Jacks Of Science

Jacks Of Science

Simple Answers to Scientific Questions

Why Is Research Practical And Realistic

There are many reasons why is research practical and realistic. The most important reason is that it allows us to understand the world around us.

Through research, we can learn about new things, figure out how best to solve problems, and make informed decisions. Another reason why research is practical and realistic is that it helps us to improve our lives.

We can use research to find new ways to improve our health, our relationships, and even our careers. In short, research is essential for understanding the world around us and improving our lives.

Research is practical and realistic because it is a systematic way to assess, analyze, and identify solutions or improve existing processes.

Explain it to a child.

Research is useful because it helps us understand how to solve real problems. It also helps us make better decisions.

Research provides insights that allow us to make informed decisions that can help reduce uncertainty or risk. By studying the available data, researching our options, conducting interviews with experts in the field, observing trends in similar situations, etc., we gain an understanding of the most effective solution suitable to our individual needs.

Why is research practical and realistic?

Research is practical and realistic because it provides us with evidence-based insight to help solve real-world problems, and can be used to generate better-informed decisions.

The scientific process ensures that any conclusion reached is supported by rigorous data collection and analysis, ensuring the reliability of findings. Doing research can lead to greater innovation as the results can be applied in a variety of contexts that have not been explored before.

It also allows for greater collaboration across different fields as researchers share their individual experiences for more interconnected ideas and solutions.

What makes research practical and realistic?

What makes research practical and realistic is the scope of its application. Research that goes beyond theoretical paradigms and into real-world scenarios will be much more beneficial on a large scale.

Practical research strives to develop solutions to existing problems, such as finding new ways to increase efficiency in the workplace or developing better medical treatments.

Additionally, research should be conducted with an eye toward potential applications; understanding how valid results can be implemented across different disciplines will give researchers an even better appreciation of their work’s value.

Finally, conducting valid tests with methodologies designed to ensure scientific integrity can further maximize the impact a research project may have on society at large. What makes research practical and realistic is ensuring it’s rooted in direct applicability, backed by ethical practice, and understood for its potential scope.

Why do you need research practical and realistic?

Research is essential to the success of any project. It helps to ensure that the decisions made are done with a well-thought-out approach that takes into account any potential risks and rewards linked to an action or course of action.

When research is practical and realistic it allows for greater insight into the current situation as well as provides ways in which problems or challenges can be undertaken efficiently and successfully. Practical and realistic research also allows for creativity, as solutions can be tailored to suit specific areas or needs, such as technological advancements or economic changes.

Ultimately, having practical and realistic research is important because it allows for an effective and successful outcome from any project.

How do you research practically and realistically?

Why do you need research to be practical and realistic? Research, when done properly, is a tool we can use to learn more about the world around us. It allows us to explore new studies, analyze existing data and gain insights from it that can then be used to further our understanding of the subject matter being studied.

Furthermore, research conducted practically and realistically ensures that what is learned has tangible benefits for society by translating it into real-world applications. Whether it’s through advances in medical treatments or technological advancements, research helps make sure progress is made in areas ranging from education to business.

Research also makes it easier for people to identify solutions to problems humans face in their everyday lives, no matter if they are personal or professional. Thus, by being practical and realistic when conducting research one can help ensure that the information acquired will benefit not only them but everyone else as well.

What does practical mean in research?

When it comes to research, the concept of “practical” is more comprehensive than one might think. Practical research focuses on developing tangible solutions that are applicable in everyday life, rather than simply focusing on theories or abstract ideas.

This means researching to gain useful information and results, such as data that can be used by business professionals to make effective decisions, or information that can help professionals understand a certain topic better.

Additionally, practical research incorporates the appropriate methodology and tools needed to generate useful and actionable results.

Ultimately, practical research aims to bring greater clarity and positive perspective to a situation via thorough investigation, helping to create solutions and uncover answers while making a meaningful difference in the lives of those it serves.

What does realistic mean in research?

Realism in research can be defined as a method of collecting data to inform conclusions and research-based decisions. In particular, realism takes an unbiased approach to the data collected and seeks to answer questions based on facts rather than personal opinions or subjective interpretations.

The goal of realistic research is to increase understanding of a given situation and develop strategies that could be used in real-world contexts. It’s a valuable tool for making informed decisions on any subject, whether it be social, economic, or political.

Realistic research involves looking at the whole picture and striving for accuracy in the results so that effective solutions can be formed and put into action.

By considering these factors it is clear why researching is such a practical and realistic endeavor – providing tremendous advantages along the way!

