Hypothesis Maker Online

Looking for a hypothesis maker? This online tool for students will help you formulate a beautiful hypothesis quickly, efficiently, and for free.

Are you looking for an effective hypothesis maker online? Worry no more; try our online tool for students and formulate your hypothesis within no time.

  • 🔎 How to Use the Tool?
  • ⚗️ What Is a Hypothesis in Science?

👍 What Does a Good Hypothesis Mean?

  • 🧭 Steps to Making a Good Hypothesis

🔗 References

📄 hypothesis maker: how to use it.

Our hypothesis maker is a simple and efficient tool you can access online for free.

If you want to create a research hypothesis quickly, you should fill out the research details in the given fields on the hypothesis generator.

Below are the fields you should complete to generate your hypothesis:

  • Who or what is your research based on? For instance, the subject can be research group 1.
  • What does the subject (research group 1) do?
  • What does the subject affect? - This shows the predicted outcome, which is the object.
  • Who or what will be compared with research group 1? (research group 2).

Once you fill the in the fields, you can click the ‘Make a hypothesis’ tab and get your results.

⚗️ What Is a Hypothesis in the Scientific Method?

A hypothesis is a statement describing an expectation or prediction of your research through observation.

It is similar to academic speculation and reasoning that discloses the outcome of your scientific test . An effective hypothesis, therefore, should be crafted carefully and with precision.

A good hypothesis should have dependent and independent variables . These variables are the elements you will test in your research method – it can be a concept, an event, or an object as long as it is observable.

You can observe the dependent variables while the independent variables keep changing during the experiment.

In a nutshell, a hypothesis directs and organizes the research methods you will use, forming a large section of research paper writing.

Hypothesis vs. Theory

A hypothesis is a realistic expectation that researchers make before any investigation. It is formulated and tested to prove whether the statement is true. A theory, on the other hand, is a factual principle supported by evidence. Thus, a theory is more fact-backed compared to a hypothesis.

Another difference is that a hypothesis is presented as a single statement , while a theory can be an assortment of things . Hypotheses are based on future possibilities toward a specific projection, but the results are uncertain. Theories are verified with undisputable results because of proper substantiation.

When it comes to data, a hypothesis relies on limited information , while a theory is established on an extensive data set tested on various conditions.

You should observe the stated assumption to prove its accuracy.

Since hypotheses have observable variables, their outcome is usually based on a specific occurrence. Conversely, theories are grounded on a general principle involving multiple experiments and research tests.

This general principle can apply to many specific cases.

The primary purpose of formulating a hypothesis is to present a tentative prediction for researchers to explore further through tests and observations. Theories, in their turn, aim to explain plausible occurrences in the form of a scientific study.

It would help to rely on several criteria to establish a good hypothesis. Below are the parameters you should use to analyze the quality of your hypothesis.

Testability You should be able to test the hypothesis to present a true or false outcome after the investigation. Apart from the logical hypothesis, ensure you can test your predictions with .
Variables It should have a dependent and independent variable. Identifying the appropriate variables will help readers comprehend your prediction and what to expect at the conclusion phase.
Cause and effect A good hypothesis should have a cause-and-effect connection. One variable should influence others in some way. It should be written as an “if-then” statement to allow the researcher to make accurate predictions of the investigation results. However, this rule does not apply to a .
Clear language Writing can get complex, especially when complex research terminology is involved. So, ensure your hypothesis has expressed as a brief statement. Avoid being vague because your readers might get confused. Your hypothesis has a direct impact on your entire research paper’s quality. Thus, use simple words that are easy to understand.
Ethics Hypothesis generation should comply with . Don’t formulate hypotheses that contravene taboos or are questionable. Besides, your hypothesis should have correlations to published academic works to look data-based and authoritative.

🧭 6 Steps to Making a Good Hypothesis

Writing a hypothesis becomes way simpler if you follow a tried-and-tested algorithm. Let’s explore how you can formulate a good hypothesis in a few steps:

Step #1: Ask Questions

The first step in hypothesis creation is asking real questions about the surrounding reality.

Why do things happen as they do? What are the causes of some occurrences?

Your curiosity will trigger great questions that you can use to formulate a stellar hypothesis. So, ensure you pick a research topic of interest to scrutinize the world’s phenomena, processes, and events.

Step #2: Do Initial Research

Carry out preliminary research and gather essential background information about your topic of choice.

The extent of the information you collect will depend on what you want to prove.

Your initial research can be complete with a few academic books or a simple Internet search for quick answers with relevant statistics.

Still, keep in mind that in this phase, it is too early to prove or disapprove of your hypothesis.

Step #3: Identify Your Variables

Now that you have a basic understanding of the topic, choose the dependent and independent variables.

Take note that independent variables are the ones you can’t control, so understand the limitations of your test before settling on a final hypothesis.

Step #4: Formulate Your Hypothesis

You can write your hypothesis as an ‘if – then’ expression . Presenting any hypothesis in this format is reliable since it describes the cause-and-effect you want to test.

For instance: If I study every day, then I will get good grades.

Step #5: Gather Relevant Data

Once you have identified your variables and formulated the hypothesis, you can start the experiment. Remember, the conclusion you make will be a proof or rebuttal of your initial assumption.

So, gather relevant information, whether for a simple or statistical hypothesis, because you need to back your statement.

Step #6: Record Your Findings

Finally, write down your conclusions in a research paper .

Outline in detail whether the test has proved or disproved your hypothesis.

Edit and proofread your work, using a plagiarism checker to ensure the authenticity of your text.

We hope that the above tips will be useful for you. Note that if you need to conduct business analysis, you can use the free templates we’ve prepared: SWOT , PESTLE , VRIO , SOAR , and Porter’s 5 Forces .

❓ Hypothesis Formulator FAQ

Updated: Oct 25th, 2023

  • How to Write a Hypothesis in 6 Steps - Grammarly
  • Forming a Good Hypothesis for Scientific Research
  • The Hypothesis in Science Writing
  • Scientific Method: Step 3: HYPOTHESIS - Subject Guides
  • Hypothesis Template & Examples - Video & Lesson Transcript
  • Free Essays
  • Writing Tools
  • Lit. Guides
  • Donate a Paper
  • Referencing Guides
  • Free Textbooks
  • Tongue Twisters
  • Job Openings
  • Video Contest
  • Writing Scholarship
  • Discount Codes
  • Brand Guidelines
  • IvyPanda Shop
  • Online Courses
  • Terms and Conditions
  • Privacy Policy
  • Cookies Policy
  • Copyright Principles
  • DMCA Request
  • Service Notice

Use our hypothesis maker whenever you need to formulate a hypothesis for your study. We offer a very simple tool where you just need to provide basic info about your variables, subjects, and predicted outcomes. The rest is on us. Get a perfect hypothesis in no time!

Hypothesis Test Graph Generator

Note: After clicking "Draw here", you can click the "Copy to Clipboard" button (in Internet Explorer), or right-click on the graph and choose Copy. In your Word processor, choose Paste-Special from the Edit menu, and select "Bitmap" from the choices

Note: This creates the graph based on the shape of the normal curve, which is a reasonable approximation to the t-distribution for a large sample size. These graphs are not appropriate if you are doing a t-distribution with small sample size (less than 30).

hypothesis testing maker

Hypothesis Generator

Generate hypotheses for your research.

  • Academic Research: Generate hypotheses for your thesis, dissertation, or any academic paper.
  • Data Analysis: Create hypotheses to guide your data exploration and analysis.
  • Market Research: Develop hypotheses to understand market trends and consumer behavior.
  • Product Development: Formulate hypotheses to guide your product testing and development process.
  • Scientific Research: Generate hypotheses for your experiments or observational studies.

New & Trending Tools

Text corrector and formatter, strategic planning and decision-making in healthcare tutor, healthcare organizational structures and governance tutor.

Use Our Free A/B Testing Hypothesis Generator . Never Miss Key Elements From Your Hypotheses. Get Big Conversion Lifts.

Observation, inadvertent impact.

Get Toolkit

Streamline Your Hypothesis Generation Research with Custom Templates the Pros Use.

Have questions about a/b testing hypotheses, what is a hypothesis.

Many people define a hypothesis as an “educated guess”.

To be more precise, a properly constructed hypothesis predicts a possible outcome to an experiment or a test where one variable (the independent one ) is tweaked and/or modified and the impact is measured by the change in behavior of another variable (generally the dependent one).

A hypothesis should be specific (it should clearly define what is being altered and what is the expected impact), data-driven (the changes being made to the independent variable should be based on historic data or theories that have been proven in the past), and testable (it should be possible to conduct the proposed test in a controlled environment to establish the relationship between the variables involved, and disprove the hypothesis - should it be untrue.)

What is the Cost of a Hastily Assembled Hypothesis?

According to an analysis of over 28,000 tests run using the Convert Experiences platform, only 1 in 5 tests proves to be statistically significant.

While more and more debate is opening up around sticking to the concept of 95% statistical significance, it is still a valid rule of thumb for optimizers who do not want to get into the fray with peeking vs. no peeking, and custom stopping rules for experiments.

There might be a multitude of reasons why a test does not reach statistical significance. But framing a tenable hypothesis that already proves itself logistically feasible on paper is a better starting point than a hastily assembled assumption.

