effective worker in the research lab, an aspirational goal should be to read 100 pages daily and write 1000 words daily. This will take time, practice, and training. Whatever habits are developed, focus on being the most productive person you can be. Positive habits create professionalism.

Developing a culture is far more than ten simplistic and vague ideas. This only becomes a culture when these ten points are modeled and lived. However, communicating goals and expectations is a good way to begin.

Steven R. Shaw Ph.D.

Steven R. Shaw, Ph.D., is an associate professor of Educational and Counselling Psychology at McGill University in Montreal, QC, Canada.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • TECHNOLOGY FEATURE
  • 28 June 2021
  • Update 08 July 2021

Digital secrets of successful lab management

  • Kendall Powell 0

Kendall Powell is a freelance writer in Boulder, Colorado.

You can also search for this author in PubMed   Google Scholar

Illustration by The Project Twins

Christie Bahlai felt as if she was buried under a pile of virtual sticky notes. Like many group leaders, the computational ecologist appreciates that her team uses the messaging app Slack for virtual ‘water-cooler talk’. But she finds the app lacking when it comes to managing the various projects her laboratory is working on — threads, ideas and long-term goals get lost as conversations and memes rush on.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

Nature 595 , 138-139 (2021)

doi: https://doi.org/10.1038/d41586-021-01752-y

Updates & Corrections

Update 08 July 2021 : Shortly after this story was published, Bookkit was rebranded to have the same name as its parent company, Clustermarket. This has now been reflected in the text.

Related Articles

lab research

  • Research management
  • Communication

What it means to be a successful male academic

What it means to be a successful male academic

Career Column 26 JUN 24

Is science’s dominant funding model broken?

Is science’s dominant funding model broken?

Editorial 26 JUN 24

How researchers navigate a PhD later in life

How researchers navigate a PhD later in life

Career Feature 25 JUN 24

How I’m using AI tools to help universities maximize research impacts

How I’m using AI tools to help universities maximize research impacts

World View 26 JUN 24

The strategy behind one of the most successful labs in the world

The strategy behind one of the most successful labs in the world

Comment 26 JUN 24

How researchers and their managers can build an actionable career-development plan

How researchers and their managers can build an actionable career-development plan

Career Column 17 JUN 24

Securing your science: the researcher’s guide to financial management

Securing your science: the researcher’s guide to financial management

Career Feature 14 JUN 24

‘Rainbow’, ‘like a cricket’: every bird in South Africa now has an isiZulu name

‘Rainbow’, ‘like a cricket’: every bird in South Africa now has an isiZulu name

News 06 JUN 24

Technician - Senior Research Technician in Patient-Derived Tumour Organoids for Drug Resistance ERC

APPLICATION CLOSING DATE: July 26th, 2024 Join the Forefront of Cancer Research: Become a Research Technician / Senior Research Technician in Pati...

Human Technopole

lab research

Director, Office of Cancer Centers

Director, Office of Cancer Centers Office of the Director National Cancer Institute National Institutes of Health Department of Health and Human Se...

Bethesda, Maryland (US)

National Cancer Institute - OD

2024 Recruitment notice Shenzhen Institute of Synthetic Biology: Shenzhen, China

The wide-ranging expertise drawing from technical, engineering or science professions...

Shenzhen,China

Shenzhen Institute of Synthetic Biology

lab research

Recruitment of Talent Positions at Shengjing Hospital of China Medical University

Call for top experts and scholars in the field of science and technology.

Shenyang, Liaoning, China

Shengjing Hospital of China Medical University

lab research

Position Opening for Principal Investigator GIBH

We aim to foster cutting-edge scientific and technological advancements in the field of molecular tissue biology at the single-cell level.

Guangzhou, Guangdong, China

Guangzhou Institutes of Biomedicine and Health(GIBH), Chinese Academy of Sciences

lab research

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Academic writing
  • How to write a lab report

How To Write A Lab Report | Step-by-Step Guide & Examples

Published on May 20, 2021 by Pritha Bhandari . Revised on July 23, 2023.

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment. The main purpose of a lab report is to demonstrate your understanding of the scientific method by performing and evaluating a hands-on lab experiment. This type of assignment is usually shorter than a research paper .

Lab reports are commonly used in science, technology, engineering, and mathematics (STEM) fields. This article focuses on how to structure and write a lab report.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Structuring a lab report, introduction, other interesting articles, frequently asked questions about lab reports.

The sections of a lab report can vary between scientific fields and course requirements, but they usually contain the purpose, methods, and findings of a lab experiment .

Each section of a lab report has its own purpose.

  • Title: expresses the topic of your study
  • Abstract : summarizes your research aims, methods, results, and conclusions
  • Introduction: establishes the context needed to understand the topic
  • Method: describes the materials and procedures used in the experiment
  • Results: reports all descriptive and inferential statistical analyses
  • Discussion: interprets and evaluates results and identifies limitations
  • Conclusion: sums up the main findings of your experiment
  • References: list of all sources cited using a specific style (e.g. APA )
  • Appendices : contains lengthy materials, procedures, tables or figures

Although most lab reports contain these sections, some sections can be omitted or combined with others. For example, some lab reports contain a brief section on research aims instead of an introduction, and a separate conclusion is not always required.

If you’re not sure, it’s best to check your lab report requirements with your instructor.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Your title provides the first impression of your lab report – effective titles communicate the topic and/or the findings of your study in specific terms.