Jacks of Science sources the most authoritative, trustworthy, and highly recognized institutions for our article research. Learn more about our Editorial Teams process and diligence in verifying the accuracy of every article we publish.

Research does solve real-world problems: experts must work together to make it happen

why research is practical

Deputy Vice Chancellor Research & Innovation, University of South Australia

Disclosure statement

Tanya Monro receives funding from the Australian Research Council. She is Deputy Vice Chancellor of the University of South Australia, a member of the Commonwealth Science Council, the CSIRO board, the SA Economic Development Board and Defence SA.

University of South Australia provides funding as a member of The Conversation AU.

View all partners

why research is practical

Generating knowledge is one of the most exciting aspects of being human. The inventiveness required to apply this knowledge to solve practical problems is perhaps our most distinctive attribute.

But right now we have before us some hairy challenges – whether that be figuring our how to save our coral reefs from warmer water , landing a human on Mars , eliminating the gap in life expectancy between the “haves” and “have-nots” or delivering reliable carbon-free energy .

It’s commonly said that an interdisciplinary approach is vital if we are to tackle such real world challenges. But what does this really mean?

Read more: It takes a community to raise a startup

Listen and read with care and you’ll start to notice that the words crossdisciplinary, multidisciplinary, interdisciplinary and transdisciplinary are used interchangeably. These words describe distinctly different ways of harnessing the power of disciplinary expertise to chart a course into the unknown.

In navigation, the tools and methods matter – choose differently and you’ll end up in a different spot. How we go about creating knowledge and solving problems really matters – it changes not only what questions can be asked and answered but fundamentally shapes what’s possible.

What is a discipline?

For centuries we have organised research within disciplines, and this has delivered extraordinary depths of knowledge.

But what is a discipline? It’s a shared language, an environment in which there’s no need to explain the motivation for one’s work, and in which people have a shared sense of what’s valuable.

For example, my background discipline is optical physics. I know what it’s like to be able to skip down the corridor and say,

“I’ve figured out how we can get broadband flat dispersion - we just need to tailor the radial profile!”

…and have people instantly not just know what I mean, but be able to add their own ideas and drive the work forward.

In long-established disciplines it’s often necessary to focus in a narrow area to be able to extend the limits of knowledge within the time-frame of a PhD. And while it’s rarely obvious at the time what benefits will flow from digging a little deeper, our way of life has been transformed over and over as result.

why research is practical

Disciplines focus talent and so can be amazingly efficient ways of generating knowledge. But they can also be extraordinarily difficult to penetrate from the outside without understanding that discipline’s particular language and shared values.

The current emphasis on real-world impact has sharpened awareness on the need to translate knowledge into outcomes. It has also brought attention to the critical role partnerships with industry and other end-users of research play in this process.

Creating impact across disciplines

Try to solve a problem with the tools of a single discipline alone, and it’s as if you have a hammer - everything starts to look like a nail. It’s usually obvious when expertise from more than one discipline is needed.

Consider a panel of experts drawn from different fields to each apply the tools of their field to a problem that’s been externally framed. This has traditionally been how expertise from the social sciences is brought to bear on challenges in public health or the environment.

This is a crossdisciplinary approach , which can produce powerful outcomes provided that those who posed the question are positioned to make decisions based on the knowledge generated. But the research fields themselves are rarely influenced by this glancing encounter with different approaches to knowledge generation.

Multidisciplinary research involves the application of tools from one discipline to questions from other fields. An example is the application of crystallography, discovered by the Braggs, to unravel the structure of proteins . This requires concepts to transfer across domains, sometimes in real time but usually with a lag of years or decades.

Read more: If we really want an ideas boom, we need more women at the top tiers of science

Interdisciplinary research happens when researchers from different fields come together to pose a challenge that wouldn’t be possible in isolation. One example is the highly transparent optical fibres that underpin intercontinental telecommunication networks.

The knowledge creation that made this possible involved glass chemists, optical physicists and communication engineers coming together to articulate the possible, and develop the shared language required to make it a reality. When fields go on this journey together over decades, new fields are born.

In this example the question itself was clear – how can we harness the transparency of silica glass to create optical transmission systems that can transport large volumes of data over long distances?

But what about the questions we don’t know how to pose because without knowledge of another field we don’t know what’s possible? This line of reasoning leads us into the domain of transdisciplinary research .

Transdisciplinary research requires a willingness to craft new questions – whether because they were considered intractable or because without the inspiration from left field they simply didn’t arise. An example of this is applying photonics to IVF incubators - the idea that it could be possible to “listen” to how embryos experience their environment is unlikely to have arisen without bringing these fields together.