Moreover, the aim of an A/B test may be to extract a learning, but some learnings come with heavy costs. 26% decrease in conversion rates to be specific.

A robust hypothesis may not be the answer to all testing woes, but it does help prioritisation of possible solutions and leads testing teams to pick low hanging fruits.

How is an A/B Testing Hypothesis Different?

An A/B test should be treated with the same rigour as tests conducted in laboratories. That is an easy way to guarantee better hypotheses, more relevant experiments, and ultimately more profitable optimization programs.

The focus of an A/B test should be on first extracting a learning , and then monetizing it in the form of increased registration completions, better cart conversions and more revenue.

If that is true, then an A/B test hypothesis is not very different from a regular scientific hypothesis. With a couple of interesting points to note:

  • Most scientific hypotheses proceed with one independent variable and one dependent variable, for the sake of simplicity. But in A/B tests, there might be changes made to several independent variables at the same time. Under such circumstances it is good to explore the relationship between the independent variables to make sure that they do not inadvertently impact one another. For example changing both the value proposition and button copy of a landing page to determine improvement in click through or completion rates is tricky. Reaching a point where the browser is compelled to click the button could easily have been impacted by the value proposition (as in a strong hook and heading). So what caused the improvement in the dependent variable? Was it the change to the first element or the second one?
  • The concept of Operational Definition is non-negotiable in most laboratory experiments. And comes baked with the question of ethics or morality. Operation Definition is the specific process that will be used to quantify the change in the value/behavior of the independent variable in the test. As an example, if a test wishes to measure the level of frustration that subjects experience when they are exposed to certain stimuli, researchers must be careful to define exactly how they will measure the output or frustration. Should they allow the test subjects to act out, in which case they may hurt or harm other individuals. Or should they use a non-invasive technique like an fMRI scan to monitor brain activity and collect the needed data. In A/B tests however, since data is collected through relatively inanimate channels like analytics dashboards, generally little thought is spared to Operational Definition and the impact of A/B testing on the human subjects (site traffic in this case).

The 5 Essential Parts of an A/B Testing Hypothesis

A robust A/B testing hypothesis should be assembled in 5 key parts:

Observation stage

1. OBSERVATION

This includes a clear outline of the problem (the unexplained phenomenon) observed and what it entails. This section should be completely free of conjecture and rely solely on good quality data - either qualitative and/or quantitative - to bring a potential area of improvement to light. It also includes a mention of the way in which the data is collected.

Proper observation ensures a credible hypothesis that is easy to “defend” later down the line.

Execution Stage

2. EXECUTION

This is the where, what, and the who of the A/B test. It specifies the change(s) you will be making to site element(s) in an attempt to solve the problem that has been outlined under “OBSERVATION”. It serves to also clearly define the segment of site traffic that will be exposed to the experiment.

Proper execution guidelines set the rhythm for the A/B test. They define how easy or difficult it will be to deploy the test and thus aid hypothesis prioritization .

Logistics Stage

This is where you make your educated guess or informed prediction. Based on a diligently identified OBSERVATION and EXECUTION guidelines that are possible to deploy, your OUTCOME should clearly mention two things:

  • The change (increase or decrease) you expect to see to the problem or the symptoms of the problem identified under OBSERVATION.
  • The Key Performance Indicators (KPIs) you will be monitoring to gauge whether your prediction has panned out, or not.

In general most A/B tests have one primary KPI and a couple of secondary KPIs or ways to measure impact. This is to ensure that external influences do not skew A/B test results and even if the primary KPI is compromised in some way, the secondary KPIs do a good job of indicating that the change is indeed due to the implementation of the EXECUTION guidelines, and not the result of unmonitored external factors.

Logistics Stage

4. LOGISTICS

An important part of hypothesis formulation, LOGISTICS talk about what it will take to collect enough clean data from which a reliable conclusion can be drawn. How many unique tested visitors, what is the statistical significance desired, how many conversions is enough and what is the duration for which the A/B test should run? Each question on its own merits a blog or a lesson. But for the sake of convenience, Convert has created a Free Sample Size & A/B/N Test Duration Calculator .

Set the right logistical expectations so that you can prioritise your hypotheses for maximum impact and minimum effort .

Inadvertent Impact Stage

5. INADVERTENT IMPACT

This is a nod in the direction of ethics in A/B testing and marketing, because experiments involve humans and optimizers should be aware of the possible impact on their behavior.

Often a thorough analysis at this stage can modify the way impact is measured or an experiment is conducted. Or Convert certainly hopes that this will be the case in future. Here’s why ethics do matter in testing.

Now Organize, Prioritise & Learn from Your Hypotheses.

Try convert experiences in free trial & access compass beta - our hypothesis management platform., always working to improve outcomes..

Start Your 15 -Day Free Trial Right Now. No Credit Card Required

Important. Please Read.

  • Check your inbox for the password to Convert’s trial account.
  • Log in using the link provided in that email.

This sign up flow is built for maximum security. You’re worth it!

You are using an outdated browser. Please upgrade your browser to improve your experience (and have this site working as it suppose).

Create your rock solid experiment hypothesis

A. fill out the form  , b. your hypothesis will appear here, why should you use this method.

Hypotheses give good test results, simple as that. Use our tool to get structure in how to formulate your hypotheses.

You could use it as a kind of "bullshit detector" - if your hypothesis doesn’t fit into the template it's probably not a good testing hypothesis.

A good hypothesis is a multi-stage rocket - IAR

  • Insights - What have you noticed that makes you think that you have to make a change?
  • Action - What will you do?
  • Results - What do you want to accomplish and how do you measure it?

Get in touch with us

♥ from the Conversionista! team | Report a bug or an issue

Two sample t test

Kruskal wallis

Pearson product moment

Two sample f test

One way anova

Bartlett test

Chi square goodness of fit

Fligner killeen

Hypothesis Test Calculator

Upload your data set below to get started

Or input your data as csv

Sharing helps us build more free tools

  • Pricing Lightweight Script Blog
  • Sign Up Log In

AI Hypothesis Generator

Hypothesis Generator to help you come up with a boilerplate hypothesis for your test ideas. Generate well-structured hypothesis in under 10 seconds!

1. Give us a brief about your hypothesis...

Hypotheses in A/B Testing

Hypotheses form an integral part of A/B Testing. They provide a clear path and expected outcome for the test, based on the initial conditions, such as the user interface and user experience, among others. A well-defined hypothesis is the foundation of any successful A/B test, guiding the direction of the test and serving as a benchmark against which the test’s results are evaluated.

What are the benefits?

The Automated Hypothesis Creator simplifies the first step in the A/B testing process and provides several benefits:

  • Quick and efficient hypothesis generation.
  • Saves time and resources which can often be invested in analysing the output of the A/B test.
  • Provides insightful and scientifically-backed predictions.
  • Outlines a clear picture for the A/B test, thus leading to more accurate outcomes.

How to Use it with A/B Testing?

To use the Automated Hypothesis Creator with A/B testing, follow these simple steps:

  • Begin by clearly formulating your query.
  • Use the text area in the tool to provide the necessary input data.
  • Click the “Create Hypothesis” button.
  • Wait for a while for the tool to process your request and generate a hypothesis.
  • Once the hypothesis is created, use it as a basis for your A/B test.

Try other free tools:

  • A/B Test Headline Generator
  • Sample Size Calculator
  • A/B Test Duration Calculator
  • Statistical Significance Calculator

A/B testing platform for people who care about   website performance

Mida is 10X faster than everything you have ever considered. Try it yourself.

Mida.so is a super lightweight A/B testing tool to help you experiment, analyze and implement conversion strategies in minutes.

“extremely user friendly”

“truly amazing!”

“so easy to use!”

Statistics calculator

Statistics Calculator

You want to analyze your data effortlessly? DATAtab makes it easy and online.

Statistics App

Online Statistics Calculator

What do you want to calculate online? The online statistics calculator is simple and uncomplicated! Here you can find a list of all implemented methods!

Create charts online with DATAtab

Create your charts for your data directly online and uncomplicated. To do this, insert your data into the table under Charts and select which chart you want.

 Create charts online

The advantages of DATAtab

Statistics, as simple as never before..

DATAtab is a modern statistics software, with unique user-friendliness. Statistical analyses are done with just a few clicks, so DATAtab is perfect for statistics beginners and for professionals who want more flow in the user experience.

Directly in the browser, fully flexible.

Directly in the browser, fully flexible. DATAtab works directly in your web browser. You have no installation and maintenance effort whatsoever. Wherever and whenever you want to use DATAtab, just go to the website and get started.

All the statistical methods you need.

DATAtab offers you a wide range of statistical methods. We have selected the most central and best known statistical methods for you and do not overwhelm you with special cases.

Data security is a top priority.

All data that you insert and evaluate on DATAtab always remain on your end device. The data is not sent to any server or stored by us (not even temporarily). Furthermore, we do not pass on your data to third parties in order to analyze your user behavior.

Many tutorials with simple examples.

In order to facilitate the introduction, DATAtab offers a large number of free tutorials with focused explanations in simple language. We explain the statistical background of the methods and give step-by-step explanations for performing the analyses in the statistics calculator.

Practical Auto-Assistant.

