Please ensure that your password is at least 8 characters and contains each of the following:
- a special character: @$#!%*?&
- For educators
- English (US)
- English (India)
- English (UK)
- Greek Alphabet
This problem has been solved!
You'll get a detailed solution from a subject matter expert that helps you learn core concepts.
Question: Unit 2 ο»ΏLab B: Trigonometric FunctionsMAT 172Β (Section 5.4,Β 5.6,Β 5.7 ο»Ώ& 5.8)Please print and complete this lab. Once you have completed the lab, please enter your answers in Canvas in the "Unit 2 ο»ΏLab Answer Entry Sheet".For problems 1-4, ο»Ώdetermine whether the statement is true or false.The secant function is a continuous function.The sine function is a
5) y = 3 2 sin β‘ x
Use the form a sin β‘ ( b x β c ) + d to find the variables used to find the amplitude, period, phase shift, and vertical ...
Not the question youβre looking for?
Post any question and get expert help quickly.
9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify Trigonometric Expressions
sin 2 ΞΈ β 1 tan ΞΈ sin ΞΈ β tan ΞΈ = ( sin ΞΈ + 1 ) ( sin ΞΈ β 1 ) tan ΞΈ ( sin ΞΈ β 1 ) = sin ΞΈ + 1 tan ΞΈ sin 2 ΞΈ β 1 tan ΞΈ sin ΞΈ β tan ΞΈ = ( sin ΞΈ + 1 ) ( sin ΞΈ β 1 ) tan ΞΈ ( sin ΞΈ β 1 ) = sin ΞΈ + 1 tan ΞΈ
This is a difference of squares formula: 25 β 9 sin 2 ΞΈ = ( 5 β 3 sin ΞΈ ) ( 5 + 3 sin ΞΈ ) . 25 β 9 sin 2 ΞΈ = ( 5 β 3 sin ΞΈ ) ( 5 + 3 sin ΞΈ ) .
9.2 Sum and Difference Identities
2 + 6 4 2 + 6 4
2 β 6 4 2 β 6 4
1 β 3 1 + 3 1 β 3 1 + 3
cos ( 5 Ο 14 ) cos ( 5 Ο 14 )
9.3 Double-Angle, Half-Angle, and Reduction Formulas
cos ( 2 Ξ± ) = 7 32 cos ( 2 Ξ± ) = 7 32
cos 4 ΞΈ β sin 4 ΞΈ = ( cos 2 ΞΈ + sin 2 ΞΈ ) ( cos 2 ΞΈ β sin 2 ΞΈ ) = cos ( 2 ΞΈ ) cos 4 ΞΈ β sin 4 ΞΈ = ( cos 2 ΞΈ + sin 2 ΞΈ ) ( cos 2 ΞΈ β sin 2 ΞΈ ) = cos ( 2 ΞΈ )
cos ( 2 ΞΈ ) cos ΞΈ = ( cos 2 ΞΈ β sin 2 ΞΈ ) cos ΞΈ = cos 3 ΞΈ β cos ΞΈ sin 2 ΞΈ cos ( 2 ΞΈ ) cos ΞΈ = ( cos 2 ΞΈ β sin 2 ΞΈ ) cos ΞΈ = cos 3 ΞΈ β cos ΞΈ sin 2 ΞΈ
10 cos 4 x = 10 ( cos 2 x ) 2 = 10 [ 1 + cos ( 2 x ) 2 ] 2 Substitute reduction formula for cos 2 x . = 10 4 [ 1 + 2 cos ( 2 x ) + cos 2 ( 2 x ) ] = 10 4 + 10 2 cos ( 2 x ) + 10 4 ( 1 + cos 2 ( 2 x ) 2 ) Substitute reduction formula for cos 2 x . = 10 4 + 10 2 cos ( 2 x ) + 10 8 + 10 8 cos ( 4 x ) = 30 8 + 5 cos ( 2 x ) + 10 8 cos ( 4 x ) = 15 4 + 5 cos ( 2 x ) + 5 4 cos ( 4 x ) 10 cos 4 x = 10 ( cos 2 x ) 2 = 10 [ 1 + cos ( 2 x ) 2 ] 2 Substitute reduction formula for cos 2 x . = 10 4 [ 1 + 2 cos ( 2 x ) + cos 2 ( 2 x ) ] = 10 4 + 10 2 cos ( 2 x ) + 10 4 ( 1 + cos 2 ( 2 x ) 2 ) Substitute reduction formula for cos 2 x . = 10 4 + 10 2 cos ( 2 x ) + 10 8 + 10 8 cos ( 4 x ) = 30 8 + 5 cos ( 2 x ) + 10 8 cos ( 4 x ) = 15 4 + 5 cos ( 2 x ) + 5 4 cos ( 4 x )
β 2 5 β 2 5
9.4 Sum-to-Product and Product-to-Sum Formulas
1 2 ( cos 6 ΞΈ + cos 2 ΞΈ ) 1 2 ( cos 6 ΞΈ + cos 2 ΞΈ )
1 2 ( sin 2 x + sin 2 y ) 1 2 ( sin 2 x + sin 2 y )
β 2 β 3 4 β 2 β 3 4
2 sin ( 2 ΞΈ ) cos ( ΞΈ ) 2 sin ( 2 ΞΈ ) cos ( ΞΈ )
tan ΞΈ cot ΞΈ β cos 2 ΞΈ = ( sin ΞΈ cos ΞΈ ) ( cos ΞΈ sin ΞΈ ) β cos 2 ΞΈ = 1 β cos 2 ΞΈ = sin 2 ΞΈ tan ΞΈ cot ΞΈ β cos 2 ΞΈ = ( sin ΞΈ cos ΞΈ ) ( cos ΞΈ sin ΞΈ ) β cos 2 ΞΈ = 1 β cos 2 ΞΈ = sin 2 ΞΈ
9.5 Solving Trigonometric Equations
x = 7 Ο 6 , 11 Ο 6 x = 7 Ο 6 , 11 Ο 6
Ο 3 Β± Ο k Ο 3 Β± Ο k
ΞΈ β 1.7722 Β± 2 Ο k ΞΈ β 1.7722 Β± 2 Ο k and ΞΈ β 4.5110 Β± 2 Ο k ΞΈ β 4.5110 Β± 2 Ο k
cos ΞΈ = β 1 , ΞΈ = Ο cos ΞΈ = β 1 , ΞΈ = Ο
Ο 2 , 2 Ο 3 , 4 Ο 3 , 3 Ο 2 Ο 2 , 2 Ο 3 , 4 Ο 3 , 3 Ο 2
9.1 Section Exercises
All three functions, F F , G G , and H H , are even.