Read more: National Science Statement a positive gesture but lacks policy solutions: experts

In my own field, physics, I discovered that when talking to people from other areas the simple question “what would you like to measure?” quickly led to uncharted territory.

Before long we were usually, together, posing fundamentally new questions and establishing teams to tackle them. This can be scary territory but it’s tremendously rewarding and creates space for creativity and the emergence of disruptive technologies.

Excellence, communication, co-location, funding

One of the best ways of getting out of a disciplinary silo is to take every opportunity to talk to others outside your field. Disciplinary excellence is the starting point to get to the table.

And while disciplinary collaborations can flourish over large distances because they share a language and values, it’s usually true that once you mix disciplines co-location becomes a real asset. Then of course there are the questions of how we fund and organise research concentrations to allow inter- and transdisciplinary research to flourish.

With the increased emphasis on impact, these questions are becoming ever more pressing. Organisations that get this right will thrive.

  • Research impact
  • cross-disciplinary

why research is practical

Management Information Systems & Analytics – Limited Term Contract

why research is practical

Publications Manager

why research is practical

Audience Insight Officer

why research is practical

Academic Programs Officer, Scheduling

why research is practical

Director, Student Administration

why research is practical

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

What is Research? – Purpose of Research

Picture of DiscoverPhDs

  • By DiscoverPhDs
  • September 10, 2020

Purpose of Research - What is Research

The purpose of research is to enhance society by advancing knowledge through the development of scientific theories, concepts and ideas. A research purpose is met through forming hypotheses, collecting data, analysing results, forming conclusions, implementing findings into real-life applications and forming new research questions.

What is Research

Simply put, research is the process of discovering new knowledge. This knowledge can be either the development of new concepts or the advancement of existing knowledge and theories, leading to a new understanding that was not previously known.

As a more formal definition of research, the following has been extracted from the Code of Federal Regulations :

why research is practical

While research can be carried out by anyone and in any field, most research is usually done to broaden knowledge in the physical, biological, and social worlds. This can range from learning why certain materials behave the way they do, to asking why certain people are more resilient than others when faced with the same challenges.

The use of ‘systematic investigation’ in the formal definition represents how research is normally conducted – a hypothesis is formed, appropriate research methods are designed, data is collected and analysed, and research results are summarised into one or more ‘research conclusions’. These research conclusions are then shared with the rest of the scientific community to add to the existing knowledge and serve as evidence to form additional questions that can be investigated. It is this cyclical process that enables scientific research to make continuous progress over the years; the true purpose of research.

What is the Purpose of Research

From weather forecasts to the discovery of antibiotics, researchers are constantly trying to find new ways to understand the world and how things work – with the ultimate goal of improving our lives.

The purpose of research is therefore to find out what is known, what is not and what we can develop further. In this way, scientists can develop new theories, ideas and products that shape our society and our everyday lives.

Although research can take many forms, there are three main purposes of research:

  • Exploratory: Exploratory research is the first research to be conducted around a problem that has not yet been clearly defined. Exploration research therefore aims to gain a better understanding of the exact nature of the problem and not to provide a conclusive answer to the problem itself. This enables us to conduct more in-depth research later on.
  • Descriptive: Descriptive research expands knowledge of a research problem or phenomenon by describing it according to its characteristics and population. Descriptive research focuses on the ‘how’ and ‘what’, but not on the ‘why’.
  • Explanatory: Explanatory research, also referred to as casual research, is conducted to determine how variables interact, i.e. to identify cause-and-effect relationships. Explanatory research deals with the ‘why’ of research questions and is therefore often based on experiments.

Characteristics of Research

There are 8 core characteristics that all research projects should have. These are:

  • Empirical  – based on proven scientific methods derived from real-life observations and experiments.
  • Logical  – follows sequential procedures based on valid principles.
  • Cyclic  – research begins with a question and ends with a question, i.e. research should lead to a new line of questioning.
  • Controlled  – vigorous measures put into place to keep all variables constant, except those under investigation.
  • Hypothesis-based  – the research design generates data that sufficiently meets the research objectives and can prove or disprove the hypothesis. It makes the research study repeatable and gives credibility to the results.
  • Analytical  – data is generated, recorded and analysed using proven techniques to ensure high accuracy and repeatability while minimising potential errors and anomalies.
  • Objective  – sound judgement is used by the researcher to ensure that the research findings are valid.
  • Statistical treatment  – statistical treatment is used to transform the available data into something more meaningful from which knowledge can be gained.