DATAtab takes you by the hand in the world of statistics. When making statistical decisions, such as the choice of scale or measurement level or the selection of suitable methods, Auto-Assistants ensure that you get correct results quickly.

Charts, simple and clear.

With DATAtab data visualization is fun! Here you can easily create meaningful charts that optimally illustrate your results.

New in the world of statistics?

DATAtab was primarily designed for people for whom statistics is new territory. Beginners are not overwhelmed with a lot of complicated options and checkboxes, but are encouraged to perform their analyses step by step.

Online survey very simple.

DATAtab offers you the possibility to easily create an online survey, which you can then evaluate immediately with DATAtab.

Our references

Wifi

Alternative to statistical software like SPSS and STATA

DATAtab was designed for ease of use and is a compelling alternative to statistical programs such as SPSS and STATA. On datatab.net, data can be statistically evaluated directly online and very easily (e.g. t-test, regression, correlation etc.). DATAtab's goal is to make the world of statistical data analysis as simple as possible, no installation and easy to use. Of course, we would also be pleased if you take a look at our second project Statisty .

Extensive tutorials

Descriptive statistics.

Here you can find out everything about location parameters and dispersion parameters and how you can describe and clearly present your data using characteristic values.

Hypothesis Test

Here you will find everything about hypothesis testing: One sample t-test , Unpaired t-test , Paired t-test and Chi-square test . You will also find tutorials for non-parametric statistical procedures such as the Mann-Whitney u-Test and Wilcoxon-Test . mann-whitney-u-test and the Wilcoxon test

The regression provides information about the influence of one or more independent variables on the dependent variable. Here are simple explanations of linear regression and logistic regression .

Correlation

Correlation analyses allow you to analyze the linear association between variables. Learn when to use Pearson correlation or Spearman rank correlation . With partial correlation , you can calculate the correlation between two variables to the exclusion of a third variable.

Partial Correlation

The partial correlation shows you the correlation between two variables to the exclusion of a third variable.

Levene Test

The Levene Test checks your data for variance equality. Thus, the levene test is used as a prerequisite test for many hypothesis tests .

The p-value is needed for every hypothesis test to be able to make a statement whether the null hypothesis is accepted or rejected.

Distributions

DATAtab provides you with tables with distributions and helpful explanations of the distribution functions. These include the Table of t-distribution and the Table of chi-squared distribution

Contingency table

With a contingency table you can get an overview of two categorical variables in the statistics.

Equivalence and non-inferiority

In an equivalence trial, the statistical test aims at showing that two treatments are not too different in characteristics and a non-inferiority trial wants to show that an experimental treatment is not worse than an established treatment.

If there is a clear cause-effect relationship between two variables, then we can speak of causality. Learn more about causality in our tutorial.

Multicollinearity

Multicollinearity is when two or more independent variables have a high correlation.

Effect size for independent t-test

Learn how to calculate the effect size for the t-test for independent samples.

Reliability analysis calculator

On DATAtab, Cohen's Kappa can be easily calculated online in the Cohen’s Kappa Calculator . there is also the Fleiss Kappa Calculator . Of course, the Cronbach's alpha can also be calculated in the Cronbach's Alpha Calculator .

Analysis of variance with repeated measurement

Repeated measures ANOVA tests whether there are statistically significant differences in three or more dependent samples.

Cite DATAtab: DATAtab Team (2024). DATAtab: Online Statistics Calculator. DATAtab e.U. Graz, Austria. URL https://datatab.net

hypothesis testing maker

Create structured research hypotheses

AI Generators in Science and Research

Hypothesis Generator for Scientific Research

🔬✍️ Formulate precise, well-founded hypotheses for your studies and scientific work. Explore the potential of your research!

Provide additional feedback

Discover the power of a well-formulated hypothesis with our Research Hypothesis Generator. In the world of scientific research, a solid, relevant hypothesis is the foundation on which any study is built.

🧪 Structured and precise

A well-defined hypothesis can guide your experiments and set the course for your discoveries. Our generator provides you with structured proposals based on your field and subject.

🌌 For all areas

Whether you're in biology, physics or the social sciences, we've got you covered. adapted our tool to meet the diversity of research needs.

💭 Refine Your Thinking

With our help, crystallize your idea into a clear, logical hypothesis. Each proposal is designed to stimulate your thinking and enrich your scientific approach.

Similar publications :

Subject Generator for Scientific Research

Popular generators:

Methodology Generator for Research Projects

Create Limitless with Generator AI

Immerse yourself in a world where every idea is instantly transformed into reality. Generator AI brings your boldest visions to life in the blink of an eye.

en_US

Research Hypothesis Generator Online

  • ️👍 Hypothesis Maker: the Benefits
  • ️🔎 How to Use the Tool?
  • ️🕵️ What Is a Research Hypothesis?
  • ️⚗️ Scientific Method
  • ️🔗 References

👍 Hypothesis Maker: the Benefits

Here are the key benefits of this null and alternative hypothesis generator.

👌 User-friendly Use the prompts and examples to write a hypothesis.
🎯 Tunable The more details you add, the more accurate result you’ll get.
🌐 Online No need to download any software with this hypothesis writer.
🆓 No payments The hypothesis creator is 100% free, no hidden payments.

🔎 Hypothesis Generator: How to Use It?

Whenever you conduct research, whether a 5-paragraph essay or a more complex assignment, you need to create a hypothesis for this study.

Clueless about how to create a good hypothesis?

No need to waste time and energy on this small portion of your writing process! You can always use our hypothesis creator to get a researchable assumption in no time.

To get a ready-made hypothesis idea, you need to:

  • State the object of your study
  • Specify what the object does
  • Lay out the outcome of that activity
  • Indicate the comparison group

Once all data is inserted into the fields, you can press the “Generate now” button and get the result from our hypothesis generator for research paper or any other academic task.

🕵️ What Is a Research Hypothesis?

A hypothesis is your assumption based on existing academic knowledge and observations of the surrounding natural world.

The picture describes what is hypothesis.

It also involves a healthy portion of intuition because you should arrive at an interesting, commonsense question about the phenomena or processes you observe.

The traditional formula for hypothesis generation is an “if…then” statement, reflecting its falsifiability and testability.

What do these terms mean?

  • Testability means you can formulate a scientific guess and test it with data and analysis.
  • Falsifiability is a related feature, allowing you to refute the hypothesis with data and show that your guess has no tangible support in real-world data.

For example, you might want to hypothesize the following:

If children are given enough free play time, their intelligence scores rise quicker.

You can test this assumption by observing and measuring two groups – children involved in much free play and those who don’t get free play time. Once the study period ends, you can measure the intelligence scores in both groups to see the difference, thus proving or disproving your hypothesis, which will be testing your hypothesis. If you find tangible differences between the two groups, your hypothesis will be proven, and if there is no difference, the hypothesis will prove false.

Null and Alternative Hypothesis

As a rule, hypotheses are presented in pairs in academic studies, as your scientific guess may be refuted or proved. Thus, you should formulate two hypotheses – a null and alternative variant of the same guess – to see which one is proved with your experiment.

The picture compares null and alternative hypotheses.

The alternative hypothesis is formulated in an affirmative form, assuming a specific relationship between variables. In other words, you hypothesize that the predetermined outcome will be observed if one condition is met.

Watching films before sleep reduces the quality of sleep.

The null hypothesis is formulated in a negative form, suggesting that there is no association between the variables of your interest. For example:

Watching films before sleep doesn’t affect the quality of sleep.

⚗️ Creating a Hypothesis: the Key Steps

The development and testing of multiple hypotheses are the basis of the scientific method .

Without such inquiries, academic knowledge would never progress, and humanity would remain with a limited understanding of the natural world.

How can you contribute to the existing academic base with well-developed and rigorously planned scientific studies ? Here is an introduction to the empirical method of scientific inquiry.

Step #1: Observe the World Around You

Look around you to see what’s taking place in your academic area. If you’re a biology researcher, look into the untapped biological processes or intriguing facts that nobody has managed to explain before you.

What’s surprising or unusual in your observations? How can you approach this area of interest?

That’s the starting point of an academic journey to new knowledge.

Step #2: Ask Questions

Now that you've found a subject of interest, it's time to generate scientific research questions .

A question can be called scientific if it is well-defined, focuses on measurable dimensions, and is largely testable.

Some hints for a scientific question are:

  • What effect does X produce on Y?
  • What happens if the intensity of X’s impact reduces or rises?
  • What is the primary cause of X?
  • How is X related to Y in this group of people?
  • How effective is X in the field of C?

As you can see, X is the independent variable , and Y is the dependent variable.

This principle of hypothesis formulation is vital for cases when you want to illustrate or measure the strength of one variable's effect on the other.

Step #3: Generate a Research Hypothesis

After asking the scientific question, you can hypothesize what your answer to it can be.

You don't have any data yet to answer the question confidently, but you can assume what effect you will observe during an empirical investigation.

For example, suppose your background research shows that protein consumption boosts muscle growth.

In that case, you can hypothesize that a sample group consuming much protein after physical training will exhibit better muscle growth dynamics compared to those who don’t eat protein. This way, you’re making a scientific guess based on your prior knowledge of the subject and your intuition.