This is because F ( β x ) = sin ( β x ) sin ( β x ) = ( β sin x ) ( β sin x ) = sin 2 x = F ( x ) F ( β x ) = sin ( β x ) sin ( β x ) = ( β sin x ) ( β sin x ) = sin 2 x = F ( x ) , G ( β x ) = cos ( β x ) cos ( β x ) = cos x cos x = cos 2 x = G ( x ) G ( β x ) = cos ( β x ) cos ( β x ) = cos x cos x = cos 2 x = G ( x ) and H ( β x ) = tan ( β x ) tan ( β x ) = ( β tan x ) ( β tan x ) = tan 2 x = H ( x ) . H ( β x ) = tan ( β x ) tan ( β x ) = ( β tan x ) ( β tan x ) = tan 2 x = H ( x ) .
When cos t = 0 , cos t = 0 , then sec t = 1 0 , sec t = 1 0 , which is undefined.
sin x sin x
sec x sec x
csc t csc t
sec 2 x sec 2 x
sin 2 x + 1 sin 2 x + 1
1 sin x 1 sin x
1 cot x 1 cot x
tan x tan x
β 4 sec x tan x β 4 sec x tan x
Β± 1 cot 2 x + 1 Β± 1 cot 2 x + 1
Β± 1 β sin 2 x sin x Β± 1 β sin 2 x sin x
Answers will vary. Sample proof:
cos x β cos 3 x = cos x ( 1 β cos 2 x ) = cos x sin 2 x cos x β cos 3 x = cos x ( 1 β cos 2 x ) = cos x sin 2 x
Answers will vary. Sample proof: 1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = sec 2 x + tan 2 x = tan 2 x + 1 + tan 2 x = 1 + 2 tan 2 x 1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = sec 2 x + tan 2 x = tan 2 x + 1 + tan 2 x = 1 + 2 tan 2 x
Answers will vary. Sample proof: cos 2 x β tan 2 x = 1 β sin 2 x β ( sec 2 x β 1 ) = 1 β sin 2 x β sec 2 x + 1 = 2 β sin 2 x β sec 2 x cos 2 x β tan 2 x = 1 β sin 2 x β ( sec 2 x β 1 ) = 1 β sin 2 x β sec 2 x + 1 = 2 β sin 2 x β sec 2 x
Proved with negative and Pythagorean identities
True 3 sin 2 ΞΈ + 4 cos 2 ΞΈ = 3 sin 2 ΞΈ + 3 cos 2 ΞΈ + cos 2 ΞΈ = 3 ( sin 2 ΞΈ + cos 2 ΞΈ ) + cos 2 ΞΈ = 3 + cos 2 ΞΈ 3 sin 2 ΞΈ + 4 cos 2 ΞΈ = 3 sin 2 ΞΈ + 3 cos 2 ΞΈ + cos 2 ΞΈ = 3 ( sin 2 ΞΈ + cos 2 ΞΈ ) + cos 2 ΞΈ = 3 + cos 2 ΞΈ
9.2 Section Exercises
The cofunction identities apply to complementary angles. Viewing the two acute angles of a right triangle, if one of those angles measures x , x , the second angle measures Ο 2 β x . Ο 2 β x . Then sin x = cos ( Ο 2 β x ) . β sin x = cos ( Ο 2 β x ) . β The same holds for the other cofunction identities. The key is that the angles are complementary.
sin ( β x ) = β sin x , sin ( β x ) = β sin x , so sin x sin x is odd. cos ( β x ) = cos ( 0 β x ) = cos x , cos ( β x ) = cos ( 0 β x ) = cos x , so cos x cos x is even.
6 β 2 4 6 β 2 4
β 2 β 3 β 2 β 3
β 2 2 sin x β 2 2 cos x β 2 2 sin x β 2 2 cos x
β 1 2 cos x β 3 2 sin x β 1 2 cos x β 3 2 sin x
csc ΞΈ csc ΞΈ
cot x cot x
tan ( x 10 ) tan ( x 10 )
sin ( a β b ) = ( 4 5 ) ( 1 3 ) β ( 3 5 ) ( 2 2 3 ) = 4 β 6 2 15 cos ( a + b ) = ( 3 5 ) ( 1 3 ) β ( 4 5 ) ( 2 2 3 ) = 3 β 8 2 15 sin ( a β b ) = ( 4 5 ) ( 1 3 ) β ( 3 5 ) ( 2 2 3 ) = 4 β 6 2 15 cos ( a + b ) = ( 3 5 ) ( 1 3 ) β ( 4 5 ) ( 2 2 3 ) = 3 β 8 2 15
cot ( Ο 6 β x ) cot ( Ο 6 β x )
cot ( Ο 4 + x ) cot ( Ο 4 + x )
sin x 2 + cos x 2 sin x 2 + cos x 2
They are the same.