Finding a PhD has never been this easy – search for a PhD by keyword, location or academic area of interest.

Types of Research

Research can be divided into two main types: basic research (also known as pure research) and applied research.

Basic Research

Basic research, also known as pure research, is an original investigation into the reasons behind a process, phenomenon or particular event. It focuses on generating knowledge around existing basic principles.

Basic research is generally considered ‘non-commercial research’ because it does not focus on solving practical problems, and has no immediate benefit or ways it can be applied.

While basic research may not have direct applications, it usually provides new insights that can later be used in applied research.

Applied Research

Applied research investigates well-known theories and principles in order to enhance knowledge around a practical aim. Because of this, applied research focuses on solving real-life problems by deriving knowledge which has an immediate application.

Methods of Research

Research methods for data collection fall into one of two categories: inductive methods or deductive methods.

Inductive research methods focus on the analysis of an observation and are usually associated with qualitative research. Deductive research methods focus on the verification of an observation and are typically associated with quantitative research.

Research definition

Qualitative Research

Qualitative research is a method that enables non-numerical data collection through open-ended methods such as interviews, case studies and focus groups .

It enables researchers to collect data on personal experiences, feelings or behaviours, as well as the reasons behind them. Because of this, qualitative research is often used in fields such as social science, psychology and philosophy and other areas where it is useful to know the connection between what has occurred and why it has occurred.

Quantitative Research

Quantitative research is a method that collects and analyses numerical data through statistical analysis.

It allows us to quantify variables, uncover relationships, and make generalisations across a larger population. As a result, quantitative research is often used in the natural and physical sciences such as engineering, biology, chemistry, physics, computer science, finance, and medical research, etc.

What does Research Involve?

Research often follows a systematic approach known as a Scientific Method, which is carried out using an hourglass model.

A research project first starts with a problem statement, or rather, the research purpose for engaging in the study. This can take the form of the ‘ scope of the study ’ or ‘ aims and objectives ’ of your research topic.

Subsequently, a literature review is carried out and a hypothesis is formed. The researcher then creates a research methodology and collects the data.

The data is then analysed using various statistical methods and the null hypothesis is either accepted or rejected.

In both cases, the study and its conclusion are officially written up as a report or research paper, and the researcher may also recommend lines of further questioning. The report or research paper is then shared with the wider research community, and the cycle begins all over again.

Although these steps outline the overall research process, keep in mind that research projects are highly dynamic and are therefore considered an iterative process with continued refinements and not a series of fixed stages.

DiscoverPhDs_Annotated_Bibliography_Literature_Review

Find out the differences between a Literature Review and an Annotated Bibliography, whey they should be used and how to write them.

PhD Imposter Syndrome

Impostor Syndrome is a common phenomenon amongst PhD students, leading to self-doubt and fear of being exposed as a “fraud”. How can we overcome these feelings?

Choosing a Good PhD Supervisor

Choosing a good PhD supervisor will be paramount to your success as a PhD student, but what qualities should you be looking for? Read our post to find out.

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

why research is practical

Browse PhDs Now

In Press Article

An In Press article is a paper that has been accepted for publication and is being prepared for print.

Dissertation versus Thesis

In the UK, a dissertation, usually around 20,000 words is written by undergraduate and Master’s students, whilst a thesis, around 80,000 words, is written as part of a PhD.

why research is practical

Rose is a final year PhD student at the University of St Andrews. Her research is focussed on modelling stars similar to the sun in its youth and understanding better the magnetic fields of these stars.

why research is practical

De-Shaine is 2nd Year Neurotechnology PhD Student at Imperial College London. His research looks at monitoring the brain when it’s severely injured after a traumatic brain injury or stroke and patients are in neurocritical care.

Join Thousands of Students

What Is Research and Why We Do It

  • First Online: 23 June 2020

Cite this chapter

why research is practical

  • Carlo Ghezzi 2  

3033 Accesses

2 Altmetric

The notions of science and scientific research are discussed and the motivations for doing research are analyzed. Research can span a broad range of approaches, from purely theoretical to practice-oriented; different approaches often coexist and fertilize each other. Research ignites human progress and societal change. In turn, society drives and supports research. The specific role of research in Informatics is discussed. Informatics is driving the current transition towards the new digital society in which we will live in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

In [ 34 ], P.E. Medawar discusses what he calls the “snobismus” of pure versus applied science. In his words, this is one of the most damaging forms of snobbism, which draws a class distinction between pure and applied science.