Create a title that directly conveys the main focus or purpose of your study. It doesn’t need to be creative or thought-provoking, but it should be informative.

  • The effects of varying nitrogen levels on tomato plant height.
  • Testing the universality of the McGurk effect.
  • Comparing the viscosity of common liquids found in kitchens.

An abstract condenses a lab report into a brief overview of about 150–300 words. It should provide readers with a compact version of the research aims, the methods and materials used, the main results, and the final conclusion.

Think of it as a way of giving readers a preview of your full lab report. Write the abstract last, in the past tense, after you’ve drafted all the other sections of your report, so you’ll be able to succinctly summarize each section.

To write a lab report abstract, use these guiding questions:

  • What is the wider context of your study?
  • What research question were you trying to answer?
  • How did you perform the experiment?
  • What did your results show?
  • How did you interpret your results?
  • What is the importance of your findings?

Nitrogen is a necessary nutrient for high quality plants. Tomatoes, one of the most consumed fruits worldwide, rely on nitrogen for healthy leaves and stems to grow fruit. This experiment tested whether nitrogen levels affected tomato plant height in a controlled setting. It was expected that higher levels of nitrogen fertilizer would yield taller tomato plants.

Levels of nitrogen fertilizer were varied between three groups of tomato plants. The control group did not receive any nitrogen fertilizer, while one experimental group received low levels of nitrogen fertilizer, and a second experimental group received high levels of nitrogen fertilizer. All plants were grown from seeds, and heights were measured 50 days into the experiment.

The effects of nitrogen levels on plant height were tested between groups using an ANOVA. The plants with the highest level of nitrogen fertilizer were the tallest, while the plants with low levels of nitrogen exceeded the control group plants in height. In line with expectations and previous findings, the effects of nitrogen levels on plant height were statistically significant. This study strengthens the importance of nitrogen for tomato plants.

Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure:

  • Start with the broad, general research topic
  • Narrow your topic down your specific study focus
  • End with a clear research question

Begin by providing background information on your research topic and explaining why it’s important in a broad real-world or theoretical context. Describe relevant previous research on your topic and note how your study may confirm it or expand it, or fill a gap in the research field.

This lab experiment builds on previous research from Haque, Paul, and Sarker (2011), who demonstrated that tomato plant yield increased at higher levels of nitrogen. However, the present research focuses on plant height as a growth indicator and uses a lab-controlled setting instead.

Next, go into detail on the theoretical basis for your study and describe any directly relevant laws or equations that you’ll be using. State your main research aims and expectations by outlining your hypotheses .

Based on the importance of nitrogen for tomato plants, the primary hypothesis was that the plants with the high levels of nitrogen would grow the tallest. The secondary hypothesis was that plants with low levels of nitrogen would grow taller than plants with no nitrogen.

Your introduction doesn’t need to be long, but you may need to organize it into a few paragraphs or with subheadings such as “Research Context” or “Research Aims.”

Check for common mistakes

Use the best grammar checker available to check for common mistakes in your text.

Fix mistakes for free

A lab report Method section details the steps you took to gather and analyze data. Give enough detail so that others can follow or evaluate your procedures. Write this section in the past tense. If you need to include any long lists of procedural steps or materials, place them in the Appendices section but refer to them in the text here.

You should describe your experimental design, your subjects, materials, and specific procedures used for data collection and analysis.

Experimental design

Briefly note whether your experiment is a within-subjects  or between-subjects design, and describe how your sample units were assigned to conditions if relevant.

A between-subjects design with three groups of tomato plants was used. The control group did not receive any nitrogen fertilizer. The first experimental group received a low level of nitrogen fertilizer, while the second experimental group received a high level of nitrogen fertilizer.

Describe human subjects in terms of demographic characteristics, and animal or plant subjects in terms of genetic background. Note the total number of subjects as well as the number of subjects per condition or per group. You should also state how you recruited subjects for your study.

List the equipment or materials you used to gather data and state the model names for any specialized equipment.

List of materials

35 Tomato seeds

15 plant pots (15 cm tall)

Light lamps (50,000 lux)

Nitrogen fertilizer

Measuring tape

Describe your experimental settings and conditions in detail. You can provide labelled diagrams or images of the exact set-up necessary for experimental equipment. State how extraneous variables were controlled through restriction or by fixing them at a certain level (e.g., keeping the lab at room temperature).

Light levels were fixed throughout the experiment, and the plants were exposed to 12 hours of light a day. Temperature was restricted to between 23 and 25℃. The pH and carbon levels of the soil were also held constant throughout the experiment as these variables could influence plant height. The plants were grown in rooms free of insects or other pests, and they were spaced out adequately.

Your experimental procedure should describe the exact steps you took to gather data in chronological order. You’ll need to provide enough information so that someone else can replicate your procedure, but you should also be concise. Place detailed information in the appendices where appropriate.

In a lab experiment, you’ll often closely follow a lab manual to gather data. Some instructors will allow you to simply reference the manual and state whether you changed any steps based on practical considerations. Other instructors may want you to rewrite the lab manual procedures as complete sentences in coherent paragraphs, while noting any changes to the steps that you applied in practice.

If you’re performing extensive data analysis, be sure to state your planned analysis methods as well. This includes the types of tests you’ll perform and any programs or software you’ll use for calculations (if relevant).

