Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&
  • For educators
  • English (US)
  • English (India)
  • English (UK)
  • Greek Alphabet

This problem has been solved!

You'll get a detailed solution from a subject matter expert that helps you learn core concepts.

Question: Unit 2 ο»ΏLab B: Trigonometric FunctionsMAT 172Β (Section 5.4,Β 5.6,Β 5.7 ο»Ώ& 5.8)Please print and complete this lab. Once you have completed the lab, please enter your answers in Canvas in the "Unit 2 ο»ΏLab Answer Entry Sheet".For problems 1-4, ο»Ώdetermine whether the statement is true or false.The secant function is a continuous function.The sine function is a

student submitted image, transcription available

5) y = 3 2 sin ⁑ x

Use the form a sin ⁑ ( b x βˆ’ c ) + d to find the variables used to find the amplitude, period, phase shift, and vertical ...

answer image blur

Not the question you’re looking for?

Post any question and get expert help quickly.

9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify Trigonometric Expressions

sin 2 ΞΈ βˆ’ 1 tan ΞΈ sin ΞΈ βˆ’ tan ΞΈ = ( sin ΞΈ + 1 ) ( sin ΞΈ βˆ’ 1 ) tan ΞΈ ( sin ΞΈ βˆ’ 1 ) = sin ΞΈ + 1 tan ΞΈ sin 2 ΞΈ βˆ’ 1 tan ΞΈ sin ΞΈ βˆ’ tan ΞΈ = ( sin ΞΈ + 1 ) ( sin ΞΈ βˆ’ 1 ) tan ΞΈ ( sin ΞΈ βˆ’ 1 ) = sin ΞΈ + 1 tan ΞΈ

This is a difference of squares formula: 25 βˆ’ 9 sin 2 ΞΈ = ( 5 βˆ’ 3 sin ΞΈ ) ( 5 + 3 sin ΞΈ ) . 25 βˆ’ 9 sin 2 ΞΈ = ( 5 βˆ’ 3 sin ΞΈ ) ( 5 + 3 sin ΞΈ ) .

9.2 Sum and Difference Identities

2 + 6 4 2 + 6 4

2 βˆ’ 6 4 2 βˆ’ 6 4

1 βˆ’ 3 1 + 3 1 βˆ’ 3 1 + 3

cos ( 5 Ο€ 14 ) cos ( 5 Ο€ 14 )

9.3 Double-Angle, Half-Angle, and Reduction Formulas

cos ( 2 Ξ± ) = 7 32 cos ( 2 Ξ± ) = 7 32

cos 4 ΞΈ βˆ’ sin 4 ΞΈ = ( cos 2 ΞΈ + sin 2 ΞΈ ) ( cos 2 ΞΈ βˆ’ sin 2 ΞΈ ) = cos ( 2 ΞΈ ) cos 4 ΞΈ βˆ’ sin 4 ΞΈ = ( cos 2 ΞΈ + sin 2 ΞΈ ) ( cos 2 ΞΈ βˆ’ sin 2 ΞΈ ) = cos ( 2 ΞΈ )

cos ( 2 ΞΈ ) cos ΞΈ = ( cos 2 ΞΈ βˆ’ sin 2 ΞΈ ) cos ΞΈ = cos 3 ΞΈ βˆ’ cos ΞΈ sin 2 ΞΈ cos ( 2 ΞΈ ) cos ΞΈ = ( cos 2 ΞΈ βˆ’ sin 2 ΞΈ ) cos ΞΈ = cos 3 ΞΈ βˆ’ cos ΞΈ sin 2 ΞΈ

10 cos 4 x = 10 ( cos 2 x ) 2 = 10 [ 1 + cos ( 2 x ) 2 ] 2 Substitute reduction formula for cos 2 x . = 10 4 [ 1 + 2 cos ( 2 x ) + cos 2 ( 2 x ) ] = 10 4 + 10 2 cos ( 2 x ) + 10 4 ( 1 + cos 2 ( 2 x ) 2 ) Substitute reduction formula for cos 2 x . = 10 4 + 10 2 cos ( 2 x ) + 10 8 + 10 8 cos ( 4 x ) = 30 8 + 5 cos ( 2 x ) + 10 8 cos ( 4 x ) = 15 4 + 5 cos ( 2 x ) + 5 4 cos ( 4 x ) 10 cos 4 x = 10 ( cos 2 x ) 2 = 10 [ 1 + cos ( 2 x ) 2 ] 2 Substitute reduction formula for cos 2 x . = 10 4 [ 1 + 2 cos ( 2 x ) + cos 2 ( 2 x ) ] = 10 4 + 10 2 cos ( 2 x ) + 10 4 ( 1 + cos 2 ( 2 x ) 2 ) Substitute reduction formula for cos 2 x . = 10 4 + 10 2 cos ( 2 x ) + 10 8 + 10 8 cos ( 4 x ) = 30 8 + 5 cos ( 2 x ) + 10 8 cos ( 4 x ) = 15 4 + 5 cos ( 2 x ) + 5 4 cos ( 4 x )

βˆ’ 2 5 βˆ’ 2 5

9.4 Sum-to-Product and Product-to-Sum Formulas

1 2 ( cos 6 ΞΈ + cos 2 ΞΈ ) 1 2 ( cos 6 ΞΈ + cos 2 ΞΈ )

1 2 ( sin 2 x + sin 2 y ) 1 2 ( sin 2 x + sin 2 y )

βˆ’ 2 βˆ’ 3 4 βˆ’ 2 βˆ’ 3 4

2 sin ( 2 ΞΈ ) cos ( ΞΈ ) 2 sin ( 2 ΞΈ ) cos ( ΞΈ )

tan ΞΈ cot ΞΈ βˆ’ cos 2 ΞΈ = ( sin ΞΈ cos ΞΈ ) ( cos ΞΈ sin ΞΈ ) βˆ’ cos 2 ΞΈ = 1 βˆ’ cos 2 ΞΈ = sin 2 ΞΈ tan ΞΈ cot ΞΈ βˆ’ cos 2 ΞΈ = ( sin ΞΈ cos ΞΈ ) ( cos ΞΈ sin ΞΈ ) βˆ’ cos 2 ΞΈ = 1 βˆ’ cos 2 ΞΈ = sin 2 ΞΈ

9.5 Solving Trigonometric Equations

x = 7 Ο€ 6 , 11 Ο€ 6 x = 7 Ο€ 6 , 11 Ο€ 6

Ο€ 3 Β± Ο€ k Ο€ 3 Β± Ο€ k

ΞΈ β‰ˆ 1.7722 Β± 2 Ο€ k ΞΈ β‰ˆ 1.7722 Β± 2 Ο€ k and ΞΈ β‰ˆ 4.5110 Β± 2 Ο€ k ΞΈ β‰ˆ 4.5110 Β± 2 Ο€ k

cos ΞΈ = βˆ’ 1 , ΞΈ = Ο€ cos ΞΈ = βˆ’ 1 , ΞΈ = Ο€

Ο€ 2 , 2 Ο€ 3 , 4 Ο€ 3 , 3 Ο€ 2 Ο€ 2 , 2 Ο€ 3 , 4 Ο€ 3 , 3 Ο€ 2

9.1 Section Exercises

All three functions, F F , G G , and H H , are even.