Originality, rigor, and significance have been defined and used as the key criteria to evaluate research outputs by the UK Research Excellence Framework (REF) [ 46 ]. A research evaluation exercise has been performed periodically since 1986 on UK higher education institutions and their research outputs have been rated according to their originality, rigor, and significance.

The importance of realizing that “we don’t know” was apparently first stated by Socrates, according to Plato’s account of his thought. This is condensed in the famous paradox “I know that I don’t know.”

This view applies mainly to natural and physical sciences.

Roy Amara was President of the Institute for Future, a USA-based think tank, from 1971 until 1990.

The Turing Award is generally recognized as the Nobel prize of Informatics.

See http://uis.unesco.org/apps/visualisations/research-and-development-spending/ .

Israel is a very good example. Investments in research resulted in a proliferation of new, cutting-edge enterprises. The term start-up nation has been coined by Dan Senor and Saul Singer in their successful book [ 51 ] to characterize this phenomenon.

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges .

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/cross-cutting-activities-focus-areas .

This figure has been adapted from a presentation by A. Fuggetta, which describes the mission of Cefriel, an Italian institution with a similar role of Fraunhofer, on a smaller scale.

The ERC takes an ecumenical approach and calls the research sector “Computer Science and Informatics.”

I discuss here the effect of “big data” on research, although most sectors of society—industry, finance, health, …—are also deeply affected.

Carayannis, E., Campbell, D.: Mode 3 knowledge production in quadruple helix innovation systems. In: E. Carayannis, D. Campbell (eds.) Mode 3 Knowledge Production in Quadruple Helix Innovation Systems: 21st-Century Democracy, Innovation, and Entrepreneurship for Development. SpringerBriefs in Business, New York, NY (2012)

Google Scholar  

Etzkowitz, H., Leydesdorff, L.: The triple helix – university-industry-government relations: A laboratory for knowledge based economic development. EASST Review 14 (1), 14–19 (1995)

Harari, Y.: Sapiens: A Brief History of Humankind. Random House (2014). URL https://books.google.it/books?id=1EiJAwAAQBAJ

Harari, Y.: Homo Deus: A Brief History of Tomorrow. Random House (2016). URL https://books.google.it/books?id=dWYyCwAAQBAJ

Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., USA (2006)

MATH   Google Scholar  

Medawar, P.: Advice To A Young Scientist. Alfred P. Sloan Foundation series. Basic Books (2008)

OECD: Frascati Manual. OECD Publishing (2015). https://doi.org/10.1787/9789264239012-en . URL https://www.oecd-ilibrary.org/content/publication/9789264239012-en

REF2019/2: Panel criteria and working methods (2019). URL https://www.ref.ac.uk/media/1084/ref-2019_02-panel-criteria-and-working-methods.pdf

Senor, D., Singer, S.: Start-Up Nation: The Story of Israel’s Economic Miracle. McClelland & Stewart, Toronto, Canada (2011)

Stokes, D.E.: Pasteur’s Quadrant: Basic Science and Technological Innovation. Brookings Institution Press, Washington, D.C. (1997)

Thurston, R.H.: The growth of the steam engine. Popular Science Monthly 12 (1877)

Vardi, M.Y.: The long game of research. Commun. ACM 62 (9), 7–7 (2019). https://doi.org/10.1145/3352489 . URL http://doi.acm.org/10.1145/3352489

Download references

Author information

Authors and affiliations.

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy

Carlo Ghezzi

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Carlo Ghezzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Ghezzi, C. (2020). What Is Research and Why We Do It. In: Being a Researcher. Springer, Cham. https://doi.org/10.1007/978-3-030-45157-8_1

Download citation

DOI : https://doi.org/10.1007/978-3-030-45157-8_1

Published : 23 June 2020

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-45156-1

Online ISBN : 978-3-030-45157-8

eBook Packages : Computer Science Computer Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Imperial College London Imperial College London

Latest news.

why research is practical

International students to gain Imperial research experience in summer exchange

why research is practical

Imperial celebrates strong student satisfaction, as NSS results are revealed

why research is practical

Cancer experts outline critical challenges facing the new UK Government

  • Centre for Higher Education Research and Scholarship
  • Research and Innovation
  • Educational research methods
  • Before you start

Practical considerations

Two students and a lecturer work at a computer

Before you start - Practical considerations

Careful consideration of the practical and ethical considerations involved in carrying out a piece of educational research needs to take place at the outset. Although this is something of an iterative process and some practical issues may not emerge or pose a potential challenge until after the research process has started, time spent attending to the practical aspects early on will help minimise complications and will contribution to the identification of an appropriate research question.