They are the different, try g ( x ) = sin ( 9 x ) β cos ( 3 x ) sin ( 6 x ) . g ( x ) = sin ( 9 x ) β cos ( 3 x ) sin ( 6 x ) .
They are the different, try g ( ΞΈ ) = 2 tan ΞΈ 1 β tan 2 ΞΈ . g ( ΞΈ ) = 2 tan ΞΈ 1 β tan 2 ΞΈ .
They are different, try g ( x ) = tan x β tan ( 2 x ) 1 + tan x tan ( 2 x ) . g ( x ) = tan x β tan ( 2 x ) 1 + tan x tan ( 2 x ) .
β 3 β 1 2 2 , or β 0.2588 β 3 β 1 2 2 , or β 0.2588
1 + 3 2 2 , 1 + 3 2 2 , or 0.9659
tan ( x + Ο 4 ) = tan x + tan ( Ο 4 ) 1 β tan x tan ( Ο 4 ) = tan x + 1 1 β tan x ( 1 ) = tan x + 1 1 β tan x tan ( x + Ο 4 ) = tan x + tan ( Ο 4 ) 1 β tan x tan ( Ο 4 ) = tan x + 1 1 β tan x ( 1 ) = tan x + 1 1 β tan x
cos ( a + b ) cos a cos b = cos a cos b cos a cos b β sin a sin b cos a cos b = 1 β tan a tan b cos ( a + b ) cos a cos b = cos a cos b cos a cos b β sin a sin b cos a cos b = 1 β tan a tan b
cos ( x + h ) β cos x h = cos x cosh β sin x sinh β cos x h = cos x ( cosh β 1 ) β sin x sinh h = cos x cos h β 1 h β sin x sin h h cos ( x + h ) β cos x h = cos x cosh β sin x sinh β cos x h = cos x ( cosh β 1 ) β sin x sinh h = cos x cos h β 1 h β sin x sin h h
True. Note that β sin ( Ξ± + Ξ² ) = sin ( Ο β Ξ³ ) β β sin ( Ξ± + Ξ² ) = sin ( Ο β Ξ³ ) β and expand the right hand side.
9.3 Section Exercises
Use the Pythagorean identities and isolate the squared term.
1 β cos x sin x , sin x 1 + cos x , 1 β cos x sin x , sin x 1 + cos x , multiplying the top and bottom by 1 β cos x 1 β cos x and 1 + cos x , 1 + cos x , respectively.
a) 3 7 32 3 7 32 b) 31 32 31 32 c) 3 7 31 3 7 31
a) 3 2 3 2 b) β 1 2 β 1 2 c) β 3 β 3
cos ΞΈ = β 2 5 5 , sin ΞΈ = 5 5 , tan ΞΈ = β 1 2 , csc ΞΈ = 5 , sec ΞΈ = β 5 2 , cot ΞΈ = β 2 cos ΞΈ = β 2 5 5 , sin ΞΈ = 5 5 , tan ΞΈ = β 1 2 , csc ΞΈ = 5 , sec ΞΈ = β 5 2 , cot ΞΈ = β 2
2 sin ( Ο 2 ) 2 sin ( Ο 2 )
2 β 2 2 2 β 2 2
2 β 3 2 2 β 3 2
2 + 3 2 + 3
β 1 β 2 β 1 β 2
a) 3 13 13 3 13 13 b) β 2 13 13 β 2 13 13 c) β 3 2 β 3 2
a) 10 4 10 4 b) 6 4 6 4 c) 15 3 15 3
120 169 , β 119 169 , β 120 119 120 169 , β 119 169 , β 120 119
2 13 13 , 3 13 13 , 2 3 2 13 13 , 3 13 13 , 2 3
cos ( 74Β° ) cos ( 74Β° )
cos ( 18 x ) cos ( 18 x )
3 sin ( 10 x ) 3 sin ( 10 x )
β 2 sin ( β x ) cos ( β x ) = β 2 ( β sin ( x ) cos ( x ) ) = sin ( 2 x ) β 2 sin ( β x ) cos ( β x ) = β 2 ( β sin ( x ) cos ( x ) ) = sin ( 2 x )
sin ( 2 ΞΈ ) 1 + cos ( 2 ΞΈ ) tan 2 ΞΈ = 2 sin ( ΞΈ ) cos ( ΞΈ ) 1 + cos 2 ΞΈ β sin 2 ΞΈ tan 2 ΞΈ = 2 sin ( ΞΈ ) cos ( ΞΈ ) 2 cos 2 ΞΈ tan 2 ΞΈ = sin ( ΞΈ ) cos ΞΈ tan 2 ΞΈ = cot ( ΞΈ ) tan 2 ΞΈ = tan 3 ΞΈ sin ( 2 ΞΈ ) 1 + cos ( 2 ΞΈ ) tan 2 ΞΈ = 2 sin ( ΞΈ ) cos ( ΞΈ ) 1 + cos 2 ΞΈ β sin 2 ΞΈ tan 2 ΞΈ = 2 sin ( ΞΈ ) cos ( ΞΈ ) 2 cos 2 ΞΈ tan 2 ΞΈ = sin ( ΞΈ ) cos ΞΈ tan 2 ΞΈ = cot ( ΞΈ ) tan 2 ΞΈ = tan 3 ΞΈ
1 + cos ( 12 x ) 2 1 + cos ( 12 x ) 2
3 + cos ( 12 x ) β 4 cos ( 6 x ) 8 3 + cos ( 12 x ) β 4 cos ( 6 x ) 8
2 + cos ( 2 x ) β 2 cos ( 4 x ) β cos ( 6 x ) 32 2 + cos ( 2 x ) β 2 cos ( 4 x ) β cos ( 6 x ) 32
3 + cos ( 4 x ) β 4 cos ( 2 x ) 3 + cos ( 4 x ) + 4 cos ( 2 x ) 3 + cos ( 4 x ) β 4 cos ( 2 x ) 3 + cos ( 4 x ) + 4 cos ( 2 x )
1 β cos ( 4 x ) 8 1 β cos ( 4 x ) 8
3 + cos ( 4 x ) β 4 cos ( 2 x ) 4 ( cos ( 2 x ) + 1 ) 3 + cos ( 4 x ) β 4 cos ( 2 x ) 4 ( cos ( 2 x ) + 1 )
( 1 + cos ( 4 x ) ) sin x 2 ( 1 + cos ( 4 x ) ) sin x 2
4 sin x cos x ( cos 2 x β sin 2 x ) 4 sin x cos x ( cos 2 x β sin 2 x )
2 tan x 1 + tan 2 x = 2 sin x cos x 1 + sin 2 x cos 2 x = 2 sin x cos x cos 2 x + sin 2 x cos 2 x = 2 sin x cos x . cos 2 x 1 = 2 sin x cos x = sin ( 2 x ) 2 tan x 1 + tan 2 x = 2 sin x cos x 1 + sin 2 x cos 2 x = 2 sin x cos x cos 2 x + sin 2 x cos 2 x = 2 sin x cos x . cos 2 x 1 = 2 sin x cos x = sin ( 2 x )
2 sin x cos x 2 cos 2 x β 1 = sin ( 2 x ) cos ( 2 x ) = tan ( 2 x ) 2 sin x cos x 2 cos 2 x β 1 = sin ( 2 x ) cos ( 2 x ) = tan ( 2 x )
sin ( x + 2 x ) = sin x cos ( 2 x ) + sin ( 2 x ) cos x = sin x ( cos 2 x β sin 2 x ) + 2 sin x cos x cos x = sin x cos 2 x β sin 3 x + 2 sin x cos 2 x = 3 sin x cos 2 x β sin 3 x sin ( x + 2 x ) = sin x cos ( 2 x ) + sin ( 2 x ) cos x = sin x ( cos 2 x β sin 2 x ) + 2 sin x cos x cos x = sin x cos 2 x β sin 3 x + 2 sin x cos 2 x = 3 sin x cos 2 x β sin 3 x
1 + cos ( 2 t ) sin ( 2 t ) β cos t = 1 + 2 cos 2 t β 1 2 sin t cos t β cos t = 2 cos 2 t cos t ( 2 sin t β 1 ) = 2 cos t 2 sin t β 1 1 + cos ( 2 t ) sin ( 2 t ) β cos t = 1 + 2 cos 2 t β 1 2 sin t cos t β cos t = 2 cos 2 t cos t ( 2 sin t β 1 ) = 2 cos t 2 sin t β 1
( cos 2 ( 4 x ) β sin 2 ( 4 x ) β sin ( 8 x ) ) ( cos 2 ( 4 x ) β sin 2 ( 4 x ) + sin ( 8 x ) ) = = ( cos ( 8 x ) β sin ( 8 x ) ) ( cos ( 8 x ) + sin ( 8 x ) ) = cos 2 ( 8 x ) β sin 2 ( 8 x ) = cos ( 16 x ) ( cos 2 ( 4 x ) β sin 2 ( 4 x ) β sin ( 8 x ) ) ( cos 2 ( 4 x ) β sin 2 ( 4 x ) + sin ( 8 x ) ) = = ( cos ( 8 x ) β sin ( 8 x ) ) ( cos ( 8 x ) + sin ( 8 x ) ) = cos 2 ( 8 x ) β sin 2 ( 8 x ) = cos ( 16 x )
9.4 Section Exercises
Substitute β Ξ± β β Ξ± β into cosine and β Ξ² β β Ξ² β into sine and evaluate.
Answers will vary. There are some equations that involve a sum of two trig expressions where when converted to a product are easier to solve. For example: sin ( 3 x ) + sin x cos x = 1. β sin ( 3 x ) + sin x cos x = 1. β When converting the numerator to a product the equation becomes: 2 sin ( 2 x ) cos x cos x = 1 2 sin ( 2 x ) cos x cos x = 1
8 ( cos ( 5 x ) β cos ( 27 x ) ) 8 ( cos ( 5 x ) β cos ( 27 x ) )
sin ( 2 x ) + sin ( 8 x ) sin ( 2 x ) + sin ( 8 x )
1 2 ( cos ( 6 x ) β cos ( 4 x ) ) 1 2 ( cos ( 6 x ) β cos ( 4 x ) )
2 cos ( 5 t ) cos t 2 cos ( 5 t ) cos t
2 cos ( 7 x ) 2 cos ( 7 x )
2 cos ( 6 x ) cos ( 3 x ) 2 cos ( 6 x ) cos ( 3 x )
1 4 ( 1 + 3 ) 1 4 ( 1 + 3 )
1 4 ( 3 β 2 ) 1 4 ( 3 β 2 )
1 4 ( 3 β 1 ) 1 4 ( 3 β 1 )
cos ( 80Β° ) β cos ( 120Β° ) cos ( 80Β° ) β cos ( 120Β° )
1 2 ( sin ( 221Β° ) + sin ( 205Β° ) ) 1 2 ( sin ( 221Β° ) + sin ( 205Β° ) )
2 cos ( 31Β° ) 2 cos ( 31Β° )
2 cos ( 66.5Β° ) sin ( 34.5Β° ) 2 cos ( 66.5Β° ) sin ( 34.5Β° )
2 sin ( β1.5Β° ) cos ( 0.5Β° ) 2 sin ( β1.5Β° ) cos ( 0.5Β° )