Step #4: Hold an Experiment

With a hypothesis at hand, you can proceed to the empirical study for its testing. As a rule, you should have a clearly formulated methodology for proving or disproving your hypothesis before you create it. Otherwise, how can you know that it is testable? An effective hypothesis usually contains all data about the research context and the population of interest.

For example:

Marijuana consumption among U. S. college students reduces their motivation and academic achievement.

  • The study sample here is college students.
  • The dependent variable is motivation and academic achievement, which you can measure with any validated scale (e.g., Intrinsic Motivation Inventory).
  • The inclusion criterion for the study's experimental group is marijuana use.
  • The control group might be a group of marijuana non-users from the same population.
  • A viable research methodology is to ask both groups to fill out the survey and compare the results.

Step #5: Analyze Your Findings

Once the study is over and you have the collected dataset, it's time to analyze the findings.

The methodology should also delineate the criteria for proving or disproving the hypothesis.

Using the previous section's example, your hypothesis is proven if the experimental group reveals lower motivational scores and has a lower GPA . If both groups' motivation and GPA scores aren't statistically different, your hypothesis is false.

Step #6: Formulate Your Conclusion

Using your study's hypothesis and outcomes, you can now generate a conclusion . If the alternative hypothesis is proven, you can conclude that marijuana use hinders students' achievement and motivation. If the null hypothesis is validated, you should report no identified relationship between low academic achievement and weed use.

Thank you for reading this article! Note that if you need to conduct a business analysis, you can try our free tools: SWOT , VRIO , SOAR , PESTEL , and Porter’s Five Forces .

❓ Research Hypothesis Generator FAQ

❓ what is a research hypothesis.

A hypothesis is a guess or assumption you make by looking at the available data from the natural world. You assume a specific relationship between variables or phenomena and formulate that supposition for further testing with experimentation and analysis.

❓ How to write a hypothesis?

To compose an effective hypothesis, you need to look at your research question and formulate a couple of ways to answer it. The available scientific data can guide you to assume your study's outcome. Thus, the hypothesis is a guess of how your research question will be answered by the end of your research.

❓ What is the difference between prediction and hypothesis?

A prediction is your forecast about the outcome of some activities or experimentation. It is a guess of what will happen if you perform some actions with a specific object or person. A hypothesis is a more in-depth inquiry into the way things are related. It is more about explaining specific mechanisms and relationships.

❓ What makes a good hypothesis?

A strong hypothesis should indicate the dependent and independent variables, specifying the relationship you assume between them. You can also strengthen your hypothesis by indicating a specific population group, an intervention period, and the context in which you'll hold the study.

Updated: Jun 5th, 2024

🔗 References

  • What is and How to Write a Good Hypothesis in Research?
  • Research questions, hypotheses and objectives - PMC - NCBI
  • Developing the research hypothesis - PubMed
  • Alternative Hypothesis - SAGE Research Methods
  • Alternative Hypothesis Guide: Definition, Types and Examples
  • Comprehensive Learning Paths
  • 150+ Hours of Videos
  • Complete Access to Jupyter notebooks, Datasets, References.

Rating

Hypothesis Testing – A Deep Dive into Hypothesis Testing, The Backbone of Statistical Inference

  • September 21, 2023

Explore the intricacies of hypothesis testing, a cornerstone of statistical analysis. Dive into methods, interpretations, and applications for making data-driven decisions.

hypothesis testing maker

In this Blog post we will learn:

  • What is Hypothesis Testing?
  • Steps in Hypothesis Testing 2.1. Set up Hypotheses: Null and Alternative 2.2. Choose a Significance Level (Îą) 2.3. Calculate a test statistic and P-Value 2.4. Make a Decision
  • Example : Testing a new drug.
  • Example in python

1. What is Hypothesis Testing?

In simple terms, hypothesis testing is a method used to make decisions or inferences about population parameters based on sample data. Imagine being handed a dice and asked if it’s biased. By rolling it a few times and analyzing the outcomes, you’d be engaging in the essence of hypothesis testing.

Think of hypothesis testing as the scientific method of the statistics world. Suppose you hear claims like “This new drug works wonders!” or “Our new website design boosts sales.” How do you know if these statements hold water? Enter hypothesis testing.

2. Steps in Hypothesis Testing

  • Set up Hypotheses : Begin with a null hypothesis (H0) and an alternative hypothesis (Ha).
  • Choose a Significance Level (Îą) : Typically 0.05, this is the probability of rejecting the null hypothesis when it’s actually true. Think of it as the chance of accusing an innocent person.
  • Calculate Test statistic and P-Value : Gather evidence (data) and calculate a test statistic.
  • p-value : This is the probability of observing the data, given that the null hypothesis is true. A small p-value (typically ≤ 0.05) suggests the data is inconsistent with the null hypothesis.
  • Decision Rule : If the p-value is less than or equal to Îą, you reject the null hypothesis in favor of the alternative.

2.1. Set up Hypotheses: Null and Alternative

Before diving into testing, we must formulate hypotheses. The null hypothesis (H0) represents the default assumption, while the alternative hypothesis (H1) challenges it.

For instance, in drug testing, H0 : “The new drug is no better than the existing one,” H1 : “The new drug is superior .”

2.2. Choose a Significance Level (Îą)

When You collect and analyze data to test H0 and H1 hypotheses. Based on your analysis, you decide whether to reject the null hypothesis in favor of the alternative, or fail to reject / Accept the null hypothesis.

The significance level, often denoted by $Îą$, represents the probability of rejecting the null hypothesis when it is actually true.

In other words, it’s the risk you’re willing to take of making a Type I error (false positive).

Type I Error (False Positive) :

  • Symbolized by the Greek letter alpha (Îą).
  • Occurs when you incorrectly reject a true null hypothesis . In other words, you conclude that there is an effect or difference when, in reality, there isn’t.
  • The probability of making a Type I error is denoted by the significance level of a test. Commonly, tests are conducted at the 0.05 significance level , which means there’s a 5% chance of making a Type I error .
  • Commonly used significance levels are 0.01, 0.05, and 0.10, but the choice depends on the context of the study and the level of risk one is willing to accept.

Example : If a drug is not effective (truth), but a clinical trial incorrectly concludes that it is effective (based on the sample data), then a Type I error has occurred.

Type II Error (False Negative) :

  • Symbolized by the Greek letter beta (β).
  • Occurs when you accept a false null hypothesis . This means you conclude there is no effect or difference when, in reality, there is.
  • The probability of making a Type II error is denoted by β. The power of a test (1 – β) represents the probability of correctly rejecting a false null hypothesis.

Example : If a drug is effective (truth), but a clinical trial incorrectly concludes that it is not effective (based on the sample data), then a Type II error has occurred.

Balancing the Errors :

hypothesis testing maker

In practice, there’s a trade-off between Type I and Type II errors. Reducing the risk of one typically increases the risk of the other. For example, if you want to decrease the probability of a Type I error (by setting a lower significance level), you might increase the probability of a Type II error unless you compensate by collecting more data or making other adjustments.

It’s essential to understand the consequences of both types of errors in any given context. In some situations, a Type I error might be more severe, while in others, a Type II error might be of greater concern. This understanding guides researchers in designing their experiments and choosing appropriate significance levels.

2.3. Calculate a test statistic and P-Value

Test statistic : A test statistic is a single number that helps us understand how far our sample data is from what we’d expect under a null hypothesis (a basic assumption we’re trying to test against). Generally, the larger the test statistic, the more evidence we have against our null hypothesis. It helps us decide whether the differences we observe in our data are due to random chance or if there’s an actual effect.

P-value : The P-value tells us how likely we would get our observed results (or something more extreme) if the null hypothesis were true. It’s a value between 0 and 1. – A smaller P-value (typically below 0.05) means that the observation is rare under the null hypothesis, so we might reject the null hypothesis. – A larger P-value suggests that what we observed could easily happen by random chance, so we might not reject the null hypothesis.

2.4. Make a Decision

Relationship between $Îą$ and P-Value

When conducting a hypothesis test:

We then calculate the p-value from our sample data and the test statistic.

Finally, we compare the p-value to our chosen $Îą$:

  • If $p−value≤α$: We reject the null hypothesis in favor of the alternative hypothesis. The result is said to be statistically significant.
  • If $p−value>Îą$: We fail to reject the null hypothesis. There isn’t enough statistical evidence to support the alternative hypothesis.

3. Example : Testing a new drug.

Imagine we are investigating whether a new drug is effective at treating headaches faster than drug B.

Setting Up the Experiment : You gather 100 people who suffer from headaches. Half of them (50 people) are given the new drug (let’s call this the ‘Drug Group’), and the other half are given a sugar pill, which doesn’t contain any medication.

  • Set up Hypotheses : Before starting, you make a prediction:
  • Null Hypothesis (H0): The new drug has no effect. Any difference in healing time between the two groups is just due to random chance.
  • Alternative Hypothesis (H1): The new drug does have an effect. The difference in healing time between the two groups is significant and not just by chance.

Calculate Test statistic and P-Value : After the experiment, you analyze the data. The “test statistic” is a number that helps you understand the difference between the two groups in terms of standard units.

For instance, let’s say:

  • The average healing time in the Drug Group is 2 hours.
  • The average healing time in the Placebo Group is 3 hours.