This is because F ( βˆ’ x ) = sin ( βˆ’ x ) sin ( βˆ’ x ) = ( βˆ’ sin x ) ( βˆ’ sin x ) = sin 2 x = F ( x ) F ( βˆ’ x ) = sin ( βˆ’ x ) sin ( βˆ’ x ) = ( βˆ’ sin x ) ( βˆ’ sin x ) = sin 2 x = F ( x ) , G ( βˆ’ x ) = cos ( βˆ’ x ) cos ( βˆ’ x ) = cos x cos x = cos 2 x = G ( x ) G ( βˆ’ x ) = cos ( βˆ’ x ) cos ( βˆ’ x ) = cos x cos x = cos 2 x = G ( x ) and H ( βˆ’ x ) = tan ( βˆ’ x ) tan ( βˆ’ x ) = ( βˆ’ tan x ) ( βˆ’ tan x ) = tan 2 x = H ( x ) . H ( βˆ’ x ) = tan ( βˆ’ x ) tan ( βˆ’ x ) = ( βˆ’ tan x ) ( βˆ’ tan x ) = tan 2 x = H ( x ) .

When cos t = 0 , cos t = 0 , then sec t = 1 0 , sec t = 1 0 , which is undefined.

sin x sin x

sec x sec x

csc t csc t

sec 2 x sec 2 x

sin 2 x + 1 sin 2 x + 1

1 sin x 1 sin x

1 cot x 1 cot x

tan x tan x

βˆ’ 4 sec x tan x βˆ’ 4 sec x tan x

Β± 1 cot 2 x + 1 Β± 1 cot 2 x + 1

Β± 1 βˆ’ sin 2 x sin x Β± 1 βˆ’ sin 2 x sin x

Answers will vary. Sample proof:

cos x βˆ’ cos 3 x = cos x ( 1 βˆ’ cos 2 x ) = cos x sin 2 x cos x βˆ’ cos 3 x = cos x ( 1 βˆ’ cos 2 x ) = cos x sin 2 x

Answers will vary. Sample proof: 1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = sec 2 x + tan 2 x = tan 2 x + 1 + tan 2 x = 1 + 2 tan 2 x 1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = sec 2 x + tan 2 x = tan 2 x + 1 + tan 2 x = 1 + 2 tan 2 x

Answers will vary. Sample proof: cos 2 x βˆ’ tan 2 x = 1 βˆ’ sin 2 x βˆ’ ( sec 2 x βˆ’ 1 ) = 1 βˆ’ sin 2 x βˆ’ sec 2 x + 1 = 2 βˆ’ sin 2 x βˆ’ sec 2 x cos 2 x βˆ’ tan 2 x = 1 βˆ’ sin 2 x βˆ’ ( sec 2 x βˆ’ 1 ) = 1 βˆ’ sin 2 x βˆ’ sec 2 x + 1 = 2 βˆ’ sin 2 x βˆ’ sec 2 x

Proved with negative and Pythagorean identities

True 3 sin 2 ΞΈ + 4 cos 2 ΞΈ = 3 sin 2 ΞΈ + 3 cos 2 ΞΈ + cos 2 ΞΈ = 3 ( sin 2 ΞΈ + cos 2 ΞΈ ) + cos 2 ΞΈ = 3 + cos 2 ΞΈ 3 sin 2 ΞΈ + 4 cos 2 ΞΈ = 3 sin 2 ΞΈ + 3 cos 2 ΞΈ + cos 2 ΞΈ = 3 ( sin 2 ΞΈ + cos 2 ΞΈ ) + cos 2 ΞΈ = 3 + cos 2 ΞΈ

9.2 Section Exercises

The cofunction identities apply to complementary angles. Viewing the two acute angles of a right triangle, if one of those angles measures x , x , the second angle measures Ο€ 2 βˆ’ x . Ο€ 2 βˆ’ x . Then sin x = cos ( Ο€ 2 βˆ’ x ) .   sin x = cos ( Ο€ 2 βˆ’ x ) .   The same holds for the other cofunction identities. The key is that the angles are complementary.

sin ( βˆ’ x ) = βˆ’ sin x , sin ( βˆ’ x ) = βˆ’ sin x , so sin x sin x is odd. cos ( βˆ’ x ) = cos ( 0 βˆ’ x ) = cos x , cos ( βˆ’ x ) = cos ( 0 βˆ’ x ) = cos x , so cos x cos x is even.

6 βˆ’ 2 4 6 βˆ’ 2 4

βˆ’ 2 βˆ’ 3 βˆ’ 2 βˆ’ 3

βˆ’ 2 2 sin x βˆ’ 2 2 cos x βˆ’ 2 2 sin x βˆ’ 2 2 cos x

βˆ’ 1 2 cos x βˆ’ 3 2 sin x βˆ’ 1 2 cos x βˆ’ 3 2 sin x

csc ΞΈ csc ΞΈ

cot x cot x

tan ( x 10 ) tan ( x 10 )

sin ( a βˆ’ b ) = ( 4 5 ) ( 1 3 ) βˆ’ ( 3 5 ) ( 2 2 3 ) = 4 βˆ’ 6 2 15 cos ( a + b ) = ( 3 5 ) ( 1 3 ) βˆ’ ( 4 5 ) ( 2 2 3 ) = 3 βˆ’ 8 2 15 sin ( a βˆ’ b ) = ( 4 5 ) ( 1 3 ) βˆ’ ( 3 5 ) ( 2 2 3 ) = 4 βˆ’ 6 2 15 cos ( a + b ) = ( 3 5 ) ( 1 3 ) βˆ’ ( 4 5 ) ( 2 2 3 ) = 3 βˆ’ 8 2 15

cot ( Ο€ 6 βˆ’ x ) cot ( Ο€ 6 βˆ’ x )

cot ( Ο€ 4 + x ) cot ( Ο€ 4 + x )

sin x 2 + cos x 2 sin x 2 + cos x 2

They are the same.

They are the different, try g ( x ) = sin ( 9 x ) βˆ’ cos ( 3 x ) sin ( 6 x ) . g ( x ) = sin ( 9 x ) βˆ’ cos ( 3 x ) sin ( 6 x ) .

They are the different, try g ( ΞΈ ) = 2 tan ΞΈ 1 βˆ’ tan 2 ΞΈ . g ( ΞΈ ) = 2 tan ΞΈ 1 βˆ’ tan 2 ΞΈ .

They are different, try g ( x ) = tan x βˆ’ tan ( 2 x ) 1 + tan x tan ( 2 x ) . g ( x ) = tan x βˆ’ tan ( 2 x ) 1 + tan x tan ( 2 x ) .

βˆ’ 3 βˆ’ 1 2 2 , or  βˆ’ 0.2588 βˆ’ 3 βˆ’ 1 2 2 , or  βˆ’ 0.2588

1 + 3 2 2 , 1 + 3 2 2 , or 0.9659

tan ( x + Ο€ 4 ) = tan x + tan ( Ο€ 4 ) 1 βˆ’ tan x tan ( Ο€ 4 ) = tan x + 1 1 βˆ’ tan x ( 1 ) = tan x + 1 1 βˆ’ tan x tan ( x + Ο€ 4 ) = tan x + tan ( Ο€ 4 ) 1 βˆ’ tan x tan ( Ο€ 4 ) = tan x + 1 1 βˆ’ tan x ( 1 ) = tan x + 1 1 βˆ’ tan x

cos ( a + b ) cos a cos b = cos a cos b cos a cos b βˆ’ sin a sin b cos a cos b = 1 βˆ’ tan a tan b cos ( a + b ) cos a cos b = cos a cos b cos a cos b βˆ’ sin a sin b cos a cos b = 1 βˆ’ tan a tan b

cos ( x + h ) βˆ’ cos x h = cos x cosh βˆ’ sin x sinh βˆ’ cos x h = cos x ( cosh βˆ’ 1 ) βˆ’ sin x sinh h = cos x cos h βˆ’ 1 h βˆ’ sin x sin h h cos ( x + h ) βˆ’ cos x h = cos x cosh βˆ’ sin x sinh βˆ’ cos x h = cos x ( cosh βˆ’ 1 ) βˆ’ sin x sinh h = cos x cos h βˆ’ 1 h βˆ’ sin x sin h h

True. Note that   sin ( Ξ± + Ξ² ) = sin ( Ο€ βˆ’ Ξ³ )     sin ( Ξ± + Ξ² ) = sin ( Ο€ βˆ’ Ξ³ )   and expand the right hand side.

9.3 Section Exercises

Use the Pythagorean identities and isolate the squared term.

1 βˆ’ cos x sin x , sin x 1 + cos x , 1 βˆ’ cos x sin x , sin x 1 + cos x , multiplying the top and bottom by 1 βˆ’ cos x 1 βˆ’ cos x and 1 + cos x , 1 + cos x , respectively.

a) 3 7 32 3 7 32 b) 31 32 31 32 c) 3 7 31 3 7 31

a) 3 2 3 2 b) βˆ’ 1 2 βˆ’ 1 2 c) βˆ’ 3 βˆ’ 3

cos ΞΈ = βˆ’ 2 5 5 , sin ΞΈ = 5 5 , tan ΞΈ = βˆ’ 1 2 , csc ΞΈ = 5 , sec ΞΈ = βˆ’ 5 2 , cot ΞΈ = βˆ’ 2 cos ΞΈ = βˆ’ 2 5 5 , sin ΞΈ = 5 5 , tan ΞΈ = βˆ’ 1 2 , csc ΞΈ = 5 , sec ΞΈ = βˆ’ 5 2 , cot ΞΈ = βˆ’ 2

2 sin ( Ο€ 2 ) 2 sin ( Ο€ 2 )

2 βˆ’ 2 2 2 βˆ’ 2 2

2 βˆ’ 3 2 2 βˆ’ 3 2

2 + 3 2 + 3

βˆ’ 1 βˆ’ 2 βˆ’ 1 βˆ’ 2

a) 3 13 13 3 13 13 b) βˆ’ 2 13 13 βˆ’ 2 13 13 c) βˆ’ 3 2 βˆ’ 3 2

a) 10 4 10 4 b) 6 4 6 4 c) 15 3 15 3

120 169 , – 119 169 , – 120 119 120 169 , – 119 169 , – 120 119

2 13 13 , 3 13 13 , 2 3 2 13 13 , 3 13 13 , 2 3

cos ( 74Β° ) cos ( 74Β° )

cos ( 18 x ) cos ( 18 x )

3 sin ( 10 x ) 3 sin ( 10 x )

βˆ’ 2 sin ( βˆ’ x ) cos ( βˆ’ x ) = βˆ’ 2 ( βˆ’ sin ( x ) cos ( x ) ) = sin ( 2 x ) βˆ’ 2 sin ( βˆ’ x ) cos ( βˆ’ x ) = βˆ’ 2 ( βˆ’ sin ( x ) cos ( x ) ) = sin ( 2 x )

sin ( 2 ΞΈ ) 1 + cos ( 2 ΞΈ ) tan 2 ΞΈ = 2 sin ( ΞΈ ) cos ( ΞΈ ) 1 + cos 2 ΞΈ βˆ’ sin 2 ΞΈ tan 2 ΞΈ = 2 sin ( ΞΈ ) cos ( ΞΈ ) 2 cos 2 ΞΈ tan 2 ΞΈ = sin ( ΞΈ ) cos ΞΈ tan 2 ΞΈ = cot ( ΞΈ ) tan 2 ΞΈ = tan 3 ΞΈ sin ( 2 ΞΈ ) 1 + cos ( 2 ΞΈ ) tan 2 ΞΈ = 2 sin ( ΞΈ ) cos ( ΞΈ ) 1 + cos 2 ΞΈ βˆ’ sin 2 ΞΈ tan 2 ΞΈ = 2 sin ( ΞΈ ) cos ( ΞΈ ) 2 cos 2 ΞΈ tan 2 ΞΈ = sin ( ΞΈ ) cos ΞΈ tan 2 ΞΈ = cot ( ΞΈ ) tan 2 ΞΈ = tan 3 ΞΈ

1 + cos ( 12 x ) 2 1 + cos ( 12 x ) 2

3 + cos ( 12 x ) βˆ’ 4 cos ( 6 x ) 8 3 + cos ( 12 x ) βˆ’ 4 cos ( 6 x ) 8

2 + cos ( 2 x ) βˆ’ 2 cos ( 4 x ) βˆ’ cos ( 6 x ) 32 2 + cos ( 2 x ) βˆ’ 2 cos ( 4 x ) βˆ’ cos ( 6 x ) 32

3 + cos ( 4 x ) βˆ’ 4 cos ( 2 x ) 3 + cos ( 4 x ) + 4 cos ( 2 x ) 3 + cos ( 4 x ) βˆ’ 4 cos ( 2 x ) 3 + cos ( 4 x ) + 4 cos ( 2 x )

1 βˆ’ cos ( 4 x ) 8 1 βˆ’ cos ( 4 x ) 8

3 + cos ( 4 x ) βˆ’ 4 cos ( 2 x ) 4 ( cos ( 2 x ) + 1 ) 3 + cos ( 4 x ) βˆ’ 4 cos ( 2 x ) 4 ( cos ( 2 x ) + 1 )

( 1 + cos ( 4 x ) ) sin x 2 ( 1 + cos ( 4 x ) ) sin x 2

4 sin x cos x ( cos 2 x βˆ’ sin 2 x ) 4 sin x cos x ( cos 2 x βˆ’ sin 2 x )

2 tan x 1 + tan 2 x = 2 sin x cos x 1 + sin 2 x cos 2 x = 2 sin x cos x cos 2 x + sin 2 x cos 2 x = 2 sin x cos x . cos 2 x 1 = 2 sin x cos x = sin ( 2 x ) 2 tan x 1 + tan 2 x = 2 sin x cos x 1 + sin 2 x cos 2 x = 2 sin x cos x cos 2 x + sin 2 x cos 2 x = 2 sin x cos x . cos 2 x 1 = 2 sin x cos x = sin ( 2 x )

2 sin x cos x 2 cos 2 x βˆ’ 1 = sin ( 2 x ) cos ( 2 x ) = tan ( 2 x ) 2 sin x cos x 2 cos 2 x βˆ’ 1 = sin ( 2 x ) cos ( 2 x ) = tan ( 2 x )

sin ( x + 2 x ) = sin x cos ( 2 x ) + sin ( 2 x ) cos x = sin x ( cos 2 x βˆ’ sin 2 x ) + 2 sin x cos x cos x = sin x cos 2 x βˆ’ sin 3 x + 2 sin x cos 2 x = 3 sin x cos 2 x βˆ’ sin 3 x sin ( x + 2 x ) = sin x cos ( 2 x ) + sin ( 2 x ) cos x = sin x ( cos 2 x βˆ’ sin 2 x ) + 2 sin x cos x cos x = sin x cos 2 x βˆ’ sin 3 x + 2 sin x cos 2 x = 3 sin x cos 2 x βˆ’ sin 3 x

1 + cos ( 2 t ) sin ( 2 t ) βˆ’ cos t = 1 + 2 cos 2 t βˆ’ 1 2 sin t cos t βˆ’ cos t = 2 cos 2 t cos t ( 2 sin t βˆ’ 1 ) = 2 cos t 2 sin t βˆ’ 1 1 + cos ( 2 t ) sin ( 2 t ) βˆ’ cos t = 1 + 2 cos 2 t βˆ’ 1 2 sin t cos t βˆ’ cos t = 2 cos 2 t cos t ( 2 sin t βˆ’ 1 ) = 2 cos t 2 sin t βˆ’ 1

( cos 2 ( 4 x ) βˆ’ sin 2 ( 4 x ) βˆ’ sin ( 8 x ) ) ( cos 2 ( 4 x ) βˆ’ sin 2 ( 4 x ) + sin ( 8 x ) ) = = ( cos ( 8 x ) βˆ’ sin ( 8 x ) ) ( cos ( 8 x ) + sin ( 8 x ) ) = cos 2 ( 8 x ) βˆ’ sin 2 ( 8 x ) = cos ( 16 x ) ( cos 2 ( 4 x ) βˆ’ sin 2 ( 4 x ) βˆ’ sin ( 8 x ) ) ( cos 2 ( 4 x ) βˆ’ sin 2 ( 4 x ) + sin ( 8 x ) ) = = ( cos ( 8 x ) βˆ’ sin ( 8 x ) ) ( cos ( 8 x ) + sin ( 8 x ) ) = cos 2 ( 8 x ) βˆ’ sin 2 ( 8 x ) = cos ( 16 x )

9.4 Section Exercises

Substitute   Ξ±     Ξ±   into cosine and   Ξ²     Ξ²   into sine and evaluate.

Answers will vary. There are some equations that involve a sum of two trig expressions where when converted to a product are easier to solve. For example: sin ( 3 x ) + sin x cos x = 1.   sin ( 3 x ) + sin x cos x = 1.   When converting the numerator to a product the equation becomes: 2 sin ( 2 x ) cos x cos x = 1 2 sin ( 2 x ) cos x cos x = 1

8 ( cos ( 5 x ) βˆ’ cos ( 27 x ) ) 8 ( cos ( 5 x ) βˆ’ cos ( 27 x ) )

sin ( 2 x ) + sin ( 8 x ) sin ( 2 x ) + sin ( 8 x )

1 2 ( cos ( 6 x ) βˆ’ cos ( 4 x ) ) 1 2 ( cos ( 6 x ) βˆ’ cos ( 4 x ) )

2 cos ( 5 t ) cos t 2 cos ( 5 t ) cos t

2 cos ( 7 x ) 2 cos ( 7 x )

2 cos ( 6 x ) cos ( 3 x ) 2 cos ( 6 x ) cos ( 3 x )

1 4 ( 1 + 3 ) 1 4 ( 1 + 3 )

1 4 ( 3 βˆ’ 2 ) 1 4 ( 3 βˆ’ 2 )

1 4 ( 3 βˆ’ 1 ) 1 4 ( 3 βˆ’ 1 )

cos ( 80Β° ) βˆ’ cos ( 120Β° ) cos ( 80Β° ) βˆ’ cos ( 120Β° )

1 2 ( sin ( 221Β° ) + sin ( 205Β° ) ) 1 2 ( sin ( 221Β° ) + sin ( 205Β° ) )

2 cos ( 31Β° ) 2 cos ( 31Β° )

2 cos ( 66.5Β° ) sin ( 34.5Β° ) 2 cos ( 66.5Β° ) sin ( 34.5Β° )

2 sin ( βˆ’1.5Β° ) cos ( 0.5Β° ) 2 sin ( βˆ’1.5Β° ) cos ( 0.5Β° )

2 sin ( 7 x ) βˆ’ 2 sin x = 2 sin ( 4 x + 3 x ) βˆ’ 2 sin ( 4 x βˆ’ 3 x ) = 2 ( sin ( 4 x ) cos ( 3 x ) + sin ( 3 x ) cos ( 4 x ) ) βˆ’ 2 ( sin ( 4 x ) cos ( 3 x ) βˆ’ sin ( 3 x ) cos ( 4 x ) ) = 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) βˆ’ 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) = 4 sin ( 3 x ) cos ( 4 x ) 2 sin ( 7 x ) βˆ’ 2 sin x = 2 sin ( 4 x + 3 x ) βˆ’ 2 sin ( 4 x βˆ’ 3 x ) = 2 ( sin ( 4 x ) cos ( 3 x ) + sin ( 3 x ) cos ( 4 x ) ) βˆ’ 2 ( sin ( 4 x ) cos ( 3 x ) βˆ’ sin ( 3 x ) cos ( 4 x ) ) = 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) βˆ’ 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) = 4 sin ( 3 x ) cos ( 4 x )

sin x + sin ( 3 x ) = 2 sin ( 4 x 2 ) cos ( βˆ’ 2 x 2 ) = 2 sin ( 2 x ) cos x = 2 ( 2 sin x cos x ) cos x = 4 sin x cos 2 x sin x + sin ( 3 x ) = 2 sin ( 4 x 2 ) cos ( βˆ’ 2 x 2 ) = 2 sin ( 2 x ) cos x = 2 ( 2 sin x cos x ) cos x = 4 sin x cos 2 x

2 tan x cos ( 3 x ) = 2 sin x cos ( 3 x ) cos x = 2 ( .5 ( sin ( 4 x ) βˆ’ sin ( 2 x ) ) ) cos x = 1 cos x ( sin ( 4 x ) βˆ’ sin ( 2 x ) ) = sec x ( sin ( 4 x ) βˆ’ sin ( 2 x ) ) 2 tan x cos ( 3 x ) = 2 sin x cos ( 3 x ) cos x = 2 ( .5 ( sin ( 4 x ) βˆ’ sin ( 2 x ) ) ) cos x = 1 cos x ( sin ( 4 x ) βˆ’ sin ( 2 x ) ) = sec x ( sin ( 4 x ) βˆ’ sin ( 2 x ) )

2 cos ( 35Β° ) cos ( 23Β° ) , 1.5081 2 cos ( 35Β° ) cos ( 23Β° ) , 1.5081

βˆ’ 2 sin ( 33Β° ) sin ( 11Β° ) , βˆ’ 0.2078 βˆ’ 2 sin ( 33Β° ) sin ( 11Β° ) , βˆ’ 0.2078

1 2 ( cos ( 99Β° ) βˆ’ cos ( 71Β° ) ) , βˆ’0.2410 1 2 ( cos ( 99Β° ) βˆ’ cos ( 71Β° ) ) , βˆ’0.2410

It is an identity.

It is not an identity, but 2 cos 3 x 2 cos 3 x is.

tan ( 3 t ) tan ( 3 t )

2 cos ( 2 x ) 2 cos ( 2 x )

βˆ’ sin ( 14 x ) βˆ’ sin ( 14 x )

Start with cos x + cos y . cos x + cos y . Make a substitution and let x = Ξ± + Ξ² x = Ξ± + Ξ² and let y = Ξ± βˆ’ Ξ² , y = Ξ± βˆ’ Ξ² , so cos x + cos y cos x + cos y becomes cos ( Ξ± + Ξ² ) + cos ( Ξ± βˆ’ Ξ² ) = cos Ξ± cos Ξ² βˆ’ sin Ξ± sin Ξ² + cos Ξ± cos Ξ² + sin Ξ± sin Ξ² = 2 cos Ξ± cos Ξ² cos ( Ξ± + Ξ² ) + cos ( Ξ± βˆ’ Ξ² ) = cos Ξ± cos Ξ² βˆ’ sin Ξ± sin Ξ² + cos Ξ± cos Ξ² + sin Ξ± sin Ξ² = 2 cos Ξ± cos Ξ²

Since x = Ξ± + Ξ² x = Ξ± + Ξ² and y = Ξ± βˆ’ Ξ² , y = Ξ± βˆ’ Ξ² , we can solve for Ξ± Ξ± and Ξ² Ξ² in terms of x and y and substitute in for 2 cos Ξ± cos Ξ² 2 cos Ξ± cos Ξ² and get 2 cos ( x + y 2 ) cos ( x βˆ’ y 2 ) . 2 cos ( x + y 2 ) cos ( x βˆ’ y 2 ) .

cos ( 3 x ) + cos x cos ( 3 x ) βˆ’ cos x = 2 cos ( 2 x ) cos x βˆ’ 2 sin ( 2 x ) sin x = βˆ’ cot ( 2 x ) cot x cos ( 3 x ) + cos x cos ( 3 x ) βˆ’ cos x = 2 cos ( 2 x ) cos x βˆ’ 2 sin ( 2 x ) sin x = βˆ’ cot ( 2 x ) cot x

cos ( 2 y ) βˆ’ cos ( 4 y ) sin ( 2 y ) + sin ( 4 y ) = βˆ’ 2 sin ( 3 y ) sin ( βˆ’ y ) 2 sin ( 3 y ) cos y = 2 sin ( 3 y ) sin ( y ) 2 sin ( 3 y ) cos y = tan y cos ( 2 y ) βˆ’ cos ( 4 y ) sin ( 2 y ) + sin ( 4 y ) = βˆ’ 2 sin ( 3 y ) sin ( βˆ’ y ) 2 sin ( 3 y ) cos y = 2 sin ( 3 y ) sin ( y ) 2 sin ( 3 y ) cos y = tan y

cos x βˆ’ cos ( 3 x ) = βˆ’ 2 sin ( 2 x ) sin ( βˆ’ x ) = 2 ( 2 sin x cos x ) sin x = 4 sin 2 x cos x cos x βˆ’ cos ( 3 x ) = βˆ’ 2 sin ( 2 x ) sin ( βˆ’ x ) = 2 ( 2 sin x cos x ) sin x = 4 sin 2 x cos x

tan ( Ο€ 4 βˆ’ t ) = tan ( Ο€ 4 ) βˆ’ tan t 1 + tan ( Ο€ 4 ) tan ( t ) = 1 βˆ’ tan t 1 + tan t tan ( Ο€ 4 βˆ’ t ) = tan ( Ο€ 4 ) βˆ’ tan t 1 + tan ( Ο€ 4 ) tan ( t ) = 1 βˆ’ tan t 1 + tan t

9.5 Section Exercises

There will not always be solutions to trigonometric function equations. For a basic example, cos ( x ) = βˆ’5. cos ( x ) = βˆ’5.

If the sine or cosine function has a coefficient of one, isolate the term on one side of the equals sign. If the number it is set equal to has an absolute value less than or equal to one, the equation has solutions, otherwise it does not. If the sine or cosine does not have a coefficient equal to one, still isolate the term but then divide both sides of the equation by the leading coefficient. Then, if the number it is set equal to has an absolute value greater than one, the equation has no solution.

Ο€ 3 , 2 Ο€ 3 Ο€ 3 , 2 Ο€ 3

3 Ο€ 4 , 5 Ο€ 4 3 Ο€ 4 , 5 Ο€ 4

Ο€ 4 , 5 Ο€ 4 Ο€ 4 , 5 Ο€ 4

Ο€ 4 , 3 Ο€ 4 , 5 Ο€ 4 , 7 Ο€ 4 Ο€ 4 , 3 Ο€ 4 , 5 Ο€ 4 , 7 Ο€ 4

Ο€ 4 , 7 Ο€ 4 Ο€ 4 , 7 Ο€ 4

7 Ο€ 6 , 11 Ο€ 6 7 Ο€ 6 , 11 Ο€ 6

Ο€ 18 , 5 Ο€ 18 , 13 Ο€ 18 , 17 Ο€ 18 , 25 Ο€ 18 , 29 Ο€ 18 Ο€ 18 , 5 Ο€ 18 , 13 Ο€ 18 , 17 Ο€ 18 , 25 Ο€ 18 , 29 Ο€ 18

3 Ο€ 12 , 5 Ο€ 12 , 11 Ο€ 12 , 13 Ο€ 12 , 19 Ο€ 12 , 21 Ο€ 12 3 Ο€ 12 , 5 Ο€ 12 , 11 Ο€ 12 , 13 Ο€ 12 , 19 Ο€ 12 , 21 Ο€ 12

1 6 , 5 6 , 13 6 , 17 6 , 25 6 , 29 6 , 37 6 1 6 , 5 6 , 13 6 , 17 6 , 25 6 , 29 6 , 37 6

0 , Ο€ 3 , Ο€ , 5 Ο€ 3 0 , Ο€ 3 , Ο€ , 5 Ο€ 3

Ο€ 3 , Ο€ , 5 Ο€ 3 Ο€ 3 , Ο€ , 5 Ο€ 3

Ο€ 3 , 3 Ο€ 2 , 5 Ο€ 3 Ο€ 3 , 3 Ο€ 2 , 5 Ο€ 3

0 , Ο€ 0 , Ο€

Ο€ βˆ’ sin βˆ’ 1 ( βˆ’ 1 4 ) , 7 Ο€ 6 , 11 Ο€ 6 , 2 Ο€ + sin βˆ’ 1 ( βˆ’ 1 4 ) Ο€ βˆ’ sin βˆ’ 1 ( βˆ’ 1 4 ) , 7 Ο€ 6 , 11 Ο€ 6 , 2 Ο€ + sin βˆ’ 1 ( βˆ’ 1 4 )

1 3 ( sin βˆ’ 1 ( 9 10 ) ) 1 3 ( sin βˆ’ 1 ( 9 10 ) ) , Ο€ 3 βˆ’ 1 3 ( sin βˆ’ 1 ( 9 10 ) ) Ο€ 3 βˆ’ 1 3 ( sin βˆ’ 1 ( 9 10 ) ) , 2 Ο€ 3 + 1 3 ( sin βˆ’ 1 ( 9 10 ) ) 2 Ο€ 3 + 1 3 ( sin βˆ’ 1 ( 9 10 ) ) , Ο€ βˆ’ 1 3 ( sin βˆ’ 1 ( 9 10 ) ) Ο€ βˆ’ 1 3 ( sin βˆ’ 1 ( 9 10 ) ) , 4 Ο€ 3 + 1 3 ( sin βˆ’ 1 ( 9 10 ) ) 4 Ο€ 3 + 1 3 ( sin βˆ’ 1 ( 9 10 ) ) , 5 Ο€ 3 βˆ’ 1 3 ( sin βˆ’ 1 ( 9 10 ) ) 5 Ο€ 3 βˆ’ 1 3 ( sin βˆ’ 1 ( 9 10 ) )

Ο€ 6 , 5 Ο€ 6 , 7 Ο€ 6 , 11 Ο€ 6 Ο€ 6 , 5 Ο€ 6 , 7 Ο€ 6 , 11 Ο€ 6

3 Ο€ 2 , Ο€ 6 , 5 Ο€ 6 3 Ο€ 2 , Ο€ 6 , 5 Ο€ 6

0 , Ο€ 3 , Ο€ , 4 Ο€ 3 0 , Ο€ 3 , Ο€ , 4 Ο€ 3

There are no solutions.

cos βˆ’ 1 ( 1 3 ( 1 βˆ’ 7 ) ) cos βˆ’ 1 ( 1 3 ( 1 βˆ’ 7 ) ) , 2 Ο€ βˆ’ cos βˆ’ 1 ( 1 3 ( 1 βˆ’ 7 ) ) 2 Ο€ βˆ’ cos βˆ’ 1 ( 1 3 ( 1 βˆ’ 7 ) )

tan βˆ’ 1 ( 1 2 ( 29 βˆ’ 5 ) ) tan βˆ’ 1 ( 1 2 ( 29 βˆ’ 5 ) ) , Ο€ + tan βˆ’ 1 ( 1 2 ( βˆ’ 29 βˆ’ 5 ) ) Ο€ + tan βˆ’ 1 ( 1 2 ( βˆ’ 29 βˆ’ 5 ) ) , Ο€ + tan βˆ’ 1 ( 1 2 ( 29 βˆ’ 5 ) ) Ο€ + tan βˆ’ 1 ( 1 2 ( 29 βˆ’ 5 ) ) , 2 Ο€ + tan βˆ’ 1 ( 1 2 ( βˆ’ 29 βˆ’ 5 ) ) 2 Ο€ + tan βˆ’ 1 ( 1 2 ( βˆ’ 29 βˆ’ 5 ) )

0 , 2 Ο€ 3 , 4 Ο€ 3 0 , 2 Ο€ 3 , 4 Ο€ 3

sin βˆ’ 1 ( 3 5 ) , Ο€ 2 , Ο€ βˆ’ sin βˆ’ 1 ( 3 5 ) , 3 Ο€ 2 sin βˆ’ 1 ( 3 5 ) , Ο€ 2 , Ο€ βˆ’ sin βˆ’ 1 ( 3 5 ) , 3 Ο€ 2

cos βˆ’ 1 ( βˆ’ 1 4 ) , 2 Ο€ βˆ’ cos βˆ’ 1 ( βˆ’ 1 4 ) cos βˆ’ 1 ( βˆ’ 1 4 ) , 2 Ο€ βˆ’ cos βˆ’ 1 ( βˆ’ 1 4 )

Ο€ 3 Ο€ 3 , cos βˆ’ 1 ( βˆ’ 3 4 ) cos βˆ’ 1 ( βˆ’ 3 4 ) , 2 Ο€ βˆ’ cos βˆ’ 1 ( βˆ’ 3 4 ) 2 Ο€ βˆ’ cos βˆ’ 1 ( βˆ’ 3 4 ) , 5 Ο€ 3 5 Ο€ 3

cos βˆ’ 1 ( 3 4 ) cos βˆ’ 1 ( 3 4 ) , cos βˆ’ 1 ( βˆ’ 2 3 ) cos βˆ’ 1 ( βˆ’ 2 3 ) , 2 Ο€ βˆ’ cos βˆ’ 1 ( βˆ’ 2 3 ) 2 Ο€ βˆ’ cos βˆ’ 1 ( βˆ’ 2 3 ) , 2 Ο€ βˆ’ cos βˆ’ 1 ( 3 4 ) 2 Ο€ βˆ’ cos βˆ’ 1 ( 3 4 )

0 , Ο€ 2 , Ο€ , 3 Ο€ 2 0 , Ο€ 2 , Ο€ , 3 Ο€ 2

Ο€ 3 Ο€ 3 , cos βˆ’1 ( βˆ’ 1 4 ) cos βˆ’1 ( βˆ’ 1 4 ) , 2 Ο€ βˆ’ cos βˆ’1 ( βˆ’ 1 4 ) 2 Ο€ βˆ’ cos βˆ’1 ( βˆ’ 1 4 ) , 5 Ο€ 3 5 Ο€ 3

Ο€ + tan βˆ’1 ( βˆ’2 ) Ο€ + tan βˆ’1 ( βˆ’2 ) , Ο€ + tan βˆ’1 ( βˆ’ 3 2 ) Ο€ + tan βˆ’1 ( βˆ’ 3 2 ) , 2 Ο€ + tan βˆ’1 ( βˆ’2 ) 2 Ο€ + tan βˆ’1 ( βˆ’2 ) , 2 Ο€ + tan βˆ’1 ( βˆ’ 3 2 ) 2 Ο€ + tan βˆ’1 ( βˆ’ 3 2 )

2 Ο€ k + 0.2734 , 2 Ο€ k + 2.8682 2 Ο€ k + 0.2734 , 2 Ο€ k + 2.8682

Ο€ k βˆ’ 0.3277 Ο€ k βˆ’ 0.3277

0.6694 , 1.8287 , 3.8110 , 4.9703 0.6694 , 1.8287 , 3.8110 , 4.9703

1.0472 , 3.1416 , 5.2360 1.0472 , 3.1416 , 5.2360

0.5326 , 1.7648 , 3.6742 , 4.9064 0.5326 , 1.7648 , 3.6742 , 4.9064

sin βˆ’ 1 ( 1 4 ) , Ο€ βˆ’ sin βˆ’ 1 ( 1 4 ) , 3 Ο€ 2 sin βˆ’ 1 ( 1 4 ) , Ο€ βˆ’ sin βˆ’ 1 ( 1 4 ) , 3 Ο€ 2

Ο€ 2 , 3 Ο€ 2 Ο€ 2 , 3 Ο€ 2

7.2 ∘ 7.2 ∘

5.7 ∘ 5.7 ∘

82.4 ∘ 82.4 ∘

31.0 ∘ 31.0 ∘

88.7 ∘ 88.7 ∘

59.0 ∘ 59.0 ∘

36.9 ∘ 36.9 ∘

Review Exercises

sin βˆ’ 1 ( 3 3 ) sin βˆ’ 1 ( 3 3 ) , Ο€ βˆ’ sin βˆ’ 1 ( 3 3 ) Ο€ βˆ’ sin βˆ’ 1 ( 3 3 ) , Ο€ + sin βˆ’ 1 ( 3 3 ) Ο€ + sin βˆ’ 1 ( 3 3 ) , 2 Ο€ βˆ’ sin βˆ’ 1 ( 3 3 ) 2 Ο€ βˆ’ sin βˆ’ 1 ( 3 3 )

sin βˆ’ 1 ( 1 4 ) , Ο€ βˆ’ sin βˆ’ 1 ( 1 4 ) sin βˆ’ 1 ( 1 4 ) , Ο€ βˆ’ sin βˆ’ 1 ( 1 4 )

cos ( 4 x ) βˆ’ cos ( 3 x ) cos x = cos ( 2 x + 2 x ) βˆ’ cos ( x + 2 x ) cos x = cos ( 2 x ) cos ( 2 x ) βˆ’ sin ( 2 x ) sin ( 2 x ) βˆ’ cos x cos ( 2 x ) cos x + sin x sin ( 2 x ) cos x = ( cos 2 x βˆ’ sin 2 x ) 2 βˆ’ 4 cos 2 x sin 2 x βˆ’ cos 2 x ( cos 2 x βˆ’ sin 2 x ) + sin x ( 2 ) sin x cos x cos x = ( cos 2 x βˆ’ sin 2 x ) 2 βˆ’ 4 cos 2 x sin 2 x βˆ’ cos 2 x ( cos 2 x βˆ’ sin 2 x ) + 2 sin 2 x cos 2 x = cos 4 x βˆ’ 2 cos 2 x sin 2 x + sin 4 x βˆ’ 4 cos 2 x sin 2 x βˆ’ cos 4 x + cos 2 x sin 2 x + 2 sin 2 x cos 2 x = sin 4 x βˆ’ 4 cos 2 x sin 2 x + cos 2 x sin 2 x = sin 2 x ( sin 2 x + cos 2 x ) βˆ’ 4 cos 2 x sin 2 x = sin 2 x βˆ’ 4 cos 2 x sin 2 x cos ( 4 x ) βˆ’ cos ( 3 x ) cos x = cos ( 2 x + 2 x ) βˆ’ cos ( x + 2 x ) cos x = cos ( 2 x ) cos ( 2 x ) βˆ’ sin ( 2 x ) sin ( 2 x ) βˆ’ cos x cos ( 2 x ) cos x + sin x sin ( 2 x ) cos x = ( cos 2 x βˆ’ sin 2 x ) 2 βˆ’ 4 cos 2 x sin 2 x βˆ’ cos 2 x ( cos 2 x βˆ’ sin 2 x ) + sin x ( 2 ) sin x cos x cos x = ( cos 2 x βˆ’ sin 2 x ) 2 βˆ’ 4 cos 2 x sin 2 x βˆ’ cos 2 x ( cos 2 x βˆ’ sin 2 x ) + 2 sin 2 x cos 2 x = cos 4 x βˆ’ 2 cos 2 x sin 2 x + sin 4 x βˆ’ 4 cos 2 x sin 2 x βˆ’ cos 4 x + cos 2 x sin 2 x + 2 sin 2 x cos 2 x = sin 4 x βˆ’ 4 cos 2 x sin 2 x + cos 2 x sin 2 x = sin 2 x ( sin 2 x + cos 2 x ) βˆ’ 4 cos 2 x sin 2 x = sin 2 x βˆ’ 4 cos 2 x sin 2 x

tan ( 5 8 x ) tan ( 5 8 x )

βˆ’ 24 25 , βˆ’ 7 25 , 24 7 βˆ’ 24 25 , βˆ’ 7 25 , 24 7

2 ( 2 + 2 ) 2 ( 2 + 2 )

2 10 , 7 2 10 , 1 7 , 3 5 , 4 5 , 3 4 2 10 , 7 2 10 , 1 7 , 3 5 , 4 5 , 3 4

cot x cos ( 2 x ) = cot x ( 1 βˆ’ 2 sin 2 x ) = cot x βˆ’ cos x sin x ( 2 ) sin 2 x = βˆ’ 2 sin x cos x + cot x = βˆ’ sin ( 2 x ) + cot x cot x cos ( 2 x ) = cot x ( 1 βˆ’ 2 sin 2 x ) = cot x βˆ’ cos x sin x ( 2 ) sin 2 x = βˆ’ 2 sin x cos x + cot x = βˆ’ sin ( 2 x ) + cot x

10 sin x βˆ’ 5 sin ( 3 x ) + sin ( 5 x ) 8 ( cos ( 2 x ) + 1 ) 10 sin x βˆ’ 5 sin ( 3 x ) + sin ( 5 x ) 8 ( cos ( 2 x ) + 1 )

βˆ’ 2 2 βˆ’ 2 2

1 2 ( sin ( 6 x ) + sin ( 12 x ) ) 1 2 ( sin ( 6 x ) + sin ( 12 x ) )

2 sin ( 13 2 x ) cos ( 9 2 x ) 2 sin ( 13 2 x ) cos ( 9 2 x )

3 Ο€ 4 , 7 Ο€ 4 3 Ο€ 4 , 7 Ο€ 4

0 , Ο€ 6 , 5 Ο€ 6 , Ο€ 0 , Ο€ 6 , 5 Ο€ 6 , Ο€

3 Ο€ 2 3 Ο€ 2

No solution

0.2527 , 2.8889 , 4.7124 0.2527 , 2.8889 , 4.7124

1.3694 , 1.9106 , 4.3726 , 4.9137 1.3694 , 1.9106 , 4.3726 , 4.9137

Practice Test

sec ( ΞΈ ) sec ( ΞΈ )

βˆ’ 1 2 cos ΞΈ + 3 2 sin ΞΈ βˆ’ 1 2 cos ΞΈ + 3 2 sin ΞΈ

1 βˆ’ cos ( 64 ∘ ) 2 1 βˆ’ cos ( 64 ∘ ) 2

2 cos ( 3 x ) cos ( 5 x ) 2 cos ( 3 x ) cos ( 5 x )

4 sin ( 2 ΞΈ ) cos ( 6 ΞΈ ) 4 sin ( 2 ΞΈ ) cos ( 6 ΞΈ )

x = cos –1 ( 1 5 ) x = cos –1 ( 1 5 )

3 5 , – 4 5 , – 3 4 3 5 , – 4 5 , – 3 4

tan 3 x – tan x sec 2 x = tan x ( tan 2 x – sec 2 x ) = tan x ( tan 2 x – ( 1 + tan 2 x ) ) = tan x ( tan 2 x – 1 – tan 2 x ) = – tan x = tan ( – x ) = tan ( – x ) tan 3 x – tan x sec 2 x = tan x ( tan 2 x – sec 2 x ) = tan x ( tan 2 x – ( 1 + tan 2 x ) ) = tan x ( tan 2 x – 1 – tan 2 x ) = – tan x = tan ( – x ) = tan ( – x )

sin ( 2 x ) sin x – cos ( 2 x ) cos x = 2 sin x cos x sin x – 2 cos 2 x – 1 cos x = 2 cos x – 2 cos x + 1 cos x = 1 cos x = sec x = sec x sin ( 2 x ) sin x – cos ( 2 x ) cos x = 2 sin x cos x sin x – 2 cos 2 x – 1 cos x = 2 cos x – 2 cos x + 1 cos x = 1 cos x = sec x = sec x

Amplitude: 1 4 1 4 , period: 1 60 1 60 , frequency: 60 Hz

Amplitude: 8, fast period: 1 500 1 500 , fast frequency: 500 Hz, slow period: 1 10 1 10 , slow frequency: 10 Hz

D ( t ) = 20 ( 0.9086 ) t cos ( 4 Ο€ t ) D ( t ) = 20 ( 0.9086 ) t cos ( 4 Ο€ t ) , 31 second

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
  • Authors: Jay Abramson
  • Publisher/website: OpenStax
  • Book title: Algebra and Trigonometry
  • Publication date: Feb 13, 2015
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
  • Section URL: https://openstax.org/books/algebra-and-trigonometry/pages/chapter-9

Β© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

IMAGES

  1. Trigonometry Unit 2

    unit 2 the trigonometric functions homework answers

  2. The reciprocal trig functions homework answers

    unit 2 the trigonometric functions homework answers

  3. Find the exact value of the trigonometric function. Use unit circle

    unit 2 the trigonometric functions homework answers

  4. Trigonometric Functions Worksheet With Answers Pdf

    unit 2 the trigonometric functions homework answers

  5. (PDF) Unit 2

    unit 2 the trigonometric functions homework answers

  6. 5.1 fundamental trigonometric identities homework

    unit 2 the trigonometric functions homework answers

VIDEO

  1. HOW TO SOLVE TRIG EQUATIONS

  2. Sec 1 Trigonometry/Trigonometric Functions Session 11

  3. ∫ sin² x / cos⁢ x dx Integrals: Question 45 out 100 (🌟 Special Tangent Trick & Trig Integral )

  4. 1.2 Trigonometric Functions of an Acute Angle

  5. #11.2.3.2 Trigonometric Functions of Associated Angles Part 2 Class XI Math unit 2 chapter 3 Bengali

  6. 8.2

COMMENTS

  1. Unit 2 - The Trigonometric Functions - Classwork

    Unit 2 - The Trigonometric Functions - Classwork. Given a right triangle with one of the angles named , and the sides of the triangle relative to opposite, adjacent, and hypotenuse (picture on the left), we define the 6 trig functions to be: the sine function : sin named.

  2. Trigonometry Problem Solver - Mathway

    Free math problem solver answers your trigonometry homework questions with step-by-step explanations.

  3. Solved Unit 2 ο»ΏLab B: Trigonometric FunctionsMAT | Chegg.com

    Your solution’s ready to go! Our expert help has broken down your problem into an easy-to-learn solution you can count on. See Answer. Question: Unit 2 ο»ΏLab B: Trigonometric FunctionsMAT 172 (Section 5.4, 5.6, 5.7 ο»Ώ& 5.8)Please print and complete this lab.

  4. Trigonometry - 12th Edition - Solutions and Answers - Quizlet

    Now, with expert-verified solutions from Trigonometry 12th Edition, you’ll learn how to solve your toughest homework problems. Our resource for Trigonometry includes answers to chapter exercises, as well as detailed information to walk you through the process step by step.

  5. Trigonometry Practice Test with Explained Answers - Studocu

    Which of the following is NOT equal to csc θ, for θ πœ€ (0, πœ‹). 1 π‘π‘œπ‘  (πœ‹ 2 −πœƒ) C. √cot 2 πœƒ + 1 D. 1 𝑠𝑖𝑛 (πœ‹ 2 −πœƒ) Find the exact value of 𝑠𝑒𝑐 (− πœ‹ 12 ). Show work clearly. Ensure that your answer is in simplest form.

  6. Answer Key Chapter 9 - Algebra and Trigonometry | OpenStax

    Introduction to Trigonometric Identities and Equations; 9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify Trigonometric Expressions; 9.2 Sum and Difference Identities; 9.3 Double-Angle, Half-Angle, and Reduction Formulas; 9.4 Sum-to-Product and Product-to-Sum Formulas; 9.5 Solving Trigonometric Equations