First, tomato seeds were sown in wooden flats containing soil about 2 cm below the surface. Each seed was kept 3-5 cm apart. The flats were covered to keep the soil moist until germination. The seedlings were removed and transplanted to pots 8 days later, with a maximum of 2 plants to a pot. Each pot was watered once a day to keep the soil moist.

The nitrogen fertilizer treatment was applied to the plant pots 12 days after transplantation. The control group received no treatment, while the first experimental group received a low concentration, and the second experimental group received a high concentration. There were 5 pots in each group, and each plant pot was labelled to indicate the group the plants belonged to.

50 days after the start of the experiment, plant height was measured for all plants. A measuring tape was used to record the length of the plant from ground level to the top of the tallest leaf.

In your results section, you should report the results of any statistical analysis procedures that you undertook. You should clearly state how the results of statistical tests support or refute your initial hypotheses.

The main results to report include:

  • any descriptive statistics
  • statistical test results
  • the significance of the test results
  • estimates of standard error or confidence intervals

The mean heights of the plants in the control group, low nitrogen group, and high nitrogen groups were 20.3, 25.1, and 29.6 cm respectively. A one-way ANOVA was applied to calculate the effect of nitrogen fertilizer level on plant height. The results demonstrated statistically significant ( p = .03) height differences between groups.

Next, post-hoc tests were performed to assess the primary and secondary hypotheses. In support of the primary hypothesis, the high nitrogen group plants were significantly taller than the low nitrogen group and the control group plants. Similarly, the results supported the secondary hypothesis: the low nitrogen plants were taller than the control group plants.

These results can be reported in the text or in tables and figures. Use text for highlighting a few key results, but present large sets of numbers in tables, or show relationships between variables with graphs.

You should also include sample calculations in the Results section for complex experiments. For each sample calculation, provide a brief description of what it does and use clear symbols. Present your raw data in the Appendices section and refer to it to highlight any outliers or trends.

The Discussion section will help demonstrate your understanding of the experimental process and your critical thinking skills.

In this section, you can:

  • Interpret your results
  • Compare your findings with your expectations
  • Identify any sources of experimental error
  • Explain any unexpected results
  • Suggest possible improvements for further studies

Interpreting your results involves clarifying how your results help you answer your main research question. Report whether your results support your hypotheses.

  • Did you measure what you sought out to measure?
  • Were your analysis procedures appropriate for this type of data?

Compare your findings with other research and explain any key differences in findings.

  • Are your results in line with those from previous studies or your classmates’ results? Why or why not?

An effective Discussion section will also highlight the strengths and limitations of a study.

  • Did you have high internal validity or reliability?
  • How did you establish these aspects of your study?

When describing limitations, use specific examples. For example, if random error contributed substantially to the measurements in your study, state the particular sources of error (e.g., imprecise apparatus) and explain ways to improve them.

The results support the hypothesis that nitrogen levels affect plant height, with increasing levels producing taller plants. These statistically significant results are taken together with previous research to support the importance of nitrogen as a nutrient for tomato plant growth.

However, unlike previous studies, this study focused on plant height as an indicator of plant growth in the present experiment. Importantly, plant height may not always reflect plant health or fruit yield, so measuring other indicators would have strengthened the study findings.

Another limitation of the study is the plant height measurement technique, as the measuring tape was not suitable for plants with extreme curvature. Future studies may focus on measuring plant height in different ways.

The main strengths of this study were the controls for extraneous variables, such as pH and carbon levels of the soil. All other factors that could affect plant height were tightly controlled to isolate the effects of nitrogen levels, resulting in high internal validity for this study.

Your conclusion should be the final section of your lab report. Here, you’ll summarize the findings of your experiment, with a brief overview of the strengths and limitations, and implications of your study for further research.

Some lab reports may omit a Conclusion section because it overlaps with the Discussion section, but you should check with your instructor before doing so.

If you want to know more about AI for academic writing, AI tools, or fallacies make sure to check out some of our other articles with explanations and examples or go directly to our tools!

  • Ad hominem fallacy
  • Post hoc fallacy
  • Appeal to authority fallacy
  • False cause fallacy
  • Sunk cost fallacy
  • Deep learning
  • Generative AI
  • Machine learning
  • Reinforcement learning
  • Supervised vs. unsupervised learning

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment . Lab reports are commonly assigned in science, technology, engineering, and mathematics (STEM) fields.

The purpose of a lab report is to demonstrate your understanding of the scientific method with a hands-on lab experiment. Course instructors will often provide you with an experimental design and procedure. Your task is to write up how you actually performed the experiment and evaluate the outcome.

In contrast, a research paper requires you to independently develop an original argument. It involves more in-depth research and interpretation of sources and data.

A lab report is usually shorter than a research paper.

The sections of a lab report can vary between scientific fields and course requirements, but it usually contains the following:

  • Abstract: summarizes your research aims, methods, results, and conclusions
  • References: list of all sources cited using a specific style (e.g. APA)
  • Appendices: contains lengthy materials, procedures, tables or figures

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, July 23). How To Write A Lab Report | Step-by-Step Guide & Examples. Scribbr. Retrieved June 24, 2024, from https://www.scribbr.com/academic-writing/lab-report/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, how to write an apa methods section, how to write an apa results section, what is your plagiarism score.

Masks Strongly Recommended but Not Required in Maryland, Starting Immediately

Due to the downward trend in respiratory viruses in Maryland, masking is no longer required but remains strongly recommended in Johns Hopkins Medicine clinical locations in Maryland. Read more .