The test statistic helps you understand how significant this 1-hour difference is. If the groups are large and the spread of healing times in each group is small, then this difference might be significant. But if there’s a huge variation in healing times, the 1-hour difference might not be so special.

Imagine the P-value as answering this question: “If the new drug had NO real effect, what’s the probability that I’d see a difference as extreme (or more extreme) as the one I found, just by random chance?”

For instance:

  • P-value of 0.01 means there’s a 1% chance that the observed difference (or a more extreme difference) would occur if the drug had no effect. That’s pretty rare, so we might consider the drug effective.
  • P-value of 0.5 means there’s a 50% chance you’d see this difference just by chance. That’s pretty high, so we might not be convinced the drug is doing much.
  • If the P-value is less than ($Îą$) 0.05: the results are “statistically significant,” and they might reject the null hypothesis , believing the new drug has an effect.
  • If the P-value is greater than ($Îą$) 0.05: the results are not statistically significant, and they don’t reject the null hypothesis , remaining unsure if the drug has a genuine effect.

4. Example in python

For simplicity, let’s say we’re using a t-test (common for comparing means). Let’s dive into Python:

Making a Decision : “The results are statistically significant! p-value < 0.05 , The drug seems to have an effect!” If not, we’d say, “Looks like the drug isn’t as miraculous as we thought.”

5. Conclusion

Hypothesis testing is an indispensable tool in data science, allowing us to make data-driven decisions with confidence. By understanding its principles, conducting tests properly, and considering real-world applications, you can harness the power of hypothesis testing to unlock valuable insights from your data.

More Articles

Correlation – connecting the dots, the role of correlation in data analysis, sampling and sampling distributions – a comprehensive guide on sampling and sampling distributions, law of large numbers – a deep dive into the world of statistics, central limit theorem – a deep dive into central limit theorem and its significance in statistics, skewness and kurtosis – peaks and tails, understanding data through skewness and kurtosis”, similar articles, complete introduction to linear regression in r, how to implement common statistical significance tests and find the p value, logistic regression – a complete tutorial with examples in r.

Subscribe to Machine Learning Plus for high value data science content

Š Machinelearningplus. All rights reserved.

hypothesis testing maker

Machine Learning A-Z™: Hands-On Python & R In Data Science

Free sample videos:.

hypothesis testing maker

  • Argumentative
  • Ecocriticism
  • Informative
  • Explicatory
  • Illustrative
  • Problem Solution
  • Interpretive
  • Music Analysis
  • All Essay Examples
  • Entertainment
  • Law, Crime & Punishment
  • Artificial Intelligence
  • Environment
  • Geography & Travel
  • Government & Politics
  • Nursing & Health
  • Information Science and Technology
  • All Essay Topics

Online Hypothesis Generator

Forge precise, research-backed hypotheses in a snap using our top-notch hypothesis creator, ensuring your study starts on solid ground..

empty-icon

How to Create a Solid & Precise Hypothesis with EssayGPT?

Ever wondered how to come up with a hypothesis that's both detailed and relevant? Kick-start your research endeavors with EssayGPT's hypothesis generator by these steps:

  • 1. Start by by indicating the positive or negative trajectory of your hypothesis in the "Effect" section.
  • 2. Then, enter specifics of the experimental group in the "Who (what)" field.
  • 3. Contrast the experimental group against its counterpart by detailing the control group in the appropriate section.
  • 4. Pinpoint the element of study you're measuring by populating the "The measured thing is" field.
  • 5. Choose between GPT 3.5 or GPT 4, and hit 'Generate' for your AI-empowered hypotheses.

Try Our Powerful, All-in-One AI Writing Copilot

Try Our Powerful, All-in-One AI Writing Copilot

Empower your writing with 120+ AI writing tools

Bypass AI detection with 100% undetectable AI content

Create undetectable, plagiarism-free essays with accurate citations

Browser Extension

The all-in-one ChatGPT copilot: rewrite, translate, summarize, Chat with PDF anywhere

Why EssayGPT's Hypothesis Creator Stands Above the Rest?

Embarking on a research venture necessitates precision, clarity, and an unwavering commitment to reliability. EssayGPT  promises all of this and more, setting itself far apart from the competition.

Let’s dive into the unparalleled features of our hypothesis generator:

AI-Powered Precision: Central to the EssayGPT's hypothesis generator is an avant-garde AI framework. This ensures every hypothesis generated is data-driven, accurate, and aligns with your specified parameters.

Swift, On-Point Outputs: Time is of the essence in research. EssayGPT's hypothesis generator pledges quick turnarounds, without compromising the quality and relevance of the generated hypotheses.

Diverse Subject Mastery: From social sciences to intricate physics postulations, EssayGPT's hypothesis generator extends its prowess across a plethora of disciplines, ensuring your topic, no matter how niche, finds its rightful hypothesis.

A Breeze of Usability: Ditch convoluted interfaces. EssayGPT's hypothesis generator boasts an intuitive design for all users, making hypothesis crafting as effortless as a couple of clicks.

Key Steps on Writing Proper Research Hypothesis with EssayGPT

Tapping into the potential of EssayGPT's hypothesis generator can revolutionize your research process. However, to optimize the AI's capabilities, a few key considerations can significantly enhance the coherence and relevance of the generated hypotheses.

Here's a deeper dive into those nuances.

Precision in Input: The tool's prowess lies in its ability to interpret and process the information it's given. Just as a finely tuned instrument delivers the best music, clear and specific inputs allow the generator to produce accurate hypotheses. Being vague or too broad might lead to generic outcomes that don’t precisely serve your research aims.

Alignment with Research Context: The essence of a valuable hypothesis is its seamless fit within the broader research landscape. It's not just about a statement, but one that directly speaks to, and illuminates, the research problem or question you're addressing. By ensuring that the generated hypothesis aligns contextually, you guarantee its relevance and applicability.

Vocabulary Matters: Each field of study has its lexicon. Incorporating field-specific terms or jargon can transform a generic statement into a specialized hypothesis. It’s not just about linguistic accuracy, but about imbuing your hypothesis with the depth and resonance pertinent to your study's discipline.

The Human Element: AI is a powerful tool, but it's the human touch that brings depth, intuition, and context. After the AI crafts the hypothesis, it's beneficial to weave in personal insights or adjust nuances. This ensures that while the hypothesis is technically sound, it also captures the unique intricacies and flavors of individual research endeavors.

Iconic Features of EssayGPT's Hypothesis Maker at a Glance

🔍 Precision-focusedAccurate, tailored hypotheses
📚 Broad subject rangeCovers diverse research areas
📘 Rich vocabularyIn-depth, field-specific lexicon
👥 Human touchBalances AI and human insights

Check Out Other Powerful AI Tools Just Like This Hypothesis Generator

Thesis statement generator, informative thesis statement generator, ai essay writer, essay hook generator, essay introduction generator, essay outline generator, essay extender, free essay conclusion generator, essay shortener, essay rewriter, dive into a world of inspiration.

  • Business Analysis : Brick And Mortar Stores
  • Metamorphosis Kafka Analysis
  • Breaking Bad Fits Under The Crime Drama Genre
  • Choices In Night By Elie Wiesel
  • Cultural Diversity In The United States
  • Richer And Poorer Accounting For Inequality, By Jill Lepore
  • Racial Bias In Education
  • The Pros And Cons Of Jigsaw
  • Why Are Heroes Bad
  • Executive Summary : The Franchise Business Expansion
  • Dual Process Model Of Coping With Bereavement
  • Apush Chapter 15 Summary
  • Why Tell A Story In A Song
  • Family : The Most Important Thing In My Life
  • Scriticism In The Sirens Of Titans
  • Aslan V. Murphy (No.1) [1990] 1 Wlr 766 and Aslan V. Murphy (No.1) [1990] 1 Wlr 766 Case Study

1. Can EssayGPT's hypothesis creator tackle complex and multidimensional topics?

Absolutely. The hypothesis creator harnesses a state-of-the-art AI algorithm, expertly designed to navigate even the most complex and multidimensional subjects. Leveraging advanced contextual comprehension coupled with vast datasets, the tool is adept at crafting accurate hypotheses irrespective of topic intricacy.

2. Are users expected to incur any costs when using EssayGPT's Hypothesis maker?

The basic version of the hypothesis generator is free and permits users to generate content up to 3,000 words per week. For users requiring more extensive capabilities, we offer subscription plans that provide increased word limits and access to our advanced content generation features.

3. Does the EssayGPT hypothesis generator offer support for multiple languages?

Certainly! EssayGPT's esteemed hypothesis generator is linguistically versatile, offering compatibility with an impressive roster of over 30 languages. This ensures that your research endeavors remain unhindered, irrespective of the language of preference.

4. How does EssayGPT's hypothesis generator ensure the uniqueness of the generated hypothesis?

Ensuring that your hypotheses are both pristine and unparalleled is at the heart of EssayGPT's ethos. To this end, our hypothesis generator taps into cutting-edge language models to ensure that every hypothesis sculpted retains an aura of unmatched originality.

Try Our Powerful, All-in-one AI Writing Copilot Today!

Use Our Hypothesis Generator to Power Your Research Journey

Try EssayGPT's Hypothesis Generator to explore new frontiers. Formulate testable hypotheses to supercharge your research!