The table below provides an overview of some of the main considerations that might inform your decisions about the ways in which you wish to conduct your research:

Things to consider
ConsiderationQuestions to ask yourself
 Access to participants or data Are you likely to be able to gain access to the participants or data you need to actually conduct the research? Are the sensitivities of ethical considerations involved likely to be too challenging to be easily overcome?
 Consent If access is given, are the intended participants likely to give or be able to give their informed consent? Will they be willing or able to cooperate?
 Personal and professional considerations Are your personal skills, motivations, beliefs and commitments compatible with the sort of research you are intending to carry out? Do you have the right level of expertise to make appropriate decisions about what to prioritise?
 Time Can the project actually be done (and is it manageable) within the time you have available? Are participants or colleagues likely to be able to give up their time as required? Have you factored in time for following up and writing up, and contingency time for if certain things don't go to plan?
 Costs and resources Are the resources and materials you need (human and material) within the scope of your research funding? Will your research incur printing, postage or administrative support costs? Will participants have access to the resources they need (e.g. software or appropriate venues) to participate?
 Supervision Is there someone available who can adequately supervise the research or provide expert guidance?
 Value Can and will this research actually make any difference?
 
Summary of the table's contents
'It is difficult to overstate the importance of researchers doing their homework before planning the research in any detail […]. The researcher is advised to consider carefully the practicability of the research before embarking on a lost cause in trying to conduct a study that is doomed from the very start because insufficient attention has been paid to practical constraints and issues.' Cohen, Manion and Morrison, 2018, pp. 158-60 'As the saying goes, "the best way to eat an elephant is one bite at a time"!' Cohen, Manion and Morrison, 2018, p. 160

Further reading

Cohen, L., Manion, L. & Morrison, K. (2018), Chapter 9 – “Choosing a research project” (Section 9.5: “Ensuring that the research can be conducted”) in Cohen, L.,

Manion, L. & Morrison, K. (eds), Research Methods in Education (Abingdon, Routledge, 8th edn, pp. 158-160.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process

A Beginner's Guide to Starting the Research Process

Research process steps

When you have to write a thesis or dissertation , it can be hard to know where to begin, but there are some clear steps you can follow.

The research process often begins with a very broad idea for a topic you’d like to know more about. You do some preliminary research to identify a  problem . After refining your research questions , you can lay out the foundations of your research design , leading to a proposal that outlines your ideas and plans.

This article takes you through the first steps of the research process, helping you narrow down your ideas and build up a strong foundation for your research project.

Table of contents

Step 1: choose your topic, step 2: identify a problem, step 3: formulate research questions, step 4: create a research design, step 5: write a research proposal, other interesting articles.

First you have to come up with some ideas. Your thesis or dissertation topic can start out very broad. Think about the general area or field you’re interested in—maybe you already have specific research interests based on classes you’ve taken, or maybe you had to consider your topic when applying to graduate school and writing a statement of purpose .

Even if you already have a good sense of your topic, you’ll need to read widely to build background knowledge and begin narrowing down your ideas. Conduct an initial literature review to begin gathering relevant sources. As you read, take notes and try to identify problems, questions, debates, contradictions and gaps. Your aim is to narrow down from a broad area of interest to a specific niche.

Make sure to consider the practicalities: the requirements of your programme, the amount of time you have to complete the research, and how difficult it will be to access sources and data on the topic. Before moving onto the next stage, it’s a good idea to discuss the topic with your thesis supervisor.

>>Read more about narrowing down a research topic

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

So you’ve settled on a topic and found a niche—but what exactly will your research investigate, and why does it matter? To give your project focus and purpose, you have to define a research problem .

The problem might be a practical issue—for example, a process or practice that isn’t working well, an area of concern in an organization’s performance, or a difficulty faced by a specific group of people in society.

Alternatively, you might choose to investigate a theoretical problem—for example, an underexplored phenomenon or relationship, a contradiction between different models or theories, or an unresolved debate among scholars.

To put the problem in context and set your objectives, you can write a problem statement . This describes who the problem affects, why research is needed, and how your research project will contribute to solving it.

>>Read more about defining a research problem

Next, based on the problem statement, you need to write one or more research questions . These target exactly what you want to find out. They might focus on describing, comparing, evaluating, or explaining the research problem.