  • Vaccines  
  • Masking Guidelines
  • Visitor Guidelines  

Research Lab Finder

Find a Research Lab

Featured research topics.

  • Clinical Trials
  • Neurological Disorders
  • Brain Science Institute
  • Institute for Basic Biomedical Sciences (IBBS)
  • Institute for Cell Engineering (ICE)
  • Institute for Clinical and Translational Research (ICTR)
  • Institute for Computational Medicine (ICM)
  • Institute for Genetic Medicine (IGM)

Participate in a Clinical Trial at Johns Hopkins

  • Search all Clinical Trials
  • Search Cancer Clinical Trials

https://www.nist.gov/laboratories

NIST workers using metrology equipment in a laboratory.

Laboratories

Researchers at NIST—including five  Nobel Prize winners —have been at the forefront of science in the nation’s premier measurement institute for more than 120 years. Their groundbreaking research happens in six labs (listed below) and user facilities .

The directors of our labs report to   NIST’s  Associate Director for Laboratory Programs  (ADLP). Additionally, the ADLP also manages our user facilities and  several other offices that:

  • administer grants,
  • forge partnerships,
  • coordinate standards and
  • ensure our research follows all ethical principles. 

Communications Technology Laboratory

NIST researcher Jason Coder holds equipment while working in the National Broadband Interoperability Test Bed.

The Communications Technology Laboratory (CTL) promotes the development and deployment of advanced communications technologies through the conduct of leading-edge R&D on both the metrology and understanding of physical phenomena, materials capabilities, and complex systems relevant to advanced communications. We perform research on high-speed electronics, wireless systems metrology, antennas, network design and optimization, spectrum sharing and public safety communications. Learn more about CTL.

  • Public Safety Communications Research
  • National Advanced Spectrum and Communications Test Network

Engineering Laboratory

A woman holding a tablet looks up at a robot, while working in a lab at NIST.

The Engineering Laboratory (EL) promotes U.S. innovation and industrial competitiveness in areas of critical national priority by anticipating and meeting the measurement science and standards needs for technology-intensive manufacturing, construction and cyber-physical systems, including the Smart Grid Program Office, in ways that enhance economic prosperity and improve the quality of life. Learn more about EL.

  • Research Opportunities

Information Technology Laboratory

A woman uses a soldering iron to attach wires to a circuit board.

The Information Technology Laboratory (ITL) develops and disseminates standards, measurements and testing for interoperability, security, usability and reliability of information systems, including cybersecurity standards and guidelines for federal agencies and U.S. industry, supporting these and measurement science at NIST through fundamental and applied research in computer science, mathematics and statistics. Learn more about ITL.

  • Cybersecurity Framework
  • Computer Security Resource Center (CSRC)
  • Digital Library of Mathematical Functions (DLMF)

Material Measurement Laboratory

A woman (Diane Nelson) in a mask and lab coat works with plastic test tubes at a lab bench.

The Material Measurement Laboratory (MML) serves as the national reference laboratory for measurements in the chemical, biological and material sciences through activities ranging from fundamental and applied research to the development and dissemination of certified reference materials, critically evaluated data and other programs and tools to assure the quality of measurement results. MML is also responsible for coordinating the NIST-wide Standard Reference Material and Standard Reference Data programs. Learn more about MML.

NIST Center for Neutron Research

Employee works at a computer in NIST Center for Neutron Researcher, surrounded by large yellow window.

Researchers at the NIST Center for Neutron Research (NCNR) use cold and thermal neutron measurement capabilities to conduct their research. The facility also serves as a national user facility for researchers from academia, industry and other government agencies. Learn more about the NCNR .

  • Call for Proposals
  • Instrumentation

Physical Measurement Laboratory

NIST's Andrew Wilson holds an ion trap in his lab in Boulder, Colorado. Behind him are screens depicting dots.

The Physical Measurement Laboratory (PML) is a world leader in the science of measurement. We set the definitive U.S. standards for nearly every kind of measurement employed in commerce and research, provide NIST-traceable calibrations , and disseminate standards and best practices throughout the nation. Learn more about PML .

  • Office of Weights & Measures
  • Time & Frequency Division
  • Products & Services

A woman, left, and a man look at visual data on several monitors with components of an electron microscope nearby.

  • Cosmic Frontiers

A scientist testing electronics that are part of the experimental setup used for making qubits in silicon in a lab.

At Lawrence Berkeley National Laboratory, we are expanding the frontiers of knowledge and delivering solutions for science and humankind.

Anothai Thanachareonkit, a person with medium-length dark hair wearing glasses and a blue top.

  • Carbon Management

A person in a navy top standing with their arms crossed in front of a hallway.

  • AI, Math, and Data

Two scientists looking at an experimental set-up in a fume hood.

  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Berkleley Lab

Office of Deputy Lab Director for Research

Persson

Berkeley Lab’s Office of the Deputy Laboratory Director for Research (DLDR) oversees, develops and supports the Lab’s $1 billion research enterprise. It provides overarching planning, policy development, and management to Berkeley Lab researchers to promote coordination, lead change, and ensure modern and compliant processes.

Lines of Service

Career pathways, cyclotron road, discretionary funding office, discretionary funding, doe early career research program.

  • All Discretionary Funding Office

Intellectual Property Office

Office of national and homeland security.

  • All Office of National and Homeland Security

Research Compliance Office (RCO)

Conflict of interest, export control, international engagements, research integrity and research ethics, research security, s&t risk matrix and research data security.

  • All Research Compliance Office (RCO)

Strategic Partnerships Office

Was this page useful?

like

  • Uncategorized
  • UW Glass Lab Furnace and…

UW Glass Lab Furnace and Kiln Replacements and Plasma Upgrade

Description:

The UW Glass Lab will rebuild, replace, and upgrade several pieces of equipment essential to campus glassmaking capabilities. The improvements will improve glass quality, support accessibility, increase volume and position UW as a leader among US glass laboratories.

The UW Glass Lab’s research mission centers the practice of glassmaking to support a spectrum of research activities across the arts and sciences. The Glass Lab serves the university by making glass by hand for custom geometries and environments simply not attainable through commercial methods.

PRINCIPAL INVESTIGATOR:

Helen Lee, associate professor of art

UW Glass Lab

Categorized under:

Warning: The NCBI web site requires JavaScript to function. more...

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

National Academy of Sciences, National Academy of Engineering (US) and Institute of Medicine (US) Committee on Science, Engineering, and Public Policy. On Being a Scientist: A Guide to Responsible Conduct in Research: Third Edition. Washington (DC): National Academies Press (US); 2009.

Cover of On Being a Scientist

On Being a Scientist: A Guide to Responsible Conduct in Research: Third Edition.

  • Hardcopy Version at National Academies Press

LABORATORY SAFETY IN RESEARCH

In addition to human participants and animal subjects in research, governmental regulations and professional guidelines cover other aspects of research, including the use of grant funds, the sharing of research results, the handling of hazardous materials, and laboratory safety.

These last two issues are sometimes overlooked in research, but no researcher or scientific discipline is immune from accidents. An estimated half million workers in the United States handle hazardous biological materials every day. A March 2006 explosion at the National Institute of Higher Learning in Chemistry in Mulhouse, France, killed a distinguished researcher and caused $130 million in damage.

Researchers should review information and procedures about safety issues at least once a year. A short checklist of subjects to cover includes:

  • appropriate usage of protective equipment and clothing
  • safe handling of materials in laboratories
  • safe operation of equipment
  • safe disposal of materials
  • safety management and accountability
  • hazard assessment processes
  • safe transportation of materials between laboratories
  • safe design of facilities
  • emergency responses
  • safety education of all personnel before entering the laboratory
  • applicable government regulations
  • Cite this Page National Academy of Sciences, National Academy of Engineering (US) and Institute of Medicine (US) Committee on Science, Engineering, and Public Policy. On Being a Scientist: A Guide to Responsible Conduct in Research: Third Edition. Washington (DC): National Academies Press (US); 2009. LABORATORY SAFETY IN RESEARCH.
  • PDF version of this title (494K)

Recent Activity

  • LABORATORY SAFETY IN RESEARCH - On Being a Scientist LABORATORY SAFETY IN RESEARCH - On Being a Scientist

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

Managing Your Health

  • Shop for Health Tests
  • Explore Women's Health
  • Annual Wellness Guidelines

Diseases & Specialties

  • Cancer & Oncology
  • Rheumatology

Treatment Methods & Product Testing

  • Cell & Gene Therapies
  • Precision Medicine

Lab Disciplines & Services

  • Genetics & Genomics

Labcorp

  • New & Updated Tests
  • Provider Portal Login

Testing by Disease & Condition

  • Alzheimer's
  • Chronic Kidney Disease
  • Neurodegenerative Diseases
  • more >>

Testing & Services for

  • Primary Care
  • More Specialties >>
  • Insurance Resources
  • Lab Certifications & Accreditations
  • ICD-10 Codes
  • Scientific Experts
  • DEX Zcode Sharing Instructions

lab research

Explore the latest from Labcorp

Leading with lab data.

Providers like Dr. Doron Schneider have the power to change lives. Our lab data has the answers to empower them.

Delivering insights that bring hope

Testing options like solid tissue biopsies and blood-based testing alternatives help clear the path to better outcomes for patients. 

Scientifically rigorous, extensive in scale

Our global lab footprint, vast clinical data and scientific expertise help accelerate the drug development process.

Labcorp biopharma technician evaluating samples

Stop wondering. Go test yourself.

Explore over 50 self-ordered lab tests and get answers about your health.

  • LABCORP ONDEMAND

Driven by science and innovation

Explore how we’re committed to improving lives every day.

How a blood test is making cancer care more equitable

The routine screen that changed my life: tee’s story.

lab research

How advances in biomarker tech can change Alzheimer’s

Black maternal health program to advance racial health equity, family impacted by medical debt finds support from labcorp.

lab research

See our latest discoveries

Everything we do has the power to change lives.

84% of the FDA’s latest drugs gained approval with Labcorp support

just miles from 95% of the U.S. population

1,200+ PhDs/MDs committed to solving the world’s greatest health challenges

all for 1 answer that can make a difference

Labcorp employee wearing face shield

Need help? Just tell us who you are, and we’ll get you to the right next step.

lab research

Stepping into Science

NIAID Now | June 21, 2024

The image shows students trying on positive-pressure research suits in the BSL-4 training room at NIAID’s Rocky Mountain Laboratories.

As part of the “Stepping into Science” experience, students from Hamilton and Corvallis high schools tried on positive-pressure research suits in the BSL-4 training room at NIAID’s Rocky Mountain Laboratories.

‘Stepping into Science’ Highlights Variety of Scientific Careers

NIAID’s RML Campus Hosts Day-Long High School Program

Introducing local students to biomedical science and research has long been a feature of outreach programs at NIAID’s Rocky Mountain Laboratories in Hamilton, Montana.  However, realizing that traditional laboratory science – aka “bench research” – isn’t for everyone, RML staff recently invited two dozen area high school students to experience not only traditional research but also the lesser-known careers that make bench research possible.

Where bench science can be slow and methodical – scientists may spend their entire career investigating the same problem – jobs that support bench research often vary greatly from project to project. Both types of careers are rewarding and exciting – but appeal to different types of people.

“Stepping into Science,” held this spring at the RML campus, was the idea of Kamryn Cregger, who began postbaccalaureate research work at RML in August 2023. Cregger says she quickly realized that RML had amazing resources to benefit area students, and she hoped to provide them with a similar type of opportunity that she experienced as a high schooler in rural Maryland. Cregger enrolled in a biomedical leadership program that led to a pharmaceutical internship, two years of lab training, and ultimately a bachelor’s degree in plant sciences from the University of Tennessee.

Now working on tickborne disease projects at RML – and helping local middle-school students through RML’s Biomedical Research After School Scholars program – Cregger wanted to find a way to connect with college-bound high schoolers.

“With all of the scientists and staff members on site, why not show the local students what kinds of jobs there are in science in addition to bench work?” she thought. Making those types of connections also could establish the RML group as long-term mentors for students applying for college, internships, or career positions.

After a few months of planning meetings, coordinating with RML volunteers, and finding out what most appealed to students and faculty from Hamilton and Corvallis high schools – the groups arrived for the whirlwind day of activities at RML.

“Throughout the day,” Cregger said, “students asked questions about careers, RML research, medical school application processes, the differences in academic versus government research and even vaccine development!” Students received a campus tour, overview of the types of research done in the different laboratory groups and rotated through three hands-on demonstrations by virologists, animal care staff and  microscopists.

A team of RML virologists worked together to demonstrate biosafety knowledge, proper laboratory skills, such as pipetting, working in a biosafety cabinet, and dressing in personal protective equipment (PPE). They even designed a way for students to participate in a fun research-based game.

The three microscopists – Forrest Hoyt, Sophia Antonioli-Schmit and Bryan Hansen – all discussed their remarkable journeys from local high schools to RML.

In the animal care segment,  “We taught them about animal husbandry, histology technicians, biologists and veterinarians,” veterinary pathologist Carl Shaia said. “Someone in each of those positions described their duties, education and how they came to RML. We also briefly touched on pay, the importance of benefits and the impact of student debt for higher education.”

RML biologist Tara Wehrly’s daughter participated in the events. Wehrly said she appreciated how the activities gave her daughter a greater understanding of the work she does.

“My daughter knows I work here, and I talk about scientific matters, but until she was on campus, it was more of an abstract concept,” Wehrly said. “I feel that Kamryn (Cregger) found the right people to give enthusiastic, informative presentations communicating the fun parts of their jobs to this group of teenagers. The discussions the kids had with post-bacs and post-docs gave them information about potential career paths that they might not have considered prior to this.”

Cregger and other event organizers already are discussing where to take the idea next, starting off with hopes of continuing the program for years to come. RML would like to inspire generations of science-loving people “and is honored to help guide the students down whatever path they choose,” according to Cregger. 

Contact Information

Contact the NIAID Media Team.

301-402-1663 [email protected]

Search NIAID Blog

Stay connected.

  • Subscribe to NIAID Now email updates

Virginia Tech Helmet Lab expands beyond sports to develop ratings system for safety helmets

  • Lexi Clatterbuck

25 Jun 2024

  • Share on Facebook
  • Share on Twitter
  • Copy address link to clipboard

Barry Miller in Virginia Tech Helmet Lab with safety helmet on test rig.

Thirteen years after releasing the first independent safety ratings for varsity football helmets , the Virginia Tech Helmet Lab is expanding beyond the field of athletics. 

This summer, researchers will begin an 18-month study to develop the first ratings system for safety helmets, also commonly referred to as hard hats or construction helmets. The ratings system will join the nine sports the lab already produces ratings for using their five-star scale.

The lab has conducted injury biomechanics research outside sports before, including its research on toy product safety and work with the Virginia Tech Mid-Atlantic Aviation Partnership on drone impact testing for operations over people . However, this is the first time that the lab will extend its impact by developing a ratings system to evaluate a non-sports helmet.

“Of all industries, construction has the most workplace fatalities,” said Steve Rowson, the lab's director. “Identifying, improving, and implementing better head protection could be the difference between life and death for some of these accidents.”

From 2000-08, the construction industry was responsible for more traumatic brain injuries (TBIs) than any other industry, according to an article published in the American Journal of Preventive Medicine. These injury scenarios cause high head injury risk from the high speeds involved.

In this project, researchers will study head impact and concussion risk in a work site environment with the following objectives:

  • Characterize the conditions associated with head impacts in construction through analysis of accident reports and surveillance video.
  • Generalize the real-world loading conditions observed in the reconstructions to controlled laboratory test systems.

The lab will also use its Summation of Tests for the Analysis of Risk (STAR) model to combine data from multiple test sites and compute an overall performance score representative of expected real-world injury rates. The STAR score is calculated based on a helmet’s performance in a series of impact tests and assigned a number of stars between one and five to categorize impact performance. Impact conditions are sports-specific and inclusive of the broad range of head impacts likely to be experienced, hence the need to develop a STAR model specific to safety helmets for this project.

Test commercially available safety helmets and publicly release data on the Virginia Tech Helmet Ratings website

This innovative work has been propelled forward by a joint commitment of funding and guidance from the John R. Gentille Foundation, ELECTRI International, the American Society of Concrete Contractors, and the Association of Union Constructors.  

“We are honored to support research that will improve the safety of the men and women building our nation by focusing on the industry-specific factors that contribute to head injuries,” Raffi Elchemmas of the Mechanical Contractors Association of America, said on behalf of the four construction organizations. “We are all committed to finding solutions to the challenges that the construction industry faces every day and confident this project will lead to improved head protection and reduce injuries.”

The lab is scheduled to complete the project by August 2025.

“We hope this work leads to fewer disabling or fatal head injuries resulting from accidents by providing stakeholders with data to make informed decisions on equipping the workers with the most effective personal protective equipment,” Rowson said.

Learn more about the lab’s methodology, history, and upcoming project by watching the video below.

Related stories

NERF: Safety isn't kid's stuff

Youtuber behind Berm Peak visits the Helmet Lab

Lindsey Haugh

  • Biomedical Engineering and Mechanics
  • College of Engineering
  • Good Health and Well-Being
  • Helmet Research
  • Industry, Innovation, and Infrastructure
  • Institute for Critical Technology and Applied Science
  • Top News - Instagram
  • Virginia Tech Global Distinction
  • Virginia Tech Helmet Lab

Related Content

A man standing in a lush green field

IMAGES

  1. Scientist Working in Laboratory · Free Stock Photo

    lab research

  2. Clinical science laboratory

    lab research

  3. Genomics and Genetic Research in Houston Shaping the Future of Health Care

    lab research

  4. Female Scientist With Microscope In Lab Stock Footage SBV-313175956

    lab research

  5. Medical Laboratory Technology

    lab research

  6. Science Lab HD Wallpapers

    lab research

VIDEO

  1. Upcoming Video : Experimental Studies

  2. Robotics Lab & Research of Prof KS Nagla NIT Jalandhar

  3. pharmaceutical lab// research work// thesis//doing notes

  4. How to Get into a Research Lab

  5. 3 Common Pre-Med Myths

  6. Selecting Study Designs

COMMENTS

  1. Clinical Research vs Lab Research: An In-depth Analysis

    Clinical research, a cornerstone in advancing patient care, involves human subjects to test the safety and effectiveness of new treatments, ranging from drugs to diagnostic tools.Unlike clinical research, laboratory research focuses on the foundational science behind medicine without direct human involvement, contributing significantly to medical lab science.

  2. Types of Research Designs Compared

    Learn how to choose the right type of research for your project based on the research aims, data, sampling, timescale, and location. Compare different types of research designs with examples and tips.

  3. Clinical Research What is It

    Clinical research is the comprehensive study of the safety and effectiveness of the most promising advances in patient care. Clinical research is different than laboratory research. It involves people who volunteer to help us better understand medicine and health. Lab research generally does not involve people — although it helps us learn ...

  4. How To Become a Lab Researcher (With Steps and FAQs)

    Learn about the different types of lab researchers, the education and experience required, and the skills needed for this career. Find out how to pursue a career as a medical laboratory scientist or technician in the medical industry.

  5. Home

    The National Laboratories are 17 Department of Energy facilities that conduct research and development in various fields, such as energy, security, and health. Learn how they innovate, collaborate, and improve lives with their diverse workforce and specialized equipment.

  6. Planning and Conducting Clinical Research: The Whole Process

    Medical and clinical research can be classified in many different ways. Probably, most people are familiar with basic (laboratory) research, clinical research, healthcare (services) research, health systems (policy) research, and educational research. Clinical research in this review refers to scientific research related to clinical practices.

  7. What is Scientific Research and How Can it be Done?

    Observational Research: the participants are grouped and evaluated according to a research plan or protocol. Observational research is more attractive than other studies: as necessary clinical data is available, coming to a conclusion is fast and they incur low costs ().In observational studies, the factors and events examined by the researcher are not under the researcher's control.

  8. Laboratory

    The Schuster Laboratory, University of Manchester (a physics laboratory). A laboratory (UK: / l ə ˈ b ɒr ə t ər i /; US: / ˈ l æ b r ə t ɔːr i /; colloquially lab) is a facility that provides controlled conditions in which scientific or technological research, experiments, and measurement may be performed. Laboratories are found in a variety of settings such as schools, universities ...

  9. Laboratory

    Learn about the origin, purpose, and methods of laboratory science, from ancient times to modern days. Explore different types of laboratories, such as action research, sociology, and neurodegenerative conditions.

  10. A student's guide to undergraduate research

    Undergraduates can benefit from working in a research environment. Credit: Cavan Images/Getty. I have thoroughly enjoyed my experience working in a materials-chemistry laboratory at Northwestern ...

  11. Clinical Laboratory

    Clinical laboratories are healthcare facilities providing a wide range of laboratory procedures that aid clinicians in diagnosing, treating, and managing patients.[1] These laboratories are manned by scientists trained to perform and analyze tests on samples of biological specimens collected from patients.

  12. Laboratory Investigation

    Laboratory Investigation is the official journal of the United States and Canadian Academy of Pathology. Publishing research about human & experimental disease including about experimental or ...

  13. Research

    Research. Mayo Clinic staff members are actively engaged in research on several areas within Laboratory Medicine and Pathology. Mayo Clinic researchers continually study new and more efficient medical testing techniques and reflect their advances in tests offered internally at Mayo Clinic as well as externally though Mayo Clinic Laboratories.

  14. Introduction, History, and Definition of Laboratories

    Scientists' empirical research in the laboratory or the field is one part of a larger process that may include reading and attending conferences to stay abreast of current developments in the discipline and to present work in progress. As Schwab recognized (1964), the "structure" of current theories and concepts in a discipline acts as a ...

  15. Laboratories

    A. Advanced Endoscopy Innovation Translation and Clinical Trials Group: Barham Abu Dayyeh. Advanced Medical Imaging Technology: Richard L. Ehman. Aerospace Medicine and Vestibular Research: Michael J. Cevette, Jan Stepanek. Aging and Dementia Imaging Research (ADIR): Clifford R. Jack Jr.; Kejal Kantarci; Prashanthi Vemuri.

  16. Research and development

    If, however, the new contractor wishes to sell in the open market, he is obliged to negotiate a license and pay a royalty to the original development laboratories. Research and development - Labs, Experiments, Innovation: Company laboratories fall into three clear categories: research laboratories, development laboratories, and test laboratories.

  17. Building a Successful Research Lab Culture

    A research lab in psychology is the general term for a team of students, scholars, and colleagues working together under a principal investigator's leadership.. The fall term brings new graduate ...

  18. Your Practical Guide to Basic Laboratory Techniques

    In every scientific laboratory, there is a set of fundamental skills that needs to be mastered. A solid foundation of core lab skills is essential to produce accurate, reproducible results, as well as to prevent damaging expensive equipment and endangering the safety of your labmates. In addition, with an increasing focus on reproducibility, it ...

  19. Digital secrets of successful lab management

    For labs whose hardware is in high demand, Bookkit (now known as Clustermarket) streamlines equipment booking and management. "Bookkit is like AirBnB for research facilities," says Raif Yuecel ...

  20. How To Write A Lab Report

    Learn how to structure and write a lab report for science, technology, engineering, and mathematics (STEM) fields. Find out the purpose, sections, and examples of each section of a lab report.

  21. Labs

    Research Lab Results. Clinical Trials. For Patients: Understanding Clinical Trials. About Our Faculty. About Our Faculty. Back to Research Main Menu. Overview. Discoveries for a Better Tomorrow. ... Search for a research area, principal investigator, or keyword. Search. Browse an A-Z Listing. A

  22. Laboratories

    Laboratories. Researchers at NIST—including five Nobel Prize winners—have been at the forefront of science in the nation's premier measurement institute for more than 120 years. Their groundbreaking research happens in six labs (listed below) and user facilities. The directors of our labs report to NIST's Associate Director for ...

  23. Home

    Tracking Down Toxic Metals From Tobacco Smoke. Scientists reveal surprising new clues behind the lingering health effects of secondhand and thirdhand tobacco smoke. Lawrence Berkeley National Laboratory is advancing the scope of human knowledge & seeking science solutions to the greatest problems facing humankind.

  24. Laboratory Research Jobs, Employment

    The Ring Lab of Synthetic and Systems Immunopharmacology is located within the Translational Science and Therapeutics Division and is a member of the Immunotherapy Integrated Research Center (IIRC). Their primary focus is on developing unique and first-in-class therapeutic drugs for cancer immunotherapy using cutting-edge protein engineering ...

  25. Research

    Research. Berkeley Lab's Office of the Deputy Laboratory Director for Research (DLDR) oversees, develops and supports the Lab's $1 billion research enterprise. It provides overarching planning, policy development, and management to Berkeley Lab researchers to promote coordination, lead change, and ensure modern and compliant processes.

  26. UW Glass Lab Furnace and Kiln Replacements and Plasma Upgrade

    The UW Glass Lab will rebuild, replace, and upgrade several pieces of equipment essential to campus glassmaking capabilities. ... increase volume and position UW as a leader among US glass laboratories. The UW Glass Lab's research mission centers the practice of glassmaking to support a spectrum of research activities across the arts and ...

  27. LABORATORY SAFETY IN RESEARCH

    LABORATORY SAFETY IN RESEARCH. In addition to human participants and animal subjects in research, governmental regulations and professional guidelines cover other aspects of research, including the use of grant funds, the sharing of research results, the handling of hazardous materials, and laboratory safety. These last two issues are sometimes ...

  28. Lab Testing & Scientific Innovation for Healthcare

    95%. just miles from 95% of the U.S. population. 1,200+. 1,200+ PhDs/MDs committed to solving the world's greatest health challenges. 1. all for 1 answer that can make a difference. Labcorp helps patients, providers, organizations, and biopharma companies to guide vital healthcare decisions each and every day.

  29. Stepping into Science

    Students received a campus tour, overview of the types of research done in the different laboratory groups and rotated through three hands-on demonstrations by virologists, animal care staff and microscopists. A team of RML virologists worked together to demonstrate biosafety knowledge, proper laboratory skills, such as pipetting, working in a ...

  30. Virginia Tech Helmet Lab expands beyond sports to develop ratings

    The lab has conducted injury biomechanics research outside sports before, including its research on toy product safety and work with the Virginia Tech Mid-Atlantic Aviation Partnership on drone impact testing for operations over people. However, this is the first time that the lab will extend its impact by developing a ratings system to ...