Hypothesis Maker

The best free AI hypothesis maker to master the art of hypothesis creation with ease. Generate high-quality and accurate hypotheses in minutes.

  • Authoritative Pro
  • Cheerful Pro
  • Conservative Pro
  • Conversational Pro
  • Convincing Pro
  • Creative Pro
  • Enthusiastic Pro
  • Expository Pro
  • Friendly Pro
  • Humorous Pro
  • Informative Pro
  • Inspirational Pro
  • Irreverent Pro
  • Journalistic Pro
  • Matteroffact Pro
  • Nostalgic Pro
  • Objective Pro
  • Passionate Pro
  • Playful Pro
  • Professional Pro
  • Provocative Pro
  • Respectful Pro
  • Romantic Pro
  • Sarcastic Pro
  • Serious Pro
  • Subjective Pro
  • Sympathetic Pro
  • Thoughtful Pro
  • Trustworthy Pro
  • Unapologetic Pro
  • Worried Pro
  • English (US)
  • German (Germany)
  • Italian (Italy)
  • Japanese (Japan)
  • Russian (Russia)
  • Portuguese (Portugal)
  • Hindi (India)
  • Urdu (Pakistan)
  • Arabic (Saudi Arabia)
  • French (France)
  • English (UK) Pro
  • English (Australia) Pro
  • English (Canada) Pro
  • English (India) Pro
  • English (Singapore) Pro
  • English (New Zealand) Pro
  • English (South Africa) Pro
  • Spanish (Spain) Pro
  • Spanish (Mexico) Pro
  • Spanish (United States) Pro
  • Arabic (Egypt) Pro
  • Arabic (United Arab Emirates) Pro
  • Arabic (Kuwait) Pro
  • Arabic (Bahrain) Pro
  • Arabic (Qatar) Pro
  • Arabic (Oman) Pro
  • Arabic (Jordan) Pro
  • Arabic (Lebanon) Pro
  • Danish (Denmark) Pro
  • German (Switzerland) Pro
  • German (Austria) Pro
  • French (Canada) Pro
  • French (Switzerland) Pro
  • French (Belgium) Pro
  • Italian (Switzerland) Pro
  • Dutch (Netherlands) Pro
  • Dutch (Belgium) Pro
  • Portuguese (Brazil) Pro
  • Chinese (China) Pro
  • Chinese (Taiwan) Pro
  • Chinese (Hong Kong) Pro
  • Chinese (Singapore) Pro
  • Korean (South Korea) Pro
  • Finnish (Finland) Pro
  • Greek (Greece) Pro
  • Czech (Czech Republic) Pro
  • Swedish (Sweden) Pro
  • Norwegian (Norway) Pro
  • Turkish (Turkey) Pro
  • Polish (Poland) Pro
  • Romanian (Romania) Pro
  • Hungarian (Hungary) Pro
  • Thai (Thailand) Pro
  • Hebrew (Israel) Pro
  • Indonesian (Indonesia) Pro
  • Vietnamese (Vietnam) Pro
  • Malay (Malaysia) Pro
  • Tagalog (Philippines) Pro
  • Swahili (Kenya) Pro
  • Swahili (Tanzania) Pro
  • Zulu (South Africa) Pro
  • Xhosa (South Africa) Pro
  • Amharic (Ethiopia) Pro
  • Tamil (India) Pro
  • Tamil (Sri Lanka) Pro
  • Bengali (Bangladesh) Pro
  • Bengali (India) Pro
  • Punjabi (Pakistan) Pro
  • Punjabi (India) Pro
  • Marathi (India) Pro
  • Telugu (India) Pro
  • Kannada (India) Pro
  • Gujarati (India) Pro
  • Oriya (India) Pro
  • Malayalam (India) Pro
  • Urdu (India) Pro
  • Persian (Iran) Pro
  • Azerbaijani (Azerbaijan) Pro
  • Ukrainian (Ukraine) Pro
  • Belarusian (Belarus) Pro
  • Catalan (Spain) Pro
  • Basque (Spain) Pro
  • Galician (Spain) Pro
  • Slovak (Slovakia) Pro
  • Lithuanian (Lithuania) Pro
  • Latvian (Latvia) Pro
  • Estonian (Estonia) Pro
  • Bulgarian (Bulgaria) Pro
  • Albanian (Albania) Pro
  • Croatian (Croatia) Pro
  • Slovenian (Slovenia) Pro
  • Bosnian (Bosnia and Herzegovina) Pro
  • Serbian (Serbia) Pro
  • Macedonian (North Macedonia) Pro
  • Montenegrin (Montenegro) Pro
  • Maltese (Malta) Pro
  • Irish (Ireland) Pro
  • Welsh (United Kingdom) Pro
  • Scots Gaelic (United Kingdom) Pro
  • Icelandic (Iceland) Pro
  • Luxembourgish (Luxembourg) Pro
  • Afrikaans (South Africa) Pro
  • Hausa (Nigeria) Pro
  • Yoruba (Nigeria) Pro
  • Somali (Somalia) Pro
  • Tigrinya (Eritrea) Pro
  • Kinyarwanda (Rwanda) Pro
  • Sesotho (Lesotho) Pro
  • Shona (Zimbabwe) Pro
  • Sinhala (Sri Lanka) Pro
  • Dhivehi (Maldives) Pro
  • Burmese (Myanmar) Pro
  • Lao (Laos) Pro
  • Khmer (Cambodia) Pro
  • Mongolian (Mongolia) Pro
  • Tibetan (China) Pro
  • Uighur (China) Pro
  • Pashto (Afghanistan) Pro
  • Dari (Afghanistan) Pro
  • Nepali (Nepal) Pro
  • Dzongkha (Bhutan) Pro
  • Sesotho (South Africa) Pro
  • Setswana (Botswana) Pro
  • Seselwa Creole (Seychelles) Pro
  • Mauritian Creole (Mauritius) Pro
  • Haitian Creole (Haiti) Pro
  • Greenlandic (Greenland) Pro
  • Faroese (Faroe Islands) Pro
  • Samoan (Samoa) Pro
  • Tongan (Tonga) Pro

Error message

Boost your productivity & creativity!

  • 500+ tools to spark your creativity.
  • 100+ languages, conquer the globe.
  • 20+ tones & styles, find your perfect brand voice.
  • No document or input limits, write forever!
  • Priority support & early access to new features!
  • Limited-time offer

Still hesitant? We offer 7-Day Money-Back Guarantee Without Question.

Elevate Every Aspect of Your Work

LogicBalls combines brainstorming, writing, analysis, and research in one powerful AI tool. Enhance your professional content now!

Hypothesis Testing Calculator

$H_o$:
$H_a$: μ μ₀
$n$ =   $\bar{x}$ =   =
$\text{Test Statistic: }$ =
$\text{Degrees of Freedom: } $ $df$ =
$ \text{Level of Significance: } $ $\alpha$ =

Type II Error

$H_o$: $\mu$
$H_a$: $\mu$ $\mu_0$
$n$ =   σ =   $\mu$ =
$\text{Level of Significance: }$ $\alpha$ =

The first step in hypothesis testing is to calculate the test statistic. The formula for the test statistic depends on whether the population standard deviation (σ) is known or unknown. If σ is known, our hypothesis test is known as a z test and we use the z distribution. If σ is unknown, our hypothesis test is known as a t test and we use the t distribution. Use of the t distribution relies on the degrees of freedom, which is equal to the sample size minus one. Furthermore, if the population standard deviation σ is unknown, the sample standard deviation s is used instead. To switch from σ known to σ unknown, click on $\boxed{\sigma}$ and select $\boxed{s}$ in the Hypothesis Testing Calculator.

$\sigma$ Known $\sigma$ Unknown
Test Statistic $ z = \dfrac{\bar{x}-\mu_0}{\sigma/\sqrt{{\color{Black} n}}} $ $ t = \dfrac{\bar{x}-\mu_0}{s/\sqrt{n}} $

Next, the test statistic is used to conduct the test using either the p-value approach or critical value approach. The particular steps taken in each approach largely depend on the form of the hypothesis test: lower tail, upper tail or two-tailed. The form can easily be identified by looking at the alternative hypothesis (H a ). If there is a less than sign in the alternative hypothesis then it is a lower tail test, greater than sign is an upper tail test and inequality is a two-tailed test. To switch from a lower tail test to an upper tail or two-tailed test, click on $\boxed{\geq}$ and select $\boxed{\leq}$ or $\boxed{=}$, respectively.

Lower Tail Test Upper Tail Test Two-Tailed Test
$H_0 \colon \mu \geq \mu_0$ $H_0 \colon \mu \leq \mu_0$ $H_0 \colon \mu = \mu_0$
$H_a \colon \mu $H_a \colon \mu \neq \mu_0$

In the p-value approach, the test statistic is used to calculate a p-value. If the test is a lower tail test, the p-value is the probability of getting a value for the test statistic at least as small as the value from the sample. If the test is an upper tail test, the p-value is the probability of getting a value for the test statistic at least as large as the value from the sample. In a two-tailed test, the p-value is the probability of getting a value for the test statistic at least as unlikely as the value from the sample.

To test the hypothesis in the p-value approach, compare the p-value to the level of significance. If the p-value is less than or equal to the level of signifance, reject the null hypothesis. If the p-value is greater than the level of significance, do not reject the null hypothesis. This method remains unchanged regardless of whether it's a lower tail, upper tail or two-tailed test. To change the level of significance, click on $\boxed{.05}$. Note that if the test statistic is given, you can calculate the p-value from the test statistic by clicking on the switch symbol twice.

In the critical value approach, the level of significance ($\alpha$) is used to calculate the critical value. In a lower tail test, the critical value is the value of the test statistic providing an area of $\alpha$ in the lower tail of the sampling distribution of the test statistic. In an upper tail test, the critical value is the value of the test statistic providing an area of $\alpha$ in the upper tail of the sampling distribution of the test statistic. In a two-tailed test, the critical values are the values of the test statistic providing areas of $\alpha / 2$ in the lower and upper tail of the sampling distribution of the test statistic.

To test the hypothesis in the critical value approach, compare the critical value to the test statistic. Unlike the p-value approach, the method we use to decide whether to reject the null hypothesis depends on the form of the hypothesis test. In a lower tail test, if the test statistic is less than or equal to the critical value, reject the null hypothesis. In an upper tail test, if the test statistic is greater than or equal to the critical value, reject the null hypothesis. In a two-tailed test, if the test statistic is less than or equal the lower critical value or greater than or equal to the upper critical value, reject the null hypothesis.

Lower Tail Test Upper Tail Test Two-Tailed Test
If $z \leq -z_\alpha$, reject $H_0$. If $z \geq z_\alpha$, reject $H_0$. If $z \leq -z_{\alpha/2}$ or $z \geq z_{\alpha/2}$, reject $H_0$.
If $t \leq -t_\alpha$, reject $H_0$. If $t \geq t_\alpha$, reject $H_0$. If $t \leq -t_{\alpha/2}$ or $t \geq t_{\alpha/2}$, reject $H_0$.

When conducting a hypothesis test, there is always a chance that you come to the wrong conclusion. There are two types of errors you can make: Type I Error and Type II Error. A Type I Error is committed if you reject the null hypothesis when the null hypothesis is true. Ideally, we'd like to accept the null hypothesis when the null hypothesis is true. A Type II Error is committed if you accept the null hypothesis when the alternative hypothesis is true. Ideally, we'd like to reject the null hypothesis when the alternative hypothesis is true.

Condition
$H_0$ True $H_a$ True
Conclusion Accept $H_0$ Correct Type II Error
Reject $H_0$ Type I Error Correct

Hypothesis testing is closely related to the statistical area of confidence intervals. If the hypothesized value of the population mean is outside of the confidence interval, we can reject the null hypothesis. Confidence intervals can be found using the Confidence Interval Calculator . The calculator on this page does hypothesis tests for one population mean. Sometimes we're interest in hypothesis tests about two population means. These can be solved using the Two Population Calculator . The probability of a Type II Error can be calculated by clicking on the link at the bottom of the page.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism. Run a free check.

Step 1. ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is high school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. High school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

hypothesis testing maker

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved July 8, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, what is your plagiarism score.

T Distribution Graph Generator

Instructions: Make a t-distribution graph using the form below. Please type the number of degrees of freedom associated to the t-distribution, and provide details about the event you want to graph:

hypothesis testing maker

More About this T-distribution Graph Maker

The t-distribution is a type of continuous probability distribution that takes random values on the whole real line. The main properties of the t-distribution are:

  • It is continuous (and as a consequence, the probability of getting any single, specific outcome is zero)
  • It is "bell shaped", in the same way the normal curves are bell-shaped
  • It is determined by one parameter: the number of degrees of freedom (df). For one sample, the number of degrees of freedom is df = n - 1, where n is the sample size
  • It is symmetric with respect to 0
  • The t-distribution "converges" to the standard normal distribution as the number of degrees of freedom (df) converges to infinity (\(+\infty\)), in the sense that its shapes resembles more and more that of the standard normal distribution when the number of degrees of freedom becomes larger and larger.

In order to compute probabilities associated to the t-distribution we can either use specialized software such as Excel, etc, or we can use t-distribution tables (normally available at college statistics textbooks. The use of the t-distribution arises when performing hypothesis testing (for the case when the population standard deviation is not known).

In case you are rather interested in the normal distribution, you can try our normal distribution graph generator

Related Calculators

Descriptive Statistics Calculator of Grouped Data

log in to your account

Reset password.

Corvus CRO

Hypothesis Builder

Formulating a strong hypothesis is the foundation of a successful split test. A good hypothesis has three main components:

  • Comprehension – Identifying something that can be improved upon
  • Response – Change that can cause improvement
  • Outcome – Measurable result of change that determines success

Don’t know where to start? We’ve got you covered. Use this hypothesis builder to assemble all the information you need.

We have observed by .

We want to at on for .

This should lead to , which will be measured by and backed up by .

Need Help Testing Your New Hypothesis?

Thanks to the builder above you’ve got a great hypothesis on your hands, but now what? How does that translate into a test? What tools should I use? Which test should I run first?

You have questions. We have answers. We can help.

Student's t-distribution calculator with graph generator

Critical value calculator - student's t-distribution.

This statistical calculator allows you to calculate the critical value corresponding to the Student's t-distribution, you can also see the result in a graph through our online graph generator and if you wish you can download the graph. Just enter the significance value (alpha), degrees of freedom, and left, right, or both tails.

Critical value result

P-value calculator - student's t distribution.

Use our online statistical calculator to calculate the p-value of the Student's t-distribution. You just need to enter the t-value and degrees of freedom and specify the tail. In addition to the p-value, you can get and download the graph created with our graph generator

p-value result

One sample t-test calculator.

The one sample t-test is a statistical hypothesis test calculator, use our calculator to check if you get a statistically significant result or not. To obtain it, fill in the corresponding fields and you will obtain the value of the t-score, p-value, critical value, and the degrees of freedom. You can also download a graph that will display your results in the form of the Student's t-distribution.

T-score result

Two sample t-test calculator.

To determine whether or not the means of two groups are equal, you can use our two-sample t-test calculator that applies the t-test. The results are displayed in a Student's t-distribution plot that you can download. To complete the form, you must include information for both groups, including the mean, standard deviation, sample size, significance level,and whether the test is left, right, or two-tailed.

Common questions related to the Student's t-distribution

In this section, we will try to address the most frequently asked questions about the Student's t-distribution. To give you a fundamental and complementary understanding, we will try to dive into the underlying ideas of the t-distribution. The approach we want to take is to answer the most common questions from students with relevant information. Let's tackle problems simply and offer short and understandable solutions.

Questions related to the student's t-distribution

The formula in relation to the probability density function (pdf) for Student's t-distribution, is given as follows:

Where: π is the pi (approximately 3.14), ν correspond to the degrees of freedom, and Γ is the Euler Gamma function.

A distribution of mean estimates derived from samples taken from a population is what is, by definition, the Student's t-distribution. The t-distribution, commonly known as the Student's t-distribution, is a type of symmetric bell-shaped distribution, it has a lower height but a wider spread than the normal distribution. It is symmetric around 0, but the t-distribution has a wider spread than the typical normal distribution curve, or put another way, the t-distribution has a high standard deviation. The variability of individual observations around their mean is measured by a standard deviation. The degrees of freedom (df) are n - 1. So, df is equal to n – 1, where n is the sample size. The degrees of freedom affect the shape of each t distribution curve.

When the sample size is less than 30 and the population standard deviation is unknown, the t-distribution is utilized in hypothesis testing. It is helpful when the sample size is relatively small or the population standard deviation is unknown. It resembles the normal distribution more closely as sample size grows.

A statistical metric known as the standard deviation is used to quantify the distances between each observation and the mean in a set of data. The standard deviation calculates the degree of dispersion or variability. In other words, it's used to calculate how much a random variable deviates from the mean.

The t-value and t-score have the same meanings. It is one of the relative position measurements. By definition, a value of t defines the location of a continuous random variable, X, in relation to the number of standard deviations from the mean.

The significance level is a point in the normal distribution that must be understood in order to either reject or fail to reject the null hypothesis and to assess whether or not the results are statistically significant. If you decide to make use of our t distribution calculator , you must enter the alpha value corresponding to the significance level. The most common alpha values are 0.1, 0.05 or 0.01. Generally, the most common confidence intervals are: 90%, 95% and 99% (1 − α is the confidence level).

The p-value is a probability with a value ranging from 0 to 1. It is used to test a hypothesis. As an example, in some experiment, we choose the significance level value as 0.05, in this case, the alternative hypothesis is more likely to be supported by stronger evidence when the p-value is less than 0.05 (p-value < 0.05), in case the p-value is high (p-value > 0.05), the probability of accepting the null hypothesis is also high.

The z and t distributions are symmetric and bell-shaped. However, what most characterizes the t distribution are its tails, since they are heavier than in the normal distribution. Furthermore, it can be seen that there are more values in the t-distribution located at the ends of the tail instead of the center of the distribution. You must have the population standard deviation to use the standard normal or z distribution. On the other hand, one of the important conditions for adopting the t distribution is that the population variance is unknown

The t-test , it is a parametric comparison test, is used if the means of two samples are compared using a hypothesis test, if they are independent, from two separate samples, or dependent, a sample evaluated at two different times. The procedure is carried out to evaluate if the differences between the means are significant, determining that they are not due to chance.

To interpret the results of a t-test, you can compare the t-score to the critical value and consider the p-value. A high t-score and low p-value indicate that there is a statistically significant difference between the two means, while a low t-score and high p-value indicate that the difference is not statistically significant. The degrees of freedom and the significance level (alpha) also play a role in determining the critical value and the p-value.

A one sample t-test is a statistical procedure used to test whether the mean of a single sample is significantly different from a hypothesized mean. It is used to determine whether the sample comes from a population with a mean that is different from the hypothesized mean. To perform a one sample t-test using a calculator, you need to input the following information: The sample data, including the mean and standard deviation. The hypothesized mean. The significance level (alpha). The type of tail (left, right, or two-tailed). The calculator will then calculate the t-score and p-value based on this information, and will also provide the critical value and degrees of freedom. To interpret the results, you can compare the t-score to the critical value and consider the p-value. If the t-score is greater than the critical value and the p-value is less than the significance level, you can reject the null hypothesis and conclude that the sample mean is significantly different from the hypothesized mean. If the t-score is less than the critical value or the p-value is greater than the significance level, you cannot reject the null hypothesis and must conclude that the sample mean is not significantly different from the hypothesized mean.

A two-sample t-test is a statistical procedure used to determine whether there is a significant difference between the means of two groups. It is often used to compare the means of two groups in order to determine whether a difference exists between them. For example, a researcher might use a two-sample t-test to determine whether there is a significant difference in the average scores on a test between males and females, or between two different treatment groups in a medical study. The t-test is based on the t-statistic , which is calculated from the sample data and represents the difference between the two groups in relation to the variation within the groups. The t-test is used to determine whether this difference is statistically significant, meaning that it is unlikely to have occurred by chance.

IMAGES

  1. Hypothesis Maker

    hypothesis testing maker

  2. 5 Steps of Hypothesis Testing with Examples

    hypothesis testing maker

  3. Hypothesis Testing Steps & Examples

    hypothesis testing maker

  4. Hypothesis Testing- Meaning, Types & Steps

    hypothesis testing maker

  5. Introduction to Hypothesis Testing, Part 1

    hypothesis testing maker

  6. What is Hypothesis Testing?

    hypothesis testing maker

VIDEO

  1. Hypothesis testing example

  2. HYPOTHESIS TESTING CHAPTER 1 PART 2

  3. Hypothesis Testing

  4. 12 7 Hypothesis Testing Procedures

  5. Introduction to Hypothesis Testing

  6. HYPOTHESIS TESTING ONE SAMPLE TEST

COMMENTS

  1. Hypothesis Maker

    Our hypothesis maker is a simple and efficient tool you can access online for free. If you want to create a research hypothesis quickly, you should fill out the research details in the given fields on the hypothesis generator. Below are the fields you should complete to generate your hypothesis:

  2. Hypothesis Test Graph Generator

    Hypothesis Test Graph Generator. Note: After clicking "Draw here", you can click the "Copy to Clipboard" button (in Internet Explorer), or right-click on the graph and choose Copy. In your Word processor, choose Paste-Special from the Edit menu, and select "Bitmap" from the choices. Note: This creates the graph based on the shape of the normal ...

  3. Hypothesis Maker

    HyperWrite's Hypothesis Maker is an AI-driven tool that generates a hypothesis based on your research question. Powered by advanced AI models like GPT-4 and ChatGPT, this tool can help streamline your research process and enhance your scientific studies. ... Yes, HyperWrite offers a limited trial for users to test the Hypothesis Maker. For ...

  4. Free AI Hypothesis Maker

    Create Faster With AI. Try it Risk-Free. Stop wasting time and start creating high-quality content immediately with power of generative AI. Get started for free. Best AI Content Generator & Copywriting Assistant. Generate a hypothesis for your research or project in seconds! Use it for Free.

  5. Research Hypothesis Generator

    Create a research hypothesis based on a provided research topic and objectives. Introducing HyperWrite's Research Hypothesis Generator, an AI-powered tool designed to formulate clear, concise, and testable hypotheses based on your research topic and objectives. Leveraging advanced AI models, this tool is perfect for students, researchers, and professionals looking to streamline their research ...

  6. Hypothesis Generator

    Create null (H0) and alternative (H1) hypotheses based on a given research question and dataset. HyperWrite's Hypothesis Generator is a powerful AI tool that helps you create null and alternative hypotheses for your research. This tool takes a given research question and dataset and generates hypotheses that are clear, concise, and testable. By utilizing the latest AI models, it simplifies the ...

  7. Convert Hypothesis Generator: Free Tool for A/B Testers

    Many people define a hypothesis as an "educated guess".. To be more precise, a properly constructed hypothesis predicts a possible outcome to an experiment or a test where one variable (the independent one) is tweaked and/or modified and the impact is measured by the change in behavior of another variable (generally the dependent one).. A hypothesis should be specific (it should clearly ...

  8. Experiment Hypothesis Generator

    Hypotheses give good test results, simple as that. Use our tool to get structure in how to formulate your hypotheses. You could use it as a kind of "bullshit detector" - if your hypothesis doesn't fit into the template it's probably not a good testing hypothesis. A good hypothesis is a multi-stage rocket - IAR.

  9. Quickly Perform Hypothesis Tests Online for Free

    Hypothesis Test Calculator. Upload your data set below to get started. Upload File. Or input your data as csv. column_one,column_two,column_three 1,2,3 4,5,6 7,8,9. Submit CSV. Sharing helps us build more free tools.

  10. Hypothesis Test Calculator

    Use this Hypothesis Test Calculator for quick results in Python and R. Learn the step-by-step hypothesis test process and why hypothesis testing is important. Learn . Courses Career Tracks Projects Upcoming Courses Certificates . Career Track Certificate ...

  11. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  12. Hypothesis Generator For A/B Testing

    The Automated Hypothesis Creator simplifies the first step in the A/B testing process and provides several benefits: Quick and efficient hypothesis generation. Saves time and resources which can often be invested in analysing the output of the A/B test. Provides insightful and scientifically-backed predictions.

  13. Online Statistics Calculator: Hypothesis testing, t-test, chi-square

    Alternative to statistical software like SPSS and STATA. DATAtab was designed for ease of use and is a compelling alternative to statistical programs such as SPSS and STATA. On datatab.net, data can be statistically evaluated directly online and very easily (e.g. t-test, regression, correlation etc.). DATAtab's goal is to make the world of statistical data analysis as simple as possible, no ...

  14. Hypothesis Generator for Scientific Research

    Create Limitless with Generator AI. Immerse yourself in a world where every idea is instantly transformed into reality. Generator AI brings your boldest visions to life in the blink of an eye. 🔬 ️ Formulate precise, well-founded hypotheses for your studies and scientific work. Explore the potential of your research!

  15. Research Hypothesis Generator Online

    Here are the key benefits of this null and alternative hypothesis generator. Use the prompts and examples to write a hypothesis. The more details you add, the more accurate result you'll get. No need to download any software with this hypothesis writer. The hypothesis creator is 100% free, no hidden payments.

  16. Hypothesis Testing

    Hypothesis testing is an indispensable tool in data science, allowing us to make data-driven decisions with confidence. By understanding its principles, conducting tests properly, and considering real-world applications, you can harness the power of hypothesis testing to unlock valuable insights from your data.

  17. Hypothesis Generator

    AI-Powered Precision: Central to the EssayGPT's hypothesis generator is an avant-garde AI framework. This ensures every hypothesis generated is data-driven, accurate, and aligns with your specified parameters. Swift, On-Point Outputs: Time is of the essence in research. EssayGPT's hypothesis generator pledges quick turnarounds, without ...

  18. Free Hypothesis Maker & Generator: Develop Hypothesis Faster

    LogicBalls combines brainstorming, writing, analysis, and research in one powerful AI tool. Enhance your professional content now! The best free AI hypothesis maker to master the art of hypothesis creation with ease. Generate high-quality and accurate hypotheses in minutes.

  19. Hypothesis Testing Calculator with Steps

    Hypothesis Testing Calculator. The first step in hypothesis testing is to calculate the test statistic. The formula for the test statistic depends on whether the population standard deviation (σ) is known or unknown. If σ is known, our hypothesis test is known as a z test and we use the z distribution. If σ is unknown, our hypothesis test is ...

  20. How to Write a Strong Hypothesis

    6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.

  21. T Distribution Graph Generator

    More About this T-distribution Graph Maker The t-distribution is a type of continuous probability distribution that takes random values on the whole real line. ... The use of the t-distribution arises when performing hypothesis testing (for the case when the population standard deviation is not known).

  22. Hypothesis Builder

    Hypothesis Builder. Formulating a strong hypothesis is the foundation of a successful split test. A good hypothesis has three main components: Comprehension - Identifying something that can be improved upon. Response - Change that can cause improvement. Outcome - Measurable result of change that determines success.

  23. Student's t-distribution calculator with graph generator

    It is used to test a hypothesis. As an example, in some experiment, we choose the significance level value as 0.05, in this case, the alternative hypothesis is more likely to be supported by stronger evidence when the p-value is less than 0.05 (p-value < 0.05), in case the p-value is high (p-value > 0.05), the probability of accepting the null ...