2 sin ( 7 x ) β 2 sin x = 2 sin ( 4 x + 3 x ) β 2 sin ( 4 x β 3 x ) = 2 ( sin ( 4 x ) cos ( 3 x ) + sin ( 3 x ) cos ( 4 x ) ) β 2 ( sin ( 4 x ) cos ( 3 x ) β sin ( 3 x ) cos ( 4 x ) ) = 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) β 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) = 4 sin ( 3 x ) cos ( 4 x ) 2 sin ( 7 x ) β 2 sin x = 2 sin ( 4 x + 3 x ) β 2 sin ( 4 x β 3 x ) = 2 ( sin ( 4 x ) cos ( 3 x ) + sin ( 3 x ) cos ( 4 x ) ) β 2 ( sin ( 4 x ) cos ( 3 x ) β sin ( 3 x ) cos ( 4 x ) ) = 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) β 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) = 4 sin ( 3 x ) cos ( 4 x )
sin x + sin ( 3 x ) = 2 sin ( 4 x 2 ) cos ( β 2 x 2 ) = 2 sin ( 2 x ) cos x = 2 ( 2 sin x cos x ) cos x = 4 sin x cos 2 x sin x + sin ( 3 x ) = 2 sin ( 4 x 2 ) cos ( β 2 x 2 ) = 2 sin ( 2 x ) cos x = 2 ( 2 sin x cos x ) cos x = 4 sin x cos 2 x
2 tan x cos ( 3 x ) = 2 sin x cos ( 3 x ) cos x = 2 ( .5 ( sin ( 4 x ) β sin ( 2 x ) ) ) cos x = 1 cos x ( sin ( 4 x ) β sin ( 2 x ) ) = sec x ( sin ( 4 x ) β sin ( 2 x ) ) 2 tan x cos ( 3 x ) = 2 sin x cos ( 3 x ) cos x = 2 ( .5 ( sin ( 4 x ) β sin ( 2 x ) ) ) cos x = 1 cos x ( sin ( 4 x ) β sin ( 2 x ) ) = sec x ( sin ( 4 x ) β sin ( 2 x ) )
2 cos ( 35Β° ) cos ( 23Β° ) , 1.5081 2 cos ( 35Β° ) cos ( 23Β° ) , 1.5081
β 2 sin ( 33Β° ) sin ( 11Β° ) , β 0.2078 β 2 sin ( 33Β° ) sin ( 11Β° ) , β 0.2078
1 2 ( cos ( 99Β° ) β cos ( 71Β° ) ) , β0.2410 1 2 ( cos ( 99Β° ) β cos ( 71Β° ) ) , β0.2410
It is an identity.
It is not an identity, but 2 cos 3 x 2 cos 3 x is.
tan ( 3 t ) tan ( 3 t )
2 cos ( 2 x ) 2 cos ( 2 x )
β sin ( 14 x ) β sin ( 14 x )
Start with cos x + cos y . cos x + cos y . Make a substitution and let x = Ξ± + Ξ² x = Ξ± + Ξ² and let y = Ξ± β Ξ² , y = Ξ± β Ξ² , so cos x + cos y cos x + cos y becomes cos ( Ξ± + Ξ² ) + cos ( Ξ± β Ξ² ) = cos Ξ± cos Ξ² β sin Ξ± sin Ξ² + cos Ξ± cos Ξ² + sin Ξ± sin Ξ² = 2 cos Ξ± cos Ξ² cos ( Ξ± + Ξ² ) + cos ( Ξ± β Ξ² ) = cos Ξ± cos Ξ² β sin Ξ± sin Ξ² + cos Ξ± cos Ξ² + sin Ξ± sin Ξ² = 2 cos Ξ± cos Ξ²
Since x = Ξ± + Ξ² x = Ξ± + Ξ² and y = Ξ± β Ξ² , y = Ξ± β Ξ² , we can solve for Ξ± Ξ± and Ξ² Ξ² in terms of x and y and substitute in for 2 cos Ξ± cos Ξ² 2 cos Ξ± cos Ξ² and get 2 cos ( x + y 2 ) cos ( x β y 2 ) . 2 cos ( x + y 2 ) cos ( x β y 2 ) .
cos ( 3 x ) + cos x cos ( 3 x ) β cos x = 2 cos ( 2 x ) cos x β 2 sin ( 2 x ) sin x = β cot ( 2 x ) cot x cos ( 3 x ) + cos x cos ( 3 x ) β cos x = 2 cos ( 2 x ) cos x β 2 sin ( 2 x ) sin x = β cot ( 2 x ) cot x
cos ( 2 y ) β cos ( 4 y ) sin ( 2 y ) + sin ( 4 y ) = β 2 sin ( 3 y ) sin ( β y ) 2 sin ( 3 y ) cos y = 2 sin ( 3 y ) sin ( y ) 2 sin ( 3 y ) cos y = tan y cos ( 2 y ) β cos ( 4 y ) sin ( 2 y ) + sin ( 4 y ) = β 2 sin ( 3 y ) sin ( β y ) 2 sin ( 3 y ) cos y = 2 sin ( 3 y ) sin ( y ) 2 sin ( 3 y ) cos y = tan y
cos x β cos ( 3 x ) = β 2 sin ( 2 x ) sin ( β x ) = 2 ( 2 sin x cos x ) sin x = 4 sin 2 x cos x cos x β cos ( 3 x ) = β 2 sin ( 2 x ) sin ( β x ) = 2 ( 2 sin x cos x ) sin x = 4 sin 2 x cos x
tan ( Ο 4 β t ) = tan ( Ο 4 ) β tan t 1 + tan ( Ο 4 ) tan ( t ) = 1 β tan t 1 + tan t tan ( Ο 4 β t ) = tan ( Ο 4 ) β tan t 1 + tan ( Ο 4 ) tan ( t ) = 1 β tan t 1 + tan t
9.5 Section Exercises
There will not always be solutions to trigonometric function equations. For a basic example, cos ( x ) = β5. cos ( x ) = β5.
If the sine or cosine function has a coefficient of one, isolate the term on one side of the equals sign. If the number it is set equal to has an absolute value less than or equal to one, the equation has solutions, otherwise it does not. If the sine or cosine does not have a coefficient equal to one, still isolate the term but then divide both sides of the equation by the leading coefficient. Then, if the number it is set equal to has an absolute value greater than one, the equation has no solution.
Ο 3 , 2 Ο 3 Ο 3 , 2 Ο 3
3 Ο 4 , 5 Ο 4 3 Ο 4 , 5 Ο 4
Ο 4 , 5 Ο 4 Ο 4 , 5 Ο 4
Ο 4 , 3 Ο 4 , 5 Ο 4 , 7 Ο 4 Ο 4 , 3 Ο 4 , 5 Ο 4 , 7 Ο 4
Ο 4 , 7 Ο 4 Ο 4 , 7 Ο 4
7 Ο 6 , 11 Ο 6 7 Ο 6 , 11 Ο 6
Ο 18 , 5 Ο 18 , 13 Ο 18 , 17 Ο 18 , 25 Ο 18 , 29 Ο 18 Ο 18 , 5 Ο 18 , 13 Ο 18 , 17 Ο 18 , 25 Ο 18 , 29 Ο 18
3 Ο 12 , 5 Ο 12 , 11 Ο 12 , 13 Ο 12 , 19 Ο 12 , 21 Ο 12 3 Ο 12 , 5 Ο 12 , 11 Ο 12 , 13 Ο 12 , 19 Ο 12 , 21 Ο 12
1 6 , 5 6 , 13 6 , 17 6 , 25 6 , 29 6 , 37 6 1 6 , 5 6 , 13 6 , 17 6 , 25 6 , 29 6 , 37 6
0 , Ο 3 , Ο , 5 Ο 3 0 , Ο 3 , Ο , 5 Ο 3
Ο 3 , Ο , 5 Ο 3 Ο 3 , Ο , 5 Ο 3
Ο 3 , 3 Ο 2 , 5 Ο 3 Ο 3 , 3 Ο 2 , 5 Ο 3
0 , Ο 0 , Ο
Ο β sin β 1 ( β 1 4 ) , 7 Ο 6 , 11 Ο 6 , 2 Ο + sin β 1 ( β 1 4 ) Ο β sin β 1 ( β 1 4 ) , 7 Ο 6 , 11 Ο 6 , 2 Ο + sin β 1 ( β 1 4 )
1 3 ( sin β 1 ( 9 10 ) ) 1 3 ( sin β 1 ( 9 10 ) ) , Ο 3 β 1 3 ( sin β 1 ( 9 10 ) ) Ο 3 β 1 3 ( sin β 1 ( 9 10 ) ) , 2 Ο 3 + 1 3 ( sin β 1 ( 9 10 ) ) 2 Ο 3 + 1 3 ( sin β 1 ( 9 10 ) ) , Ο β 1 3 ( sin β 1 ( 9 10 ) ) Ο β 1 3 ( sin β 1 ( 9 10 ) ) , 4 Ο 3 + 1 3 ( sin β 1 ( 9 10 ) ) 4 Ο 3 + 1 3 ( sin β 1 ( 9 10 ) ) , 5 Ο 3 β 1 3 ( sin β 1 ( 9 10 ) ) 5 Ο 3 β 1 3 ( sin β 1 ( 9 10 ) )
Ο 6 , 5 Ο 6 , 7 Ο 6 , 11 Ο 6 Ο 6 , 5 Ο 6 , 7 Ο 6 , 11 Ο 6
3 Ο 2 , Ο 6 , 5 Ο 6 3 Ο 2 , Ο 6 , 5 Ο 6
0 , Ο 3 , Ο , 4 Ο 3 0 , Ο 3 , Ο , 4 Ο 3
There are no solutions.
cos β 1 ( 1 3 ( 1 β 7 ) ) cos β 1 ( 1 3 ( 1 β 7 ) ) , 2 Ο β cos β 1 ( 1 3 ( 1 β 7 ) ) 2 Ο β cos β 1 ( 1 3 ( 1 β 7 ) )
tan β 1 ( 1 2 ( 29 β 5 ) ) tan β 1 ( 1 2 ( 29 β 5 ) ) , Ο + tan β 1 ( 1 2 ( β 29 β 5 ) ) Ο + tan β 1 ( 1 2 ( β 29 β 5 ) ) , Ο + tan β 1 ( 1 2 ( 29 β 5 ) ) Ο + tan β 1 ( 1 2 ( 29 β 5 ) ) , 2 Ο + tan β 1 ( 1 2 ( β 29 β 5 ) ) 2 Ο + tan β 1 ( 1 2 ( β 29 β 5 ) )
0 , 2 Ο 3 , 4 Ο 3 0 , 2 Ο 3 , 4 Ο 3
sin β 1 ( 3 5 ) , Ο 2 , Ο β sin β 1 ( 3 5 ) , 3 Ο 2 sin β 1 ( 3 5 ) , Ο 2 , Ο β sin β 1 ( 3 5 ) , 3 Ο 2
cos β 1 ( β 1 4 ) , 2 Ο β cos β 1 ( β 1 4 ) cos β 1 ( β 1 4 ) , 2 Ο β cos β 1 ( β 1 4 )
Ο 3 Ο 3 , cos β 1 ( β 3 4 ) cos β 1 ( β 3 4 ) , 2 Ο β cos β 1 ( β 3 4 ) 2 Ο β cos β 1 ( β 3 4 ) , 5 Ο 3 5 Ο 3
cos β 1 ( 3 4 ) cos β 1 ( 3 4 ) , cos β 1 ( β 2 3 ) cos β 1 ( β 2 3 ) , 2 Ο β cos β 1 ( β 2 3 ) 2 Ο β cos β 1 ( β 2 3 ) , 2 Ο β cos β 1 ( 3 4 ) 2 Ο β cos β 1 ( 3 4 )
0 , Ο 2 , Ο , 3 Ο 2 0 , Ο 2 , Ο , 3 Ο 2
Ο 3 Ο 3 , cos β1 ( β 1 4 ) cos β1 ( β 1 4 ) , 2 Ο β cos β1 ( β 1 4 ) 2 Ο β cos β1 ( β 1 4 ) , 5 Ο 3 5 Ο 3
Ο + tan β1 ( β2 ) Ο + tan β1 ( β2 ) , Ο + tan β1 ( β 3 2 ) Ο + tan β1 ( β 3 2 ) , 2 Ο + tan β1 ( β2 ) 2 Ο + tan β1 ( β2 ) , 2 Ο + tan β1 ( β 3 2 ) 2 Ο + tan β1 ( β 3 2 )
2 Ο k + 0.2734 , 2 Ο k + 2.8682 2 Ο k + 0.2734 , 2 Ο k + 2.8682
Ο k β 0.3277 Ο k β 0.3277
0.6694 , 1.8287 , 3.8110 , 4.9703 0.6694 , 1.8287 , 3.8110 , 4.9703
1.0472 , 3.1416 , 5.2360 1.0472 , 3.1416 , 5.2360
0.5326 , 1.7648 , 3.6742 , 4.9064 0.5326 , 1.7648 , 3.6742 , 4.9064
sin β 1 ( 1 4 ) , Ο β sin β 1 ( 1 4 ) , 3 Ο 2 sin β 1 ( 1 4 ) , Ο β sin β 1 ( 1 4 ) , 3 Ο 2
Ο 2 , 3 Ο 2 Ο 2 , 3 Ο 2
7.2 β 7.2 β
5.7 β 5.7 β
82.4 β 82.4 β
31.0 β 31.0 β
88.7 β 88.7 β
59.0 β 59.0 β
36.9 β 36.9 β
Review Exercises
sin β 1 ( 3 3 ) sin β 1 ( 3 3 ) , Ο β sin β 1 ( 3 3 ) Ο β sin β 1 ( 3 3 ) , Ο + sin β 1 ( 3 3 ) Ο + sin β 1 ( 3 3 ) , 2 Ο β sin β 1 ( 3 3 ) 2 Ο β sin β 1 ( 3 3 )
sin β 1 ( 1 4 ) , Ο β sin β 1 ( 1 4 ) sin β 1 ( 1 4 ) , Ο β sin β 1 ( 1 4 )
cos ( 4 x ) β cos ( 3 x ) cos x = cos ( 2 x + 2 x ) β cos ( x + 2 x ) cos x = cos ( 2 x ) cos ( 2 x ) β sin ( 2 x ) sin ( 2 x ) β cos x cos ( 2 x ) cos x + sin x sin ( 2 x ) cos x = ( cos 2 x β sin 2 x ) 2 β 4 cos 2 x sin 2 x β cos 2 x ( cos 2 x β sin 2 x ) + sin x ( 2 ) sin x cos x cos x = ( cos 2 x β sin 2 x ) 2 β 4 cos 2 x sin 2 x β cos 2 x ( cos 2 x β sin 2 x ) + 2 sin 2 x cos 2 x = cos 4 x β 2 cos 2 x sin 2 x + sin 4 x β 4 cos 2 x sin 2 x β cos 4 x + cos 2 x sin 2 x + 2 sin 2 x cos 2 x = sin 4 x β 4 cos 2 x sin 2 x + cos 2 x sin 2 x = sin 2 x ( sin 2 x + cos 2 x ) β 4 cos 2 x sin 2 x = sin 2 x β 4 cos 2 x sin 2 x cos ( 4 x ) β cos ( 3 x ) cos x = cos ( 2 x + 2 x ) β cos ( x + 2 x ) cos x = cos ( 2 x ) cos ( 2 x ) β sin ( 2 x ) sin ( 2 x ) β cos x cos ( 2 x ) cos x + sin x sin ( 2 x ) cos x = ( cos 2 x β sin 2 x ) 2 β 4 cos 2 x sin 2 x β cos 2 x ( cos 2 x β sin 2 x ) + sin x ( 2 ) sin x cos x cos x = ( cos 2 x β sin 2 x ) 2 β 4 cos 2 x sin 2 x β cos 2 x ( cos 2 x β sin 2 x ) + 2 sin 2 x cos 2 x = cos 4 x β 2 cos 2 x sin 2 x + sin 4 x β 4 cos 2 x sin 2 x β cos 4 x + cos 2 x sin 2 x + 2 sin 2 x cos 2 x = sin 4 x β 4 cos 2 x sin 2 x + cos 2 x sin 2 x = sin 2 x ( sin 2 x + cos 2 x ) β 4 cos 2 x sin 2 x = sin 2 x β 4 cos 2 x sin 2 x
tan ( 5 8 x ) tan ( 5 8 x )
β 24 25 , β 7 25 , 24 7 β 24 25 , β 7 25 , 24 7
2 ( 2 + 2 ) 2 ( 2 + 2 )
2 10 , 7 2 10 , 1 7 , 3 5 , 4 5 , 3 4 2 10 , 7 2 10 , 1 7 , 3 5 , 4 5 , 3 4
cot x cos ( 2 x ) = cot x ( 1 β 2 sin 2 x ) = cot x β cos x sin x ( 2 ) sin 2 x = β 2 sin x cos x + cot x = β sin ( 2 x ) + cot x cot x cos ( 2 x ) = cot x ( 1 β 2 sin 2 x ) = cot x β cos x sin x ( 2 ) sin 2 x = β 2 sin x cos x + cot x = β sin ( 2 x ) + cot x
10 sin x β 5 sin ( 3 x ) + sin ( 5 x ) 8 ( cos ( 2 x ) + 1 ) 10 sin x β 5 sin ( 3 x ) + sin ( 5 x ) 8 ( cos ( 2 x ) + 1 )
β 2 2 β 2 2
1 2 ( sin ( 6 x ) + sin ( 12 x ) ) 1 2 ( sin ( 6 x ) + sin ( 12 x ) )
2 sin ( 13 2 x ) cos ( 9 2 x ) 2 sin ( 13 2 x ) cos ( 9 2 x )
3 Ο 4 , 7 Ο 4 3 Ο 4 , 7 Ο 4
0 , Ο 6 , 5 Ο 6 , Ο 0 , Ο 6 , 5 Ο 6 , Ο
3 Ο 2 3 Ο 2
No solution
0.2527 , 2.8889 , 4.7124 0.2527 , 2.8889 , 4.7124
1.3694 , 1.9106 , 4.3726 , 4.9137 1.3694 , 1.9106 , 4.3726 , 4.9137
Practice Test
sec ( ΞΈ ) sec ( ΞΈ )
β 1 2 cos ΞΈ + 3 2 sin ΞΈ β 1 2 cos ΞΈ + 3 2 sin ΞΈ
1 β cos ( 64 β ) 2 1 β cos ( 64 β ) 2
2 cos ( 3 x ) cos ( 5 x ) 2 cos ( 3 x ) cos ( 5 x )
4 sin ( 2 ΞΈ ) cos ( 6 ΞΈ ) 4 sin ( 2 ΞΈ ) cos ( 6 ΞΈ )
x = cos β1 ( 1 5 ) x = cos β1 ( 1 5 )
3 5 , β 4 5 , β 3 4 3 5 , β 4 5 , β 3 4
tan 3 x β tan x sec 2 x = tan x ( tan 2 x β sec 2 x ) = tan x ( tan 2 x β ( 1 + tan 2 x ) ) = tan x ( tan 2 x β 1 β tan 2 x ) = β tan x = tan ( β x ) = tan ( β x ) tan 3 x β tan x sec 2 x = tan x ( tan 2 x β sec 2 x ) = tan x ( tan 2 x β ( 1 + tan 2 x ) ) = tan x ( tan 2 x β 1 β tan 2 x ) = β tan x = tan ( β x ) = tan ( β x )
sin ( 2 x ) sin x β cos ( 2 x ) cos x = 2 sin x cos x sin x β 2 cos 2 x β 1 cos x = 2 cos x β 2 cos x + 1 cos x = 1 cos x = sec x = sec x sin ( 2 x ) sin x β cos ( 2 x ) cos x = 2 sin x cos x sin x β 2 cos 2 x β 1 cos x = 2 cos x β 2 cos x + 1 cos x = 1 cos x = sec x = sec x
Amplitude: 1 4 1 4 , period: 1 60 1 60 , frequency: 60 Hz
Amplitude: 8, fast period: 1 500 1 500 , fast frequency: 500 Hz, slow period: 1 10 1 10 , slow frequency: 10 Hz
D ( t ) = 20 ( 0.9086 ) t cos ( 4 Ο t ) D ( t ) = 20 ( 0.9086 ) t cos ( 4 Ο t ) , 31 second
This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.
Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.
Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
- Authors: Jay Abramson
- Publisher/website: OpenStax
- Book title: Algebra and Trigonometry
- Publication date: Feb 13, 2015
- Location: Houston, Texas
- Book URL: https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
- Section URL: https://openstax.org/books/algebra-and-trigonometry/pages/chapter-9
Β© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.
IMAGES
VIDEO
COMMENTS
Unit 2 - The Trigonometric Functions - Classwork. Given a right triangle with one of the angles named , and the sides of the triangle relative to opposite, adjacent, and hypotenuse (picture on the left), we define the 6 trig functions to be: the sine function : sin named.
Free math problem solver answers your trigonometry homework questions with step-by-step explanations.
Your solution’s ready to go! Our expert help has broken down your problem into an easy-to-learn solution you can count on. See Answer. Question: Unit 2 ο»ΏLab B: Trigonometric FunctionsMAT 172 (Section 5.4, 5.6, 5.7 ο»Ώ& 5.8)Please print and complete this lab.
Now, with expert-verified solutions from Trigonometry 12th Edition, you’ll learn how to solve your toughest homework problems. Our resource for Trigonometry includes answers to chapter exercises, as well as detailed information to walk you through the process step by step.
Which of the following is NOT equal to csc θ, for θ π (0, π). 1 πππ (π 2 −π) C. √cot 2 π + 1 D. 1 π ππ (π 2 −π) Find the exact value of π ππ (− π 12 ). Show work clearly. Ensure that your answer is in simplest form.
Introduction to Trigonometric Identities and Equations; 9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify Trigonometric Expressions; 9.2 Sum and Difference Identities; 9.3 Double-Angle, Half-Angle, and Reduction Formulas; 9.4 Sum-to-Product and Product-to-Sum Formulas; 9.5 Solving Trigonometric Equations