A strong research question should be specific enough that you can answer it thoroughly using appropriate qualitative or quantitative research methods. It should also be complex enough to require in-depth investigation, analysis, and argument. Questions that can be answered with “yes/no” or with easily available facts are not complex enough for a thesis or dissertation.

In some types of research, at this stage you might also have to develop a conceptual framework and testable hypotheses .

>>See research question examples

The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you’ll use to collect and analyze it, and the location and timescale of your research.

There are often many possible paths you can take to answering your questions. The decisions you make will partly be based on your priorities. For example, do you want to determine causes and effects, draw generalizable conclusions, or understand the details of a specific context?

You need to decide whether you will use primary or secondary data and qualitative or quantitative methods . You also need to determine the specific tools, procedures, and materials you’ll use to collect and analyze your data, as well as your criteria for selecting participants or sources.

>>Read more about creating a research design

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

why research is practical

Finally, after completing these steps, you are ready to complete a research proposal . The proposal outlines the context, relevance, purpose, and plan of your research.

As well as outlining the background, problem statement, and research questions, the proposal should also include a literature review that shows how your project will fit into existing work on the topic. The research design section describes your approach and explains exactly what you will do.

You might have to get the proposal approved by your supervisor before you get started, and it will guide the process of writing your thesis or dissertation.

>>Read more about writing a research proposal

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Is this article helpful?

Other students also liked.

  • Writing Strong Research Questions | Criteria & Examples

What Is a Research Design | Types, Guide & Examples

  • How to Write a Research Proposal | Examples & Templates

More interesting articles

  • 10 Research Question Examples to Guide Your Research Project
  • How to Choose a Dissertation Topic | 8 Steps to Follow
  • How to Define a Research Problem | Ideas & Examples
  • How to Write a Problem Statement | Guide & Examples
  • Relevance of Your Dissertation Topic | Criteria & Tips
  • Research Objectives | Definition & Examples
  • What Is a Fishbone Diagram? | Templates & Examples
  • What Is Root Cause Analysis? | Definition & Examples

Get unlimited documents corrected

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Please log in to save materials. Log in

  • Deductive Reasoning
  • Drug Abuse Resistance Education
  • Falsifiable
  • Inductive Reasoning
  • Scientific Method
  • Scientific Research

Why Is Research Important?

Why Is Research Important?

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

USE OF RESEARCH INFORMATION

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the hypothesized link between exposure to media violence and subsequent aggression has been debated in the scientific community for roughly 60 years. Even today, we will find detractors, but a consensus is building. Several professional organizations view media violence exposure as a risk factor for actual violence, including the American Medical Association, the American Psychiatric Association, and the American Psychological Association (American Academy of Pediatrics, American Academy of Child & Adolescent Psychiatry, American Psychological Association, American Medical Association, American Academy of Family Physicians, American Psychiatric Association, 2000).

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding the D.A.R.E. (Drug Abuse Resistance Education) program in public schools ( Figure ). This program typically involves police officers coming into the classroom to educate students about the dangers of becoming involved with alcohol and other drugs. According to the D.A.R.E. website (www.dare.org), this program has been very popular since its inception in 1983, and it is currently operating in 75% of school districts in the United States and in more than 40 countries worldwide. Sounds like an easy decision, right? However, on closer review, you discover that the vast majority of research into this program consistently suggests that participation has little, if any, effect on whether or not someone uses alcohol or other drugs (Clayton, Cattarello, & Johnstone, 1996; Ennett, Tobler, Ringwalt, & Flewelling, 1994; Lynam et al., 1999; Ringwalt, Ennett, & Holt, 1991). If you are committed to being a good steward of taxpayer money, will you fund this particular program, or will you try to find other programs that research has consistently demonstrated to be effective?

A D.A.R.E. poster reads “D.A.R.E. to resist drugs and violence.”

Watch this news report to learn more about some of the controversial issues surrounding the D.A.R.E. program.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

THE PROCESS OF SCIENTIFIC RESEARCH

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested against the empirical world; in inductive reasoning , empirical observations lead to new ideas ( Figure ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

Play this “Deal Me In” interactive card game to practice using inductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure .

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

Visit this website to apply the scientific method and practice its steps by using them to solve a murder mystery, determine why a student is in trouble, and design an experiment to test house paint.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. In this way, research enables scientists to separate fact from simple opinion. Having good information generated from research aids in making wise decisions both in public policy and in our personal lives.

Review Questions

Scientific hypotheses are ________ and falsifiable.

________ are defined as observable realities.

Scientific knowledge is ________.

A major criticism of Freud’s early theories involves the fact that his theories ________.

  • were too limited in scope
  • were too outrageous
  • were too broad
  • were not testable

Critical Thinking Questions

In this section, the D.A.R.E. program was described as an incredibly popular program in schools across the United States despite the fact that research consistently suggests that this program is largely ineffective. How might one explain this discrepancy?

There is probably tremendous political pressure to appear to be hard on drugs. Therefore, even though D.A.R.E. might be ineffective, it is a well-known program with which voters are familiar.

The scientific method is often described as self-correcting and cyclical. Briefly describe your understanding of the scientific method with regard to these concepts.

This cyclical, self-correcting process is primarily a function of the empirical nature of science. Theories are generated as explanations of real-world phenomena. From theories, specific hypotheses are developed and tested. As a function of this testing, theories will be revisited and modified or refined to generate new hypotheses that are again tested. This cyclical process ultimately allows for more and more precise (and presumably accurate) information to be collected.

Personal Application Questions

Healthcare professionals cite an enormous number of health problems related to obesity, and many people have an understandable desire to attain a healthy weight. There are many diet programs, services, and products on the market to aid those who wish to lose weight. If a close friend was considering purchasing or participating in one of these products, programs, or services, how would you make sure your friend was fully aware of the potential consequences of this decision? What sort of information would you want to review before making such an investment or lifestyle change yourself?

Version History

IMAGES

  1. Practical Research Reviewer

    why research is practical

  2. How to Compose an Academic Research Paper

    why research is practical

  3. Types Of Research Methodology

    why research is practical

  4. Practical Research

    why research is practical

  5. Practical Research

    why research is practical

  6. Practical Research (The Research Stories Book 1)

    why research is practical

VIDEO

  1. ENG 1113 Classification Guide: Why Research Matters

  2. Why research matters #research #sciencepodcast #restorativejustice #communityengagement #podcast

  3. Practical Research 2 Quarter 1 Module 3: Kinds of Variables and Their Uses

  4. Characteristics of Research

  5. CTSC READI Research Policy Impact: Policy

  6. The "WHY" Question in Research: Importance

COMMENTS

  1. Why Is Research Practical And Realistic | Jacks Of Science

    Research is practical and realistic because it is a systematic way to assess, analyze, and identify solutions or improve existing processes. Explain it to a child. Research is useful because it helps us understand how to solve real problems. It also helps us make better decisions.

  2. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. Learn more about types of research, processes, and methods with best practices.

  3. Research does solve real-world problems: experts must work ...

    Creating impact across disciplines. Try to solve a problem with the tools of a single discipline alone, and it’s as if you have a hammer - everything starts to look like a nail. It’s...

  4. What is Research? - Purpose of Research - DiscoverPhDs

    The purpose of research is to enhance society by advancing knowledge through the development of scientific theories, concepts and ideas. A research purpose is met through forming hypotheses, collecting data, analysing results, forming conclusions, implementing findings into real-life applications and forming new research questions.

  5. What Is Action Research? | Definition & Examples - Scribbr

    Practical action research focuses more on how research is conducted and is designed to address and solve specific issues. Both types of action research are more focused on increasing the capacity and ability of future practitioners than contributing to a theoretical body of knowledge.

  6. BASIC RESEARCH, ITS APPLICATION AND BENEFITS

    WHY BASIC RESEARCH? BASIC RESEARCH, ITS APPLICATION AND BENEFITS. It is a paradox of science that the road to revolutionary breakthrough is often an indirect, inquiry-driven approach that yields increased understanding of the natural world and ourselves, and enables transformative discoveries for real-world challenges.

  7. What Is Research and Why We Do It | SpringerLink

    The notions of science and scientific research are discussed and the motivations for doing research are analyzed. Research can span a broad range of approaches, from purely theoretical to practice-oriented; different approaches often coexist and fertilize each other. Research ignites human progress and societal change.

  8. Practical considerations | Research and Innovation | Imperial ...

    The researcher is advised to consider carefully the practicability of the research before embarking on a lost cause in trying to conduct a study that is doomed from the very start because insufficient attention has been paid to practical constraints and issues.' Cohen, Manion and Morrison, 2018, pp. 158-60.

  9. A Beginner's Guide to Starting the Research Process - Scribbr

    The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you’ll use to collect and analyze it, and the location and timescale of your research.

  10. Why Is Research Important? - OER Commons

    Why Is Research Important? Overview. By the end of this section, you will be able to: Explain how scientific research addresses questions about behavior. Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions.