• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research meaning and types

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

 
Approach used Unstructured Structured Highly structured
Conducted throughAsking questions Asking questions By using hypotheses.
TimeEarly stages of decision making Later stages of decision makingLater stages of decision making

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods .

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

research meaning and types

CX Shenanigans: Booth Duty and Beyond — Tuesday CX Thoughts

Jul 9, 2024

Negative correlation

Negative Correlation: Definition, Examples + How to Find It?

customer marketing

Customer Marketing: The Best Kept Secret of Big Brands

Jul 8, 2024

positive correlation

Positive Correlation: What It Is, Importance & How It Works

Jul 5, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Educational resources and simple solutions for your research journey

research

What is Research? Definition, Types, Methods, and Examples

Academic research is a methodical way of exploring new ideas or understanding things we already know. It involves gathering and studying information to answer questions or test ideas and requires careful thinking and persistence to reach meaningful conclusions. Let’s try to understand what research is.   

Table of Contents

Why is research important?    

Whether it’s doing experiments, analyzing data, or studying old documents, research helps us learn more about the world. Without it, we rely on guesswork and hearsay, often leading to mistakes and misconceptions. By using systematic methods, research helps us see things clearly, free from biases. (1)   

What is the purpose of research?  

In the real world, academic research is also a key driver of innovation. It brings many benefits, such as creating valuable opportunities and fostering partnerships between academia and industry. By turning research into products and services, science makes meaningful improvements to people’s lives and boosts the economy. (2)(3)  

What are the characteristics of research?    

The research process collects accurate information systematically. Logic is used to analyze the collected data and find insights. Checking the collected data thoroughly ensures accuracy. Research also leads to new questions using existing data.   

Accuracy is key in research, which requires precise data collection and analysis. In scientific research, laboratories ensure accuracy by carefully calibrating instruments and controlling experiments. Every step is checked to maintain integrity, from instruments to final results. Accuracy gives reliable insights, which in turn help advance knowledge.   

Types of research    

The different forms of research serve distinct purposes in expanding knowledge and understanding:    

  • Exploratory research ventures into uncharted territories, exploring new questions or problem areas without aiming for conclusive answers. For instance, a study may delve into unexplored market segments to better understand consumer behaviour patterns.   
  • Descriptive research delves into current issues by collecting and analyzing data to describe the behaviour of a sample population. For instance, a survey may investigate millennials’ spending habits to gain insights into their purchasing behaviours.   
  • Explanatory research, also known as causal research, seeks to understand the impact of specific changes in existing procedures. An example might be a study examining how changes in drug dosage over some time improve patients’ health.   
  • Correlational research examines connections between two sets of data to uncover meaningful relationships. For instance, a study may analyze the relationship between advertising spending and sales revenue.   
  • Theoretical research deepens existing knowledge without attempting to solve specific problems. For example, a study may explore theoretical frameworks to understand the underlying principles of human behaviour.   
  • Applied research focuses on real-world issues and aims to provide practical solutions. An example could be a study investigating the effectiveness of a new teaching method in improving student performance in schools.  (4)

Types of research methods

  • Qualitative Method: Qualitative research gathers non-numerical data through interactions with participants. Methods include one-to-one interviews, focus groups, ethnographic studies, text analysis, and case studies. For example, a researcher interviews cancer patients to understand how different treatments impact their lives emotionally.    
  • Quantitative Method: Quantitative methods deal with numbers and measurable data to understand relationships between variables. They use systematic methods to investigate events and aim to explain or predict outcomes. For example, Researchers study how exercise affects heart health by measuring variables like heart rate and blood pressure in a large group before and after an exercise program. (5)  

Basic steps involved in the research process    

Here are the basic steps to help you understand the research process:   

  • Choose your topic: Decide the specific subject or area that you want to study and investigate. This decision is the foundation of your research journey.   
  • Find information: Look for information related to your research topic. You can search in journals, books, online, or ask experts for help.   
  • Assess your sources: Make sure the information you find is reliable and trustworthy. Check the author’s credentials and the publication date.   
  • Take notes: Write down important information from your sources that you can use in your research.   
  • Write your paper: Use your notes to write your research paper. Broadly, start with an introduction, then write the body of your paper, and finish with a conclusion.   
  • Cite your sources: Give credit to the sources you used by including citations in your paper.   
  • Proofread: Check your paper thoroughly for any errors in spelling, grammar, or punctuation before you submit it. (6)

How to ensure research accuracy?  

Ensuring accuracy in research is a mix of several essential steps:    

  • Clarify goals: Start by defining clear objectives for your research. Identify your research question, hypothesis, and variables of interest. This clarity will help guide your data collection and analysis methods, ensuring that your research stays focused and purposeful.   
  • Use reliable data: Select trustworthy sources for your information, whether they are primary data collected by you or secondary data obtained from other sources. For example, if you’re studying climate change, use data from reputable scientific organizations with transparent methodologies.   
  • Validate data: Validate your data to ensure it meets the standards of your research project. Check for errors, outliers, and inconsistencies at different stages, such as during data collection, entry, cleaning, or analysis.    
  • Document processes: Documenting your data collection and analysis processes is essential for transparency and reproducibility. Record details such as data collection methods, cleaning procedures, and analysis techniques used. This documentation not only helps you keep track of your research but also enables others to understand and replicate your work.   
  • Review results: Finally, review and verify your research findings to confirm their accuracy and reliability. Double-check your analyses, cross-reference your data, and seek feedback from peers or supervisors. (7) 

Research is crucial for better understanding our world and for social and economic growth. By following ethical guidelines and ensuring accuracy, researchers play a critical role in driving this progress, whether through exploring new topics or deepening existing knowledge.   

References:  

  • Why is Research Important – Introductory Psychology – Washington State University  
  • The Role Of Scientific Research In Driving Business Innovation – Forbes  
  • Innovation – Royal Society  
  • Types of Research – Definition & Methods – Bachelor Print  
  • What Is Qualitative vs. Quantitative Study? – National University  
  • Basic Steps in the Research Process – North Hennepin Community College  
  • Best Practices for Ensuring Data Accuracy in Research – LinkedIn  

Researcher.Life is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Researcher.Life All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 21+ years of experience in academia, Researcher.Life All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $17 a month !    

Related Posts

graphical abstract

How to Make a Graphical Abstract for Your Research Paper (with Examples)

AI tools for research

Leveraging AI in Research: Kick-Start Your Academic Year with Editage All Access

research meaning and types

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

Types of Research – Explained with Examples

Picture of DiscoverPhDs

  • By DiscoverPhDs
  • October 2, 2020

Types of Research Design

Types of Research

Research is about using established methods to investigate a problem or question in detail with the aim of generating new knowledge about it.

It is a vital tool for scientific advancement because it allows researchers to prove or refute hypotheses based on clearly defined parameters, environments and assumptions. Due to this, it enables us to confidently contribute to knowledge as it allows research to be verified and replicated.

Knowing the types of research and what each of them focuses on will allow you to better plan your project, utilises the most appropriate methodologies and techniques and better communicate your findings to other researchers and supervisors.

Classification of Types of Research

There are various types of research that are classified according to their objective, depth of study, analysed data, time required to study the phenomenon and other factors. It’s important to note that a research project will not be limited to one type of research, but will likely use several.

According to its Purpose

Theoretical research.

Theoretical research, also referred to as pure or basic research, focuses on generating knowledge , regardless of its practical application. Here, data collection is used to generate new general concepts for a better understanding of a particular field or to answer a theoretical research question.

Results of this kind are usually oriented towards the formulation of theories and are usually based on documentary analysis, the development of mathematical formulas and the reflection of high-level researchers.

Applied Research

Here, the goal is to find strategies that can be used to address a specific research problem. Applied research draws on theory to generate practical scientific knowledge, and its use is very common in STEM fields such as engineering, computer science and medicine.

This type of research is subdivided into two types:

  • Technological applied research : looks towards improving efficiency in a particular productive sector through the improvement of processes or machinery related to said productive processes.
  • Scientific applied research : has predictive purposes. Through this type of research design, we can measure certain variables to predict behaviours useful to the goods and services sector, such as consumption patterns and viability of commercial projects.

Methodology Research

According to your Depth of Scope

Exploratory research.

Exploratory research is used for the preliminary investigation of a subject that is not yet well understood or sufficiently researched. It serves to establish a frame of reference and a hypothesis from which an in-depth study can be developed that will enable conclusive results to be generated.

Because exploratory research is based on the study of little-studied phenomena, it relies less on theory and more on the collection of data to identify patterns that explain these phenomena.

Descriptive Research

The primary objective of descriptive research is to define the characteristics of a particular phenomenon without necessarily investigating the causes that produce it.

In this type of research, the researcher must take particular care not to intervene in the observed object or phenomenon, as its behaviour may change if an external factor is involved.

Explanatory Research

Explanatory research is the most common type of research method and is responsible for establishing cause-and-effect relationships that allow generalisations to be extended to similar realities. It is closely related to descriptive research, although it provides additional information about the observed object and its interactions with the environment.

Correlational Research

The purpose of this type of scientific research is to identify the relationship between two or more variables. A correlational study aims to determine whether a variable changes, how much the other elements of the observed system change.

According to the Type of Data Used

Qualitative research.

Qualitative methods are often used in the social sciences to collect, compare and interpret information, has a linguistic-semiotic basis and is used in techniques such as discourse analysis, interviews, surveys, records and participant observations.

In order to use statistical methods to validate their results, the observations collected must be evaluated numerically. Qualitative research, however, tends to be subjective, since not all data can be fully controlled. Therefore, this type of research design is better suited to extracting meaning from an event or phenomenon (the ‘why’) than its cause (the ‘how’).

Quantitative Research

Quantitative research study delves into a phenomena through quantitative data collection and using mathematical, statistical and computer-aided tools to measure them . This allows generalised conclusions to be projected over time.

Types of Research Methodology

According to the Degree of Manipulation of Variables

Experimental research.

It is about designing or replicating a phenomenon whose variables are manipulated under strictly controlled conditions in order to identify or discover its effect on another independent variable or object. The phenomenon to be studied is measured through study and control groups, and according to the guidelines of the scientific method.

Non-Experimental Research

Also known as an observational study, it focuses on the analysis of a phenomenon in its natural context. As such, the researcher does not intervene directly, but limits their involvement to measuring the variables required for the study. Due to its observational nature, it is often used in descriptive research.

Quasi-Experimental Research

It controls only some variables of the phenomenon under investigation and is therefore not entirely experimental. In this case, the study and the focus group cannot be randomly selected, but are chosen from existing groups or populations . This is to ensure the collected data is relevant and that the knowledge, perspectives and opinions of the population can be incorporated into the study.

According to the Type of Inference

Deductive investigation.

In this type of research, reality is explained by general laws that point to certain conclusions; conclusions are expected to be part of the premise of the research problem and considered correct if the premise is valid and the inductive method is applied correctly.

Inductive Research

In this type of research, knowledge is generated from an observation to achieve a generalisation. It is based on the collection of specific data to develop new theories.

Hypothetical-Deductive Investigation

It is based on observing reality to make a hypothesis, then use deduction to obtain a conclusion and finally verify or reject it through experience.

Descriptive Research Design

According to the Time in Which it is Carried Out

Longitudinal study (also referred to as diachronic research).

It is the monitoring of the same event, individual or group over a defined period of time. It aims to track changes in a number of variables and see how they evolve over time. It is often used in medical, psychological and social areas .

Cross-Sectional Study (also referred to as Synchronous Research)

Cross-sectional research design is used to observe phenomena, an individual or a group of research subjects at a given time.

According to The Sources of Information

Primary research.

This fundamental research type is defined by the fact that the data is collected directly from the source, that is, it consists of primary, first-hand information.

Secondary research

Unlike primary research, secondary research is developed with information from secondary sources, which are generally based on scientific literature and other documents compiled by another researcher.

Action Research Methods

According to How the Data is Obtained

Documentary (cabinet).

Documentary research, or secondary sources, is based on a systematic review of existing sources of information on a particular subject. This type of scientific research is commonly used when undertaking literature reviews or producing a case study.

Field research study involves the direct collection of information at the location where the observed phenomenon occurs.

From Laboratory

Laboratory research is carried out in a controlled environment in order to isolate a dependent variable and establish its relationship with other variables through scientific methods.

Mixed-Method: Documentary, Field and/or Laboratory

Mixed research methodologies combine results from both secondary (documentary) sources and primary sources through field or laboratory research.

How to Build a Research Collaboration

Learning how to effectively collaborate with others is an important skill for anyone in academia to develop.

Rationale for Research

The term rationale of research means the reason for performing the research study in question.

DiscoverPhDs procrastination trap

Are you always finding yourself working on sections of your research tasks right up until your deadlines? Are you still finding yourself distracted the moment

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

research meaning and types

Browse PhDs Now

What are the consequences of Self-Plagiarism?

Self-plagiarism is when you try and pass off work that you’ve previously done as something that is completely new.

What do you call a professor?

You’ll come across many academics with PhD, some using the title of Doctor and others using Professor. This blog post helps you understand the differences.

research meaning and types

Sabrina’s in the third year of her PhD at The University of Adelaide. Her esearch combines molecular techniques, data analysis, and next generation sequencing to investigate modifications on RNAs in plants.

research meaning and types

Charlene is a 5th year PhD candidate at the University of Wisconsin-Madison. She studies depression and neuroticism in people with Temporal Lobe Epilepsy (TLE) using MR Imaging and behavioural tests.

Join Thousands of Students

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Methods | Definition, Types, Examples

Research methods are specific procedures for collecting and analysing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs quantitative : Will your data take the form of words or numbers?
  • Primary vs secondary : Will you collect original data yourself, or will you use data that have already been collected by someone else?
  • Descriptive vs experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyse the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analysing data, examples of data analysis methods, frequently asked questions about methodology.

Data are the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative
Quantitative .

You can also take a mixed methods approach, where you use both qualitative and quantitative research methods.

Primary vs secondary data

Primary data are any original information that you collect for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary data are information that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data. But if you want to synthesise existing knowledge, analyse historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary
Secondary

Descriptive vs experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive
Experimental

Prevent plagiarism, run a free check.

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare them for analysis.

Data can often be analysed both quantitatively and qualitatively. For example, survey responses could be analysed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that were collected:

  • From open-ended survey and interview questions, literature reviews, case studies, and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions.

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that were collected either:

  • During an experiment.
  • Using probability sampling methods .

Because the data are collected and analysed in a statistically valid way, the results of quantitative analysis can be easily standardised and shared among researchers.

Research methods for analysing data
Research method Qualitative or quantitative? When to use
Quantitative To analyse data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyse the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyse data collected from interviews, focus groups or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyse large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

More interesting articles.

  • A Quick Guide to Experimental Design | 5 Steps & Examples
  • Between-Subjects Design | Examples, Pros & Cons
  • Case Study | Definition, Examples & Methods
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | A Step-by-Step Guide with Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Controlled Experiments | Methods & Examples of Control
  • Correlation vs Causation | Differences, Designs & Examples
  • Correlational Research | Guide, Design & Examples
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definitions, Uses & Examples
  • Data Cleaning | A Guide with Examples & Steps
  • Data Collection Methods | Step-by-Step Guide & Examples
  • Descriptive Research Design | Definition, Methods & Examples
  • Doing Survey Research | A Step-by-Step Guide & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Explanatory vs Response Variables | Definitions & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Types, Threats & Examples
  • Extraneous Variables | Examples, Types, Controls
  • Face Validity | Guide with Definition & Examples
  • How to Do Thematic Analysis | Guide & Examples
  • How to Write a Strong Hypothesis | Guide & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs Deductive Research Approach (with Examples)
  • Internal Validity | Definition, Threats & Examples
  • Internal vs External Validity | Understanding Differences & Examples
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide, & Examples
  • Multistage Sampling | An Introductory Guide with Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalisation | A Guide with Examples, Pros & Cons
  • Population vs Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs Quantitative Research | Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Reliability vs Validity in Research | Differences, Types & Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Research Design | Step-by-Step Guide with Examples
  • Sampling Methods | Types, Techniques, & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Stratified Sampling | A Step-by-Step Guide with Examples
  • Structured Interview | Definition, Guide & Examples
  • Systematic Review | Definition, Examples & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity | Types, Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Examples
  • Types of Variables in Research | Definitions & Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Are Control Variables | Definition & Examples
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Double-Barrelled Question?
  • What Is a Double-Blind Study? | Introduction & Examples
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What is a Literature Review? | Guide, Template, & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Meaning, Guide & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition & Methods
  • What Is Quota Sampling? | Definition & Examples
  • What is Secondary Research? | Definition, Types, & Examples
  • What Is Snowball Sampling? | Definition & Examples
  • Within-Subjects Design | Explanation, Approaches, Examples

Library & Information Science Education Network

What is Research? – Definition, Objectives & Types of Research

Md. Ashikuzzaman

Introduction: Research is a systematic and structured investigation that seeks to expand knowledge, uncover new insights, and provide evidence-based understanding in various fields. It is vital in advancing human understanding, addressing complex problems, and driving innovation. Research encompasses a wide range of methodologies, including empirical studies, experiments, surveys, and theoretical analyses, conducted by researchers across academic, scientific, and professional domains. New discoveries are made through research, theories are developed and tested, and practical solutions are generated. The impact of research is far-reaching, influencing advancements in technology, healthcare, social sciences, environmental conservation, and more. It drives progress, informs policy decisions, and shapes the future by providing a solid foundation of reliable and verified knowledge. The importance of research cannot be overstated, as it drives human knowledge forward and fosters societal development and improvement. Types of Research

What is Research?

Types of Research

The primary objective of the research is to contribute to the existing body of knowledge by uncovering new insights, validating existing theories, or challenging prevailing assumptions. It is driven by the pursuit of truth, accuracy, and evidence-based understanding.

Research can take various forms, depending on the discipline and the nature of the inquiry. It can be empirical, involving the collection and analysis of data through experiments, surveys, observations, or interviews. It can also be theoretical, involving the critical analysis of existing literature and concepts to develop new frameworks or models.

The research process is characterized by systematic and organized steps. It begins with identifying a research problem or topic of interest, followed by an extensive literature review to understand the existing knowledge and identify gaps. Research questions or hypotheses are formulated, and a research design is developed to guide data collection and analysis.

Data collection methods can vary widely, ranging from quantitative approaches such as surveys or experiments to qualitative approaches such as interviews or case studies. Researchers analyze the collected data using appropriate statistical or qualitative analysis techniques to draw meaningful conclusions.

One of the key aspects of research is its emphasis on objectivity and rigor. Researchers strive to minimize bias, ensure the reliability and validity of findings, and maintain ethical standards in their research practices.

The impact of research extends far beyond the academic realm. Research findings inform decision-making processes in various sectors, including healthcare, policy development, business strategies, environmental conservation, and social sciences. It drives technological advancements, fosters innovation, and provides the foundation for evidence-based practices.

Furthermore, research is an iterative process, with new studies building upon and refining existing knowledge. It is a collaborative endeavor, often involving interdisciplinary collaborations and the exchange of ideas among researchers worldwide.

Definitions of Research:

Research is a systematic and organized investigation conducted to expand knowledge, gain a deeper understanding, and generate new insights in a specific field. It involves rigorous and organized data collection, analysis, and interpretation to address research questions or hypotheses. The pursuit of new information drives research, the validation of existing theories, or the exploration of new perspectives. It employs various methodologies to gather and analyze data, including empirical studies, experiments, surveys, interviews, or theoretical analyses. The ultimate goal of the research is to contribute to the existing body of knowledge, advance understanding, and inform decision-making processes across academic, scientific, and professional domains.

Kasi (2009) 1 defines “Research is, therefore, a method for investigating and collecting information aimed at the discovery of new facts or interpretation of existing information, to discover or revise facts, theories, and applications.”

Research is stated by Gina Wisker 1 as “Research is about asking and beginning to answer questions, seeking knowledge and understanding of the world and its processes, and testing assumptions and beliefs.”

Redman and Mory define research as a “systematized effort to gain new knowledge.” 2

Burns (1997) defines research as “a systematic investigation to find answers to a problem.” 2

“The word research is composed of two syllables, re and search. The dictionary defines the former as a prefix meaning again, anew, or over again and the latter as a verb meaning to examine closely and carefully, to test and try, or to probe. Together, they form a noun describing a careful, systematic, patient study and investigation in some field of knowledge undertaken to establish facts or principles.” (Grinnell 1993) 2

Objectives of Research:

The research objectives can vary depending on the specific field of study, the nature of the research, and the researcher’s goals. However, some common purposes of the research include:

  • Answer questions: Research aims to provide answers to specific questions or hypotheses. It seeks to investigate and uncover information, data, or insights about a particular topic or issue.
  • Solve problems: Research is often conducted to address real-world issues or challenges. It aims to identify innovative solutions, strategies, or approaches that can help overcome obstacles and improve existing systems or practices.
  • Generate new knowledge: Research endeavors to contribute to the existing body of knowledge by uncovering new information, theories, or perspectives. It involves exploring uncharted territory or expanding upon existing knowledge in various fields of study.
  • Improve understanding: Research aims to deepen our understanding of complex phenomena, processes, or concepts. It seeks to clarify misconceptions, explore underlying mechanisms, or uncover relationships between variables, leading to a more comprehensive and accurate understanding of the subject.
  • Add value: Research brings value by providing practical or theoretical benefits. It can lead to technological advancements, policies or practices, enhanced decision-making processes, or the development of new products, services, or theories.

Types of Research:

C.R. Kothari, a renowned Indian researcher and author, has proposed several types of research in his book Research Methodology: Methods and Techniques . According to Kothari, research can be categorized into the following types:

  • Descriptive Research: Descriptive research is a method of investigation that provides an accurate and comprehensive description of a specific phenomenon, situation, or population. It involves collecting data through various methods, such as surveys, interviews, or observations, and analyzing the data to identify patterns, characteristics, or trends. Descriptive research does not aim to establish causal relationships or manipulate variables but instead aims to answer questions about what is happening or the current state of the research subject. This type of research is valuable in generating a foundational understanding of a topic, informing decision-making processes, and providing a basis for further research in various fields of study.
  • Analytical Research: Analytical research focuses on critically examining and interpreting existing data, information, or theories to gain deeper insights and understanding. It involves analyzing and evaluating data or literature to identify patterns, relationships, or underlying causes. Analytical research aims to go beyond descriptive findings and delves into the reasons and explanations behind observed phenomena. This type of research often involves rigorous statistical analysis, comparative studies, or theoretical frameworks to draw conclusions and make inferences. Analytical research is crucial in advancing knowledge, refining theories, and providing evidence-based insights that can inform decision-making and policy development in various fields of study.
  • Applied Research: Applied research is a type of research that is conducted to address practical problems or improve existing practices. It focuses on directly applying knowledge and theories to real-world situations and aims to provide actionable solutions. Applied research often involves collaborating with stakeholders, such as industry professionals or policymakers, to ensure the research outcomes have practical relevance. This type of research emphasizes implementing and evaluating interventions, strategies, or technologies to solve specific issues. The results of applied research can potentially impact society, leading to advancements in technology, policy improvements, or enhanced practices in various domains, including healthcare, education, business, and engineering.
  • Fundamental Research: Fundamental research, also known as basic research or pure research, is a type of inquiry that aims to expand knowledge and understanding in a particular field. It explores theoretical concepts, principles, and fundamental laws without immediate practical application. Fundamental research is driven by curiosity and the desire to explore new frontiers of knowledge. It often involves the formulation of hypotheses, experimentation, and rigorous data analysis. The fundamental research findings may not have immediate or direct practical implications. Still, they lay the groundwork for applied research and can lead to significant breakthroughs, innovations, and advancements in various scientific disciplines. Fundamental research is essential for pushing the boundaries of knowledge and fostering a deeper understanding of the world around us.
  • Qualitative Research: Qualitative research is an exploratory approach to understanding individuals’ or groups’ meaning, context, and subjective experiences. It involves collecting and analyzing non-numerical data, such as interviews, observations, or textual analysis, to gain deep insights into complex social phenomena. Qualitative research focuses on uncovering underlying motivations, beliefs, attitudes, and cultural influences that shape human behavior. It emphasizes the richness, depth, and complexity of human experiences and seeks to provide a detailed and holistic understanding of a research topic. Qualitative research methods allow for flexibility and adaptability, enabling researchers to capture nuances and explore emerging themes. This type of research is valuable in fields such as anthropology, sociology, psychology, and education, where a deep understanding of human behavior and social processes is sought.
  • Quantitative Research: Quantitative research systematically gathers and analyzes numerical data to uncover patterns, trends, and relationships. It involves collecting structured data through surveys, experiments, or observations and applying statistical techniques for data analysis. Quantitative research aims to quantify variables, measure phenomena, and draw objective conclusions based on statistical evidence. This type of research focuses on obtaining precise and measurable results, often using large sample sizes to increase the generalizability of findings. Quantitative research is prevalent in social sciences, economics, psychology, and market research, where numerical data and statistical analysis provide a rigorous and quantifiable approach to understanding and explaining phenomena.

Significance of Research:

The significance of research cannot be overstated, as it serves as the cornerstone of progress and development in various fields. Whether in science, technology, social sciences, or humanities, research is vital in advancing knowledge, addressing problems, and shaping society.

One of the primary significances of research is its ability to expand our understanding and knowledge base. Through rigorous investigation, research uncovers new information, theories, and insights that contribute to the existing body of knowledge. It allows us to delve deeper into complex phenomena, explore uncharted territories, and uncover hidden connections. This expansion of knowledge forms the basis for innovation, development, and the evolution of society.

Research also serves as a powerful tool for problem-solving. It enables us to identify and address pressing issues, whether they are in healthcare, education, economics, or any other field. By systematically examining problems, collecting and analyzing relevant data, and developing evidence-based solutions, research provides the means to overcome challenges and improve existing practices. It empowers us to make informed decisions, develop effective strategies, and allocate resources wisely.

Furthermore, research plays a critical role in informing decision-making processes. Policymakers, business leaders, and organizations rely on research findings to guide their choices, shape policies, and plan for the future. Research provides reliable and credible information, allowing decision-makers to navigate complex issues more confidently and accurately. It serves as a bridge between theory and practice, translating abstract concepts into tangible outcomes that benefit society.

Innovation and improvement are other significant outcomes of research. Research drives innovation by exploring new ideas, pushing boundaries, and challenging established norms. It leads to the developing of new technologies, products, and services that improve our quality of life. Research also fosters improvements in existing practices and processes by identifying inefficiencies, gaps, and areas for enhancement. Through research, we continuously strive to find better, more efficient ways of doing things.

Research has a profound impact on society as a whole. It addresses social issues, informs public policies, and promotes positive social change. Research provides evidence-based solutions that address societal challenges, from healthcare interventions to educational reforms. It influences public opinion, shapes cultural norms, and contributes to communities’ well-being and progress.

Moreover, research plays a crucial role in validating and challenging existing knowledge. It provides empirical evidence that supports or challenges established theories and concepts. Through rigorous scrutiny and critical analysis, research ensures that knowledge constantly evolves, grows, and adapts to new information. It encourages intellectual discourse, promotes healthy skepticism, and encourages a culture of lifelong learning.

References: 

  • Kasi, P. (2009). Research: What, Why and How? AuthorHouse.
  • Kothari, C. R. (2004). Research Methodology: Methods and Techniques . New Age International.

Related Posts

What is scholarly communication, literature review, patent: an overview, thesaurus construction and its role in indexing, what are bibliometrics, what is content analysis.

Save my name, email, and website in this browser for the next time I comment.

Type above and press Enter to search. Press Esc to cancel.

  • More from M-W
  • To save this word, you'll need to log in. Log In

Definition of research

 (Entry 1 of 2)

Definition of research  (Entry 2 of 2)

transitive verb

intransitive verb

  • disquisition
  • examination
  • exploration
  • inquisition
  • investigation
  • delve (into)
  • inquire (into)
  • investigate
  • look (into)

Examples of research in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'research.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Middle French recerche , from recercher to go about seeking, from Old French recerchier , from re- + cerchier, sercher to search — more at search

1577, in the meaning defined at sense 3

1588, in the meaning defined at transitive sense 1

Phrases Containing research

  • marketing research
  • market research
  • operations research
  • oppo research

research and development

  • research park
  • translational research

Dictionary Entries Near research

Cite this entry.

“Research.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/research. Accessed 10 Jul. 2024.

Kids Definition

Kids definition of research.

Kids Definition of research  (Entry 2 of 2)

More from Merriam-Webster on research

Nglish: Translation of research for Spanish Speakers

Britannica English: Translation of research for Arabic Speakers

Britannica.com: Encyclopedia article about research

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Plural and possessive names: a guide, commonly misspelled words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, how to use accents and diacritical marks, popular in wordplay, it's a scorcher words for the summer heat, flower etymologies for your spring garden, 12 star wars words, 'swash', 'praya', and 12 more beachy words, 8 words for lesser-known musical instruments, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

University of the People Logo

Higher Education News , Tips for Online Students , Tips for Students

A Comprehensive Guide to Different Types of Research

research meaning and types

Updated: June 19, 2024

Published: June 15, 2024

two researchers working in a laboratory

When embarking on a research project, selecting the right methodology can be the difference between success and failure. With various methods available, each suited to different types of research, it’s essential you make an informed choice. This blog post will provide tips on how to choose a research methodology that best fits your research goals .

We’ll start with definitions: Research is the systematic process of exploring, investigating, and discovering new information or validating existing knowledge. It involves defining questions, collecting data, analyzing results, and drawing conclusions.

Meanwhile, a research methodology is a structured plan that outlines how your research is to be conducted. A complete methodology should detail the strategies, processes, and techniques you plan to use for your data collection and analysis.

 a computer keyboard being worked by a researcher

Research Methods

The first step of a research methodology is to identify a focused research topic, which is the question you seek to answer. By setting clear boundaries on the scope of your research, you can concentrate on specific aspects of a problem without being overwhelmed by information. This will produce more accurate findings. 

Along with clarifying your research topic, your methodology should also address your research methods. Let’s look at the four main types of research: descriptive, correlational, experimental, and diagnostic.

Descriptive Research

Descriptive research is an approach designed to describe the characteristics of a population systematically and accurately. This method focuses on answering “what” questions by providing detailed observations about the subject. Descriptive research employs surveys, observational studies , and case studies to gather qualitative or quantitative data. 

A real-world example of descriptive research is a survey investigating consumer behavior toward a competitor’s product. By analyzing the survey results, the company can gather detailed insights into how consumers perceive a competitor’s product, which can inform their marketing strategies and product development.

Correlational Research

Correlational research examines the statistical relationship between two or more variables to determine whether a relationship exists. Correlational research is particularly useful when ethical or practical constraints prevent experimental manipulation. It is often employed in fields such as psychology, education, and health sciences to provide insights into complex real-world interactions, helping to develop theories and inform further experimental research.

An example of correlational research is the study of the relationship between smoking and lung cancer. Researchers observe and collect data on individuals’ smoking habits and the incidence of lung cancer to determine if there is a correlation between the two variables. This type of research helps identify patterns and relationships, indicating whether increased smoking is associated with higher rates of lung cancer.

Experimental Research

Experimental research is a scientific approach where researchers manipulate one or more independent variables to observe their effect on a dependent variable. This method is designed to establish cause-and-effect relationships. Fields like psychology , medicine, and social sciences frequently employ experimental research to test hypotheses and theories under controlled conditions. 

A real-world example of experimental research is Pavlov’s Dog experiment. In this experiment, Ivan Pavlov demonstrated classical conditioning by ringing a bell each time he fed his dogs. After repeating this process multiple times, the dogs began to salivate just by hearing the bell, even when no food was presented. This experiment helped to illustrate how certain stimuli can elicit specific responses through associative learning.

Diagnostic Research

Diagnostic research tries to accurately diagnose a problem by identifying its underlying causes. This type of research is crucial for understanding complex situations where a precise diagnosis is necessary for formulating effective solutions. It involves methods such as case studies and data analysis and often integrates both qualitative and quantitative data to provide a comprehensive view of the issue at hand. 

An example of diagnostic research is studying the causes of a specific illness outbreak. During an outbreak of a respiratory virus, researchers might conduct diagnostic research to determine the factors contributing to the spread of the virus. This could involve analyzing patient data, testing environmental samples, and evaluating potential sources of infection. The goal is to identify the root causes and contributing factors to develop effective containment and prevention strategies.

Using an established research method is imperative, no matter if you are researching for marketing , technology , healthcare , engineering, or social science. A methodology lends legitimacy to your research by ensuring your data is both consistent and credible. A well-defined methodology also enhances the reliability and validity of the research findings, which is crucial for drawing accurate and meaningful conclusions. 

Additionally, methodologies help researchers stay focused and on track, limiting the scope of the study to relevant questions and objectives. This not only improves the quality of the research but also ensures that the study can be replicated and verified by other researchers, further solidifying its scientific value.

a graphical depiction of the wide possibilities of research

How to Choose a Research Methodology

Choosing the best research methodology for your project involves several key steps to ensure that your approach aligns with your research goals and questions. Here’s a simplified guide to help you make the best choice.

Understand Your Goals

Clearly define the objectives of your research. What do you aim to discover, prove, or understand? Understanding your goals helps in selecting a methodology that aligns with your research purpose.

Consider the Nature of Your Data

Determine whether your research will involve numerical data, textual data, or both. Quantitative methods are best for numerical data, while qualitative methods are suitable for textual or thematic data.

Understand the Purpose of Each Methodology

Becoming familiar with the four types of research – descriptive, correlational, experimental, and diagnostic – will enable you to select the most appropriate method for your research. Many times, you will want to use a combination of methods to gather meaningful data. 

Evaluate Resources and Constraints

Consider the resources available to you, including time, budget, and access to data. Some methodologies may require more resources or longer timeframes to implement effectively.

Review Similar Studies

Look at previous research in your field to see which methodologies were successful. This can provide insights and help you choose a proven approach.

By following these steps, you can select a research methodology that best fits your project’s requirements and ensures robust, credible results.

Completing Your Research Project

Upon completing your research, the next critical step is to analyze and interpret the data you’ve collected. This involves summarizing the key findings, identifying patterns, and determining how these results address your initial research questions. By thoroughly examining the data, you can draw meaningful conclusions that contribute to the body of knowledge in your field. 

It’s essential that you present these findings clearly and concisely, using charts, graphs, and tables to enhance comprehension. Furthermore, discuss the implications of your results, any limitations encountered during the study, and how your findings align with or challenge existing theories.

Your research project should conclude with a strong statement that encapsulates the essence of your research and its broader impact. This final section should leave readers with a clear understanding of the value of your work and inspire continued exploration and discussion in the field.

Now that you know how to perform quality research , it’s time to get started! Applying the right research methodologies can make a significant difference in the accuracy and reliability of your findings. Remember, the key to successful research is not just in collecting data, but in analyzing it thoughtfully and systematically to draw meaningful conclusions. So, dive in, explore, and contribute to the ever-growing body of knowledge with confidence. Happy researching!

In this article

At UoPeople, our blog writers are thinkers, researchers, and experts dedicated to curating articles relevant to our mission: making higher education accessible to everyone.

Forage

What Is Research? Types and Methods

McKayla Girardin

  • Share on Twitter Share on Twitter
  • Share on Facebook Share on Facebook
  • Share on LinkedIn Share on LinkedIn

What is research? Types and Methods of Research

Forage puts students first. Our blog articles are written independently by our editorial team. They have not been paid for or sponsored by our partners. See our full  editorial guidelines .

Research is the process of examining a hypothesis to make discoveries. Practically every career involves research in one form or another. Accountants research their client’s history and financial documents to understand their financial situation, and data scientists perform research to inform data-driven decisions. 

In this guide, we’ll go over: 

Research Definition

Types of research , research methods, careers in research, showing research skills on resumes.

Research is an investigation into a topic or idea to discover new information. There’s no all-encompassing definition for research because it’s an incredibly varied approach to finding discoveries. For example, research can be as simple as seeking to answer a question that already has a known answer, like reading an article to learn why the sky is blue. 

Research can also be much broader, seeking to answer questions that have never before been asked. For instance, a lot of research looks for ways to deepen our collective understanding of social, physical, and biological phenomena. Besides broadening humanity’s knowledge, research is a great tool for businesses and individuals to learn new things.

Why Does Research Matter?

While some research seeks to uncover ground-breaking information on its own, other research forms building blocks that allow for further development. For example, Tony Gilbert of the Masonic Medical Research Institute (MMRI) says that Dr. Gordon K. Moe, a co-founder and director of research at MMRI, led early studies of heart rhythms and arrhythmia.  

Gilbert notes that this research “allowed other scientists and innovators to develop inventions like the pacemaker and defibrillator (AED). So, while Dr. Moe did not invent the pacemaker or the AED, the basic research produced at the MMRI lab helped make these devices possible, and this potentially benefitted millions of people.”

Of course, not every researcher is hunting for medical innovations and cures for diseases. In fact, most companies, regardless of industry or purpose, use research every day.  

“Access to the latest information enables you to make informed decisions to help your business succeed,” says Andrew Pickett, trial attorney at Andrew Pickett Law, PLLC.

Showcase new skills

Build the confidence and practical skills that employers are looking for with Forage’s free job simulations.

Scientific Research

Scientific research utilizes a systematic approach to test hypotheses. Researchers plan their investigation ahead of time, and peers test findings to ensure the analysis was performed accurately. 

Foundational research in sciences, often referred to as “basic science,” involves much of the research done at medical research organizations. Research done by the MMRI falls into this category, seeking to uncover “new information and insights for scientists and medical researchers around the world.”

Scientific research is a broad term; studies can be lab-based, clinical, quantitative, or qualitative. Studies can also switch between different settings and methods, like translational research. 

“Translational research moves research from lab-settings to the settings in which they will provide direct impact (for example, moving bench science to clinical settings),” says Laren Narapareddy, faculty member and researcher at Emory University.

thermo fisher scientific logo

ThermoFisher Scientific Genetic Studies

Learn how scientists research and analyze diagnostic data with this free job simulation.

Avg. Time: 2-3 hours

Skills you’ll build: Data analysis, research, understanding PCR results, cycle thresholds, limit of detection

Historical Research

Historical research involves studying past events to determine how they’ve affected the course of time, using historical data to explain or anticipate current and future events, and filling in gaps in history. Researchers can look at past socio-political events to hypothesize how similar events could pan out in the future.  

However, historical research can also focus on figuring out what actually happened at a moment in time, like reading diary entries to better understand life in England in the 14th century. 

In many ways, research by data, financial, and marketing analysts can be considered historical because these analysts look at past trends to predict future outcomes and make business decisions. 

User Research

User research is often applied in business and marketing to better understand a customer base. Researchers and analysts utilize surveys, interviews, and feedback channels to evaluate their clients’ and customers’ wants, needs, and motivations. Analysts may also apply user research techniques to see how customers respond to a product’s user experience (UX) design and test the efficacy of marketing campaigns. 

>>MORE: See how user and market research inform marketing decisions with Lululemon’s Omnichannel Marketing Job Simulation .

Market Research

Market research utilizes methods similar to user research but seeks to look at a customer base more broadly. Studies of markets take place at an intersection between economic trends and customer decision-making. 

Market research “allows you to stay up-to-date with industry trends and changes so that you can adjust your business strategies accordingly,” says Pickett. 

A primary goal in market research is finding competitive advantages over other businesses. Analysts working in market research may conduct surveys, focus groups, or historical analysis to predict how a demographic will act (and spend) in the future. 

Other Types of Research

The world of research is constantly expanding. New technologies bring new ways to ask and answer unique questions, creating the need for different types of research. Additionally, certain studies or questions may not be easily answered by one kind of research alone, and researchers can approach hypotheses from a variety of directions. So, more niche types of research seek to solve some of the more complex questions. 

For instance, “multidisciplinary research brings experts in different disciplines together to ask and answer questions at the intersection of their fields,” says Narapareddy.

Research doesn’t happen in a bubble, though. To foster better communication between researchers and the public, types of research exist that bring together both scientists and non-scientists. 

“Community-based participatory research is a really important and equitable model of research that involves partnerships among researchers, communities and organizations at all stages of the research process,” says Narapareddy.

working at Accenture

Accenture Client Research and Problem Identification

Explore how consultants use research to help their clients achieve goals with Accenture's free job simulation.

Avg. Time: 4-5 hours

Skills you’ll build: Planning, client communication, interviewing, stakeholder analysis, visualization, presentations

Regardless of the type of research or the study’s primary goal, researchers usually use quantitative or qualitative methods. 

Qualitative Methods

Qualitative research focuses on descriptive information, such as people’s beliefs and emotional responses. Researchers often use focus groups, interviews, and surveys to gather qualitative data. 

This approach to research is popular in sociology, political science, psychology, anthropology, and software engineering . For instance, determining how a user feels about a website’s look isn’t easily put into numbers (quantitative data). So, when testing UX designs, software engineers rely on qualitative research. 

Quantitative Methods

Quantitative research methods focus on numerical data like statistics, units of time, or percentages. Researchers use quantitative methods to determine concrete things, like how many customers purchased a product. Analysts and researchers gather quantitative data using surveys, censuses, A/B tests, and random data sampling. 

Practically every industry or field uses quantitative methods. For example, a car manufacturer testing the effectiveness of new airbag technology looks for quantitative data on how often the airbags deploy properly. Additionally, marketing analysts look for increased sales numbers to see if a marketing campaign was successful. 

Working at JPMorgan Chase

JPMorgan Quantitative Research

Discover how bankers use quantitative methods to analyze businesses and industry trends with this free job simulation.

Avg. Time: 4-6 hours

Skills you’ll build: Programming, data analysis, Python, critical thinking, statistics, dynamic programming

Mixed-Methods

Answering a question or testing a hypothesis may require a mixture of qualitative and quantitative methods. To see if your customers like your website, for instance, you’ll likely apply qualitative methods, like asking them how they feel about the site’s look and visual appeal, and quantitative methods, like seeing how many customers use the website daily. Research that involves qualitative and quantitative methods is called mixed-method research. 

Researching ideas and hypotheses is a common task in many different careers. For example, working in sales requires understanding quantitative research methods to determine if certain actions improve sales numbers. Some research-intensive career paths include:

  • Data science
  • Investment banking
  • Product management
  • Civil rights law
  • Actuarial science  

A group of people consulting

OliverWyman Financial Services: Climate Change

Perform net-zero emissions research and see how risk management combined and climate science can facilitate a smooth transition to a low-carbon economy in this free job simulation.

Avg. Time: 4 to 5 hours

Skills you’ll build: Research, critical thinking, data analysis, communication

Working in Research

Once you have the fundamentals of researching down, the subject matter may evolve or change over the course of your career. 

“My first research experience was assessing fall risk in firefighters — and I now use multi-omic methods [a type of molecular cell analysis] to understand fertility and reproductive health outcomes in women,” notes Narapareddy.

For those considering a career in research, it’s important to “take the time to explore different research methods and techniques to gain a better understanding of what works best for them,” says Pickett. 

Remember that research is exploratory by nature, so don’t be afraid to fail. 

“The work of scientists who came before us helps guide the path for future research, including both their hits and misses,” says Gilbert.

You can show off your research skills on your resume by listing specific research methods in your skills section. You can also call out specific instances you used research skills, and the impact your research had, in the description of past job or internship experiences. For example, you could talk about a time you researched competitors’ marketing strategies and used your findings to suggest a new campaign. 

Your cover letter is another great place to discuss your experience with research. Here, you can talk about large-scale research projects you completed during school or at previous jobs and explain how your research skills would help you in the job you’re applying for. If you have experience collecting and collating data from research surveys during college, for instance, that can translate into data analysis and organizational skills. 

Grow your skills and get job-ready with Forage’s free job simulations . 

Image credit: Canva

McKayla Girardin

Related Posts

6 negotiation skills to level up your work life, how to build conflict resolution skills: case studies and examples, what is github uses and getting started.

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • Product Demos
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Employee Exit Interviews
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Sydney.

language

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO
  • Experience Management
  • The Ultimate Guide to Market Research
  • Types of Market Research

Try Qualtrics for free

The 8 types of market research: definitions, uses and examples.

13 min read What are the different types of market research that can help you stay ahead of the curve with your marketing strategy? Understand how to use each type, and what the advantages and disadvantages are.

Market research (also called marketing research) is the action or activity of gathering information about market needs and preferences. This helps companies understand their target market — how the audience feels and behaves.

There are 8 types of market research, each with their own methods and tools:

  • Primary research
  • Secondary research
  • Qualitative research
  • Quantitative research
  • Branding research
  • Customer research
  • Competitor research
  • Product research

Let’s start our list by exploring primary and secondary research first.

Free eBook: How to rethink and reinvent market research

1. Primary research

Primary research is research that you collect yourself but going directly to the target market through a range of methods. Because it is data you create, you own the data set.

Two types of results — exploratory information (determines the nature of a problem that hasn’t yet been clearly defined) and conclusive information (carried out to solve a problem that exploratory research identified) — from participants are collected as raw data and then analysed to gather insights from trends and comparisons.

This method is good for getting the views of a lot of people at one time, especially when time is short, but it comes with its own management issues. The interviewer must prepare a way to gather answers and record these, while engaging in conversation with many people.

Participants may be affected by the group setting, either from acquiescence bias (the desire to say yes to please the interviewer), dominance bias (stronger participants can alter the results from less dominant participants) or researcher bias (where the research leads or impacts the participant responses indirectly).

This provides a structured setting where the interviewer can listen to what’s being said and investigate further into an answer. The interviewer can also pick up on non-verbal cues from body language can help the interview understand where to deep-dive and broaden their understanding.

However, some of the same biases (acquiescence and researcher) still exit in this format. The method is time consuming to do the interviews and collect the data afterwards.

A survey is an excellent method for carrying out primary research as participants do need to be physically present with the interviewer to carry it out. The survey can be completed anywhere there is an internet connection, meaning there is flexibility for the participants to use different devices and for interviewers to contact participants in different geographical time-zones.Preparation is key, however, as the researchers must segment the market and create a list of participants to send the survey to. Hiring a panel or using existing marketing lists can help with this.

2. Secondary research

Secondary research is the use of data that has previously been collected, analysed and published (and therefore you do not own this data). An example of this for market research is:

Most information is freely available, so there are less costs associated with this kind of secondary research over primary research methods.

Secondary research can often be the preparation for primary research activities, providing a knowledge base. The information gathered may not provide the specific information to explain the results, which is where primary market research would be used to enhance understanding.

There is also a logistics planning need for a recording solution that can handle large datasets, since manual management of the volumes of information can be tricky.

Both primary and secondary research have its advantages and disadvantages, as we’ve seen, but they are best used when paired together. Combined, the data can give you the confidence to act knowing that any hypothesis you have is backed up.

Learn more about primary vs secondary research methods

The next market research types can be defined as qualitative and quantitative research types:

3. Qualitative research

Qualitative market research is the collection of primary or secondary data that is non-numerical in nature, and therefore hard to measure.

Researchers collect this market research type because it can add more depth to the data.

This kind of market research is used to summarise and infer, rather than pin-points an exact truth held by a target market. For example, qualitative market research can be done to find out a new target market’s reaction to a new product to translate the reaction into a clear explanation for the company.

4. Quantitative research

Quantitative research is the collection of primary or secondary data that is numerical in nature, and so can be collected more easily.

Researchers collect this market research type because it can provide historical benchmarking, based on facts and figures evidence.

There are a number of ways to collect this data — polls, surveys, desk research, web statistics, financial records — which can be exploratory in nature without a lot of depth at this stage.

Quantitative market research can create the foundation of knowledge needed by researchers to investigate hypotheses further through qualitative market research.

The next four variations of market research are specific to topics areas, that bring about specific information.:

5. Branding research

Branding market research assists a company to create, manage and maintain the company brand. This can relate to the tone, branding, images, values or identity of the company.

Research can be carried out through interviews, focus groups or surveys. For example, brand awareness surveys will ask your participants whether the brand is known to them and whether it is something they would be interested in buying.

Additional areas for brand research is also around brand loyalty, brand perception , brand positioning , brand value and brand identity .

The aim of research will be to understand how to know if:

  • Your brand is performing in relation to other competitors
  • There are areas to improve your brand activities
  • There are positives to showcase to enhance your brand’s image

6. Customer research

Customer market research looks at the key influences on your target customers and how your company can make changes to encourage sales.

The aim of this research is to know your customer inside out, and continuously learn about how they interact with the company. Some themes covered by this include:

  • Customer satisfaction – Exploring what keeps customers happy, as higher customer satisfaction is more likely to lead to increased customer retention.
  • Customer loyalty – This looks at what experiences have happened to lead to greater customer loyalty across the customer lifecycle.
  • Customer segmentation research – Discovering who the customers are, what their behaviour and preferences are and their shared characteristics.

Relevant desk research may look at historical purchase records, customer journey mapping , customer segmentation, demographics and persona templates.

Primary research, such as NPS and customer satisfaction surveys , or customer satisfaction interviews at the end of customer support calls, can also give more details.

7. Competitor research

Competitor market research is about knowing who your competition is and understanding their strengths and weaknesses, in comparison to your organisation. It can also be about your competitive offering in the market, or how to approach a new market.

The aim of this research is to find ways to make your organisation stand out and future planning through horizon scanning and listening to customer preferences.

For example, for competitive analysis, researchers would create a SWOT for your business and your competitors, to see how your business compares.

Primary research could interview customers about their buying preferences, while secondary sources would look at competitor’s market dominance, sales, structure and so on. With this thorough analysis, you can understand where you can change to be more competitive, and look for ideas that make you stand out.

8. Product research

Product market research is a key way to make sure your products and services are fit for launching in the market, and are performing as well as they can.

The aim of this research is to see how your product is perceived by customers, if they are providing value and working correctly. Ideas can also be formed about upgrades and future product development.

There are a number of avenues within product research:

  • Product branding – Does the product brand and design attract customers in the intended way?
  • Product feature testing – this can happen at various stages of development with target markets (in early development, between versions, before product launch, etc.) to check if there are positive reaction to new or improved features
  • Product design thinking – what solutions would solve your customers’ current or future problems?
  • Product marketing – Do the marketing messages help your product’s memorability and saleability, or can they be improved?

Primary research methods have a clear advantage in this kind of market research: Surveys can ask for rankings on the popularity or usefulness of features or conduct conjoint analysis, while in-person observation interviews (where the participant can handle a product) can be particularly useful in seeing what customers do with the product in real time.

How to use market research types in your company

In a good marketing strategy, it’s preferable to have a mixture of data across:

  • Qualitative and quantitative research
  • Primary and secondary research
  • Your specific topic area or area of focus

With these three components, you can make sure your market strategy gives you a complete picture of your market’s operational data and experience data , — what your market does and why .

Economical experience data (O data)

This type of experience data is quantitative in nature (including operations, featuring sales data, finance data and HR data ). As it can be quantified into numerical values, it can be measured over and over, providing datasets.

There is the opportunity to use a data-driven approach to understanding the results and making predictions based on historical trends.

This sort of data can be measured more easily than emotions and feelings. But it can only tell you about past activities and what happened. It can’t tell you what will happen in the future and why things will happen — this is where X data comes in.

Emotional experience data (X data)

This type of experience data seeks to find reasons to explain emotional decisions and how brands ‘sit’ in people’s minds. In this way, this data is qualitative in nature.

Companies that have X data have a ‘mental advantage’ over other companies,  as they are able to understand the perceptions of the customer, their needs and values.

When you have tangible insights on the audience’s needs, you can then take steps to meet those needs and solve problems. This mitigates the risk of an experience gap – which is what your audience expects you deliver versus what you actually deliver.

Related resources

Market intelligence tools 10 min read, qualitative research questions 11 min read, primary vs secondary research 14 min read, business research methods 12 min read, ethnographic research 11 min read, business research 10 min read, qualitative research design 12 min read, request demo.

Ready to learn more about Qualtrics?

Human Subjects Office

Medical terms in lay language.

Please use these descriptions in place of medical jargon in consent documents, recruitment materials and other study documents. Note: These terms are not the only acceptable plain language alternatives for these vocabulary words.

This glossary of terms is derived from a list copyrighted by the University of Kentucky, Office of Research Integrity (1990).

For clinical research-specific definitions, see also the Clinical Research Glossary developed by the Multi-Regional Clinical Trials (MRCT) Center of Brigham and Women’s Hospital and Harvard  and the Clinical Data Interchange Standards Consortium (CDISC) .

Alternative Lay Language for Medical Terms for use in Informed Consent Documents

A   B   C   D   E   F   G   H   I  J  K   L   M   N   O   P   Q   R   S   T   U   V   W  X  Y  Z

ABDOMEN/ABDOMINAL body cavity below diaphragm that contains stomach, intestines, liver and other organs ABSORB take up fluids, take in ACIDOSIS condition when blood contains more acid than normal ACUITY clearness, keenness, esp. of vision and airways ACUTE new, recent, sudden, urgent ADENOPATHY swollen lymph nodes (glands) ADJUVANT helpful, assisting, aiding, supportive ADJUVANT TREATMENT added treatment (usually to a standard treatment) ANTIBIOTIC drug that kills bacteria and other germs ANTIMICROBIAL drug that kills bacteria and other germs ANTIRETROVIRAL drug that works against the growth of certain viruses ADVERSE EFFECT side effect, bad reaction, unwanted response ALLERGIC REACTION rash, hives, swelling, trouble breathing AMBULATE/AMBULATION/AMBULATORY walk, able to walk ANAPHYLAXIS serious, potentially life-threatening allergic reaction ANEMIA decreased red blood cells; low red cell blood count ANESTHETIC a drug or agent used to decrease the feeling of pain, or eliminate the feeling of pain by putting you to sleep ANGINA pain resulting from not enough blood flowing to the heart ANGINA PECTORIS pain resulting from not enough blood flowing to the heart ANOREXIA disorder in which person will not eat; lack of appetite ANTECUBITAL related to the inner side of the forearm ANTIBODY protein made in the body in response to foreign substance ANTICONVULSANT drug used to prevent seizures ANTILIPEMIC a drug that lowers fat levels in the blood ANTITUSSIVE a drug used to relieve coughing ARRHYTHMIA abnormal heartbeat; any change from the normal heartbeat ASPIRATION fluid entering the lungs, such as after vomiting ASSAY lab test ASSESS to learn about, measure, evaluate, look at ASTHMA lung disease associated with tightening of air passages, making breathing difficult ASYMPTOMATIC without symptoms AXILLA armpit

BENIGN not malignant, without serious consequences BID twice a day BINDING/BOUND carried by, to make stick together, transported BIOAVAILABILITY the extent to which a drug or other substance becomes available to the body BLOOD PROFILE series of blood tests BOLUS a large amount given all at once BONE MASS the amount of calcium and other minerals in a given amount of bone BRADYARRHYTHMIAS slow, irregular heartbeats BRADYCARDIA slow heartbeat BRONCHOSPASM breathing distress caused by narrowing of the airways

CARCINOGENIC cancer-causing CARCINOMA type of cancer CARDIAC related to the heart CARDIOVERSION return to normal heartbeat by electric shock CATHETER a tube for withdrawing or giving fluids CATHETER a tube placed near the spinal cord and used for anesthesia (indwelling epidural) during surgery CENTRAL NERVOUS SYSTEM (CNS) brain and spinal cord CEREBRAL TRAUMA damage to the brain CESSATION stopping CHD coronary heart disease CHEMOTHERAPY treatment of disease, usually cancer, by chemical agents CHRONIC continuing for a long time, ongoing CLINICAL pertaining to medical care CLINICAL TRIAL an experiment involving human subjects COMA unconscious state COMPLETE RESPONSE total disappearance of disease CONGENITAL present before birth CONJUNCTIVITIS redness and irritation of the thin membrane that covers the eye CONSOLIDATION PHASE treatment phase intended to make a remission permanent (follows induction phase) CONTROLLED TRIAL research study in which the experimental treatment or procedure is compared to a standard (control) treatment or procedure COOPERATIVE GROUP association of multiple institutions to perform clinical trials CORONARY related to the blood vessels that supply the heart, or to the heart itself CT SCAN (CAT) computerized series of x-rays (computerized tomography) CULTURE test for infection, or for organisms that could cause infection CUMULATIVE added together from the beginning CUTANEOUS relating to the skin CVA stroke (cerebrovascular accident)

DERMATOLOGIC pertaining to the skin DIASTOLIC lower number in a blood pressure reading DISTAL toward the end, away from the center of the body DIURETIC "water pill" or drug that causes increase in urination DOPPLER device using sound waves to diagnose or test DOUBLE BLIND study in which neither investigators nor subjects know what drug or treatment the subject is receiving DYSFUNCTION state of improper function DYSPLASIA abnormal cells

ECHOCARDIOGRAM sound wave test of the heart EDEMA excess fluid collecting in tissue EEG electric brain wave tracing (electroencephalogram) EFFICACY effectiveness ELECTROCARDIOGRAM electrical tracing of the heartbeat (ECG or EKG) ELECTROLYTE IMBALANCE an imbalance of minerals in the blood EMESIS vomiting EMPIRIC based on experience ENDOSCOPIC EXAMINATION viewing an  internal part of the body with a lighted tube  ENTERAL by way of the intestines EPIDURAL outside the spinal cord ERADICATE get rid of (such as disease) Page 2 of 7 EVALUATED, ASSESSED examined for a medical condition EXPEDITED REVIEW rapid review of a protocol by the IRB Chair without full committee approval, permitted with certain low-risk research studies EXTERNAL outside the body EXTRAVASATE to leak outside of a planned area, such as out of a blood vessel

FDA U.S. Food and Drug Administration, the branch of federal government that approves new drugs FIBROUS having many fibers, such as scar tissue FIBRILLATION irregular beat of the heart or other muscle

GENERAL ANESTHESIA pain prevention by giving drugs to cause loss of consciousness, as during surgery GESTATIONAL pertaining to pregnancy

HEMATOCRIT amount of red blood cells in the blood HEMATOMA a bruise, a black and blue mark HEMODYNAMIC MEASURING blood flow HEMOLYSIS breakdown in red blood cells HEPARIN LOCK needle placed in the arm with blood thinner to keep the blood from clotting HEPATOMA cancer or tumor of the liver HERITABLE DISEASE can be transmitted to one’s offspring, resulting in damage to future children HISTOPATHOLOGIC pertaining to the disease status of body tissues or cells HOLTER MONITOR a portable machine for recording heart beats HYPERCALCEMIA high blood calcium level HYPERKALEMIA high blood potassium level HYPERNATREMIA high blood sodium level HYPERTENSION high blood pressure HYPOCALCEMIA low blood calcium level HYPOKALEMIA low blood potassium level HYPONATREMIA low blood sodium level HYPOTENSION low blood pressure HYPOXEMIA a decrease of oxygen in the blood HYPOXIA a decrease of oxygen reaching body tissues HYSTERECTOMY surgical removal of the uterus, ovaries (female sex glands), or both uterus and ovaries

IATROGENIC caused by a physician or by treatment IDE investigational device exemption, the license to test an unapproved new medical device IDIOPATHIC of unknown cause IMMUNITY defense against, protection from IMMUNOGLOBIN a protein that makes antibodies IMMUNOSUPPRESSIVE drug which works against the body's immune (protective) response, often used in transplantation and diseases caused by immune system malfunction IMMUNOTHERAPY giving of drugs to help the body's immune (protective) system; usually used to destroy cancer cells IMPAIRED FUNCTION abnormal function IMPLANTED placed in the body IND investigational new drug, the license to test an unapproved new drug INDUCTION PHASE beginning phase or stage of a treatment INDURATION hardening INDWELLING remaining in a given location, such as a catheter INFARCT death of tissue due to lack of blood supply INFECTIOUS DISEASE transmitted from one person to the next INFLAMMATION swelling that is generally painful, red, and warm INFUSION slow injection of a substance into the body, usually into the blood by means of a catheter INGESTION eating; taking by mouth INTERFERON drug which acts against viruses; antiviral agent INTERMITTENT occurring (regularly or irregularly) between two time points; repeatedly stopping, then starting again INTERNAL within the body INTERIOR inside of the body INTRAMUSCULAR into the muscle; within the muscle INTRAPERITONEAL into the abdominal cavity INTRATHECAL into the spinal fluid INTRAVENOUS (IV) through the vein INTRAVESICAL in the bladder INTUBATE the placement of a tube into the airway INVASIVE PROCEDURE puncturing, opening, or cutting the skin INVESTIGATIONAL NEW DRUG (IND) a new drug that has not been approved by the FDA INVESTIGATIONAL METHOD a treatment method which has not been proven to be beneficial or has not been accepted as standard care ISCHEMIA decreased oxygen in a tissue (usually because of decreased blood flow)

LAPAROTOMY surgical procedure in which an incision is made in the abdominal wall to enable a doctor to look at the organs inside LESION wound or injury; a diseased patch of skin LETHARGY sleepiness, tiredness LEUKOPENIA low white blood cell count LIPID fat LIPID CONTENT fat content in the blood LIPID PROFILE (PANEL) fat and cholesterol levels in the blood LOCAL ANESTHESIA creation of insensitivity to pain in a small, local area of the body, usually by injection of numbing drugs LOCALIZED restricted to one area, limited to one area LUMEN the cavity of an organ or tube (e.g., blood vessel) LYMPHANGIOGRAPHY an x-ray of the lymph nodes or tissues after injecting dye into lymph vessels (e.g., in feet) LYMPHOCYTE a type of white blood cell important in immunity (protection) against infection LYMPHOMA a cancer of the lymph nodes (or tissues)

MALAISE a vague feeling of bodily discomfort, feeling badly MALFUNCTION condition in which something is not functioning properly MALIGNANCY cancer or other progressively enlarging and spreading tumor, usually fatal if not successfully treated MEDULLABLASTOMA a type of brain tumor MEGALOBLASTOSIS change in red blood cells METABOLIZE process of breaking down substances in the cells to obtain energy METASTASIS spread of cancer cells from one part of the body to another METRONIDAZOLE drug used to treat infections caused by parasites (invading organisms that take up living in the body) or other causes of anaerobic infection (not requiring oxygen to survive) MI myocardial infarction, heart attack MINIMAL slight MINIMIZE reduce as much as possible Page 4 of 7 MONITOR check on; keep track of; watch carefully MOBILITY ease of movement MORBIDITY undesired result or complication MORTALITY death MOTILITY the ability to move MRI magnetic resonance imaging, diagnostic pictures of the inside of the body, created using magnetic rather than x-ray energy MUCOSA, MUCOUS MEMBRANE moist lining of digestive, respiratory, reproductive, and urinary tracts MYALGIA muscle aches MYOCARDIAL pertaining to the heart muscle MYOCARDIAL INFARCTION heart attack

NASOGASTRIC TUBE placed in the nose, reaching to the stomach NCI the National Cancer Institute NECROSIS death of tissue NEOPLASIA/NEOPLASM tumor, may be benign or malignant NEUROBLASTOMA a cancer of nerve tissue NEUROLOGICAL pertaining to the nervous system NEUTROPENIA decrease in the main part of the white blood cells NIH the National Institutes of Health NONINVASIVE not breaking, cutting, or entering the skin NOSOCOMIAL acquired in the hospital

OCCLUSION closing; blockage; obstruction ONCOLOGY the study of tumors or cancer OPHTHALMIC pertaining to the eye OPTIMAL best, most favorable or desirable ORAL ADMINISTRATION by mouth ORTHOPEDIC pertaining to the bones OSTEOPETROSIS rare bone disorder characterized by dense bone OSTEOPOROSIS softening of the bones OVARIES female sex glands

PARENTERAL given by injection PATENCY condition of being open PATHOGENESIS development of a disease or unhealthy condition PERCUTANEOUS through the skin PERIPHERAL not central PER OS (PO) by mouth PHARMACOKINETICS the study of the way the body absorbs, distributes, and gets rid of a drug PHASE I first phase of study of a new drug in humans to determine action, safety, and proper dosing PHASE II second phase of study of a new drug in humans, intended to gather information about safety and effectiveness of the drug for certain uses PHASE III large-scale studies to confirm and expand information on safety and effectiveness of new drug for certain uses, and to study common side effects PHASE IV studies done after the drug is approved by the FDA, especially to compare it to standard care or to try it for new uses PHLEBITIS irritation or inflammation of the vein PLACEBO an inactive substance; a pill/liquid that contains no medicine PLACEBO EFFECT improvement seen with giving subjects a placebo, though it contains no active drug/treatment PLATELETS small particles in the blood that help with clotting POTENTIAL possible POTENTIATE increase or multiply the effect of a drug or toxin (poison) by giving another drug or toxin at the same time (sometimes an unintentional result) POTENTIATOR an agent that helps another agent work better PRENATAL before birth PROPHYLAXIS a drug given to prevent disease or infection PER OS (PO) by mouth PRN as needed PROGNOSIS outlook, probable outcomes PRONE lying on the stomach PROSPECTIVE STUDY following patients forward in time PROSTHESIS artificial part, most often limbs, such as arms or legs PROTOCOL plan of study PROXIMAL closer to the center of the body, away from the end PULMONARY pertaining to the lungs

QD every day; daily QID four times a day

RADIATION THERAPY x-ray or cobalt treatment RANDOM by chance (like the flip of a coin) RANDOMIZATION chance selection RBC red blood cell RECOMBINANT formation of new combinations of genes RECONSTITUTION putting back together the original parts or elements RECUR happen again REFRACTORY not responding to treatment REGENERATION re-growth of a structure or of lost tissue REGIMEN pattern of giving treatment RELAPSE the return of a disease REMISSION disappearance of evidence of cancer or other disease RENAL pertaining to the kidneys REPLICABLE possible to duplicate RESECT remove or cut out surgically RETROSPECTIVE STUDY looking back over past experience

SARCOMA a type of cancer SEDATIVE a drug to calm or make less anxious SEMINOMA a type of testicular cancer (found in the male sex glands) SEQUENTIALLY in a row, in order SOMNOLENCE sleepiness SPIROMETER an instrument to measure the amount of air taken into and exhaled from the lungs STAGING an evaluation of the extent of the disease STANDARD OF CARE a treatment plan that the majority of the medical community would accept as appropriate STENOSIS narrowing of a duct, tube, or one of the blood vessels in the heart STOMATITIS mouth sores, inflammation of the mouth STRATIFY arrange in groups for analysis of results (e.g., stratify by age, sex, etc.) STUPOR stunned state in which it is difficult to get a response or the attention of the subject SUBCLAVIAN under the collarbone SUBCUTANEOUS under the skin SUPINE lying on the back SUPPORTIVE CARE general medical care aimed at symptoms, not intended to improve or cure underlying disease SYMPTOMATIC having symptoms SYNDROME a condition characterized by a set of symptoms SYSTOLIC top number in blood pressure; pressure during active contraction of the heart

TERATOGENIC capable of causing malformations in a fetus (developing baby still inside the mother’s body) TESTES/TESTICLES male sex glands THROMBOSIS clotting THROMBUS blood clot TID three times a day TITRATION a method for deciding on the strength of a drug or solution; gradually increasing the dose T-LYMPHOCYTES type of white blood cells TOPICAL on the surface TOPICAL ANESTHETIC applied to a certain area of the skin and reducing pain only in the area to which applied TOXICITY side effects or undesirable effects of a drug or treatment TRANSDERMAL through the skin TRANSIENTLY temporarily TRAUMA injury; wound TREADMILL walking machine used to test heart function

UPTAKE absorbing and taking in of a substance by living tissue

VALVULOPLASTY plastic repair of a valve, especially a heart valve VARICES enlarged veins VASOSPASM narrowing of the blood vessels VECTOR a carrier that can transmit disease-causing microorganisms (germs and viruses) VENIPUNCTURE needle stick, blood draw, entering the skin with a needle VERTICAL TRANSMISSION spread of disease

WBC white blood cell

  • Privacy Policy

Research Method

Home » Basic Research – Types, Methods and Examples

Basic Research – Types, Methods and Examples

Table of Contents

Basic Research

Basic Research

Definition:

Basic Research, also known as Fundamental or Pure Research , is scientific research that aims to increase knowledge and understanding about the natural world without necessarily having any practical or immediate applications. It is driven by curiosity and the desire to explore new frontiers of knowledge rather than by the need to solve a specific problem or to develop a new product.

Types of Basic Research

Types of Basic Research are as follows:

Experimental Research

This type of research involves manipulating one or more variables to observe their effect on a particular phenomenon. It aims to test hypotheses and establish cause-and-effect relationships.

Observational Research

This type of research involves observing and documenting natural phenomena without manipulating any variables. It aims to describe and understand the behavior of the observed system.

Theoretical Research

This type of research involves developing and testing theories and models to explain natural phenomena. It aims to provide a framework for understanding and predicting observations and experiments.

Descriptive Research

This type of research involves describing and cataloging natural phenomena without attempting to explain or understand them. It aims to provide a comprehensive and accurate picture of the observed system.

Comparative Research

This type of research involves comparing different systems or phenomena to identify similarities and differences. It aims to understand the underlying principles that govern different natural phenomena.

Historical Research

This type of research involves studying past events, developments, and discoveries to understand how science has evolved over time. It aims to provide insights into the factors that have influenced scientific progress and the role of basic research in shaping our understanding of the world.

Data Collection Methods

Some common data collection methods used in basic research include:

  • Observation : This involves watching and recording natural phenomena in a systematic and structured way. Observations can be made in a laboratory setting or in the field and can be qualitative or quantitative.
  • Surveys and questionnaires: These are tools for collecting data from a large number of individuals about their attitudes, beliefs, behaviors, and experiences. Surveys and questionnaires can be administered in person, by mail, or online.
  • Interviews : Interviews involve asking questions to a person or a group of people to gather information about their experiences, opinions, and perspectives. Interviews can be structured, semi-structured, or unstructured.
  • Experiments : Experiments involve manipulating one or more variables and observing their effect on a particular phenomenon. Experiments can be conducted in a laboratory or in the field and can be controlled or naturalistic.
  • Case studies : Case studies involve in-depth analysis of a particular individual, group, or phenomenon. Case studies can provide rich and detailed information about complex phenomena.
  • Archival research : Archival research involves analyzing existing data, documents, and records to answer research questions. Archival research can be used to study historical events, trends, and developments.
  • Simulation : Simulation involves creating a computer model of a particular phenomenon to study its behavior and predict its future outcomes. Simulation can be used to study complex systems that are difficult to study in the real world.

Data Analysis Methods

Some common data analysis methods used in basic research include:

  • Descriptive statistics: This involves summarizing and describing data using measures such as mean, median, mode, and standard deviation. Descriptive statistics provide a simple and easy way to understand the basic properties of the data.
  • Inferential statistics : This involves making inferences about a population based on data collected from a sample. Inferential statistics can be used to test hypotheses, estimate parameters, and quantify uncertainty.
  • Qualitative analysis : This involves analyzing data that are not numerical in nature, such as text, images, or audio recordings. Qualitative analysis can involve coding, categorizing, and interpreting data to identify themes, patterns, and relationships.
  • Content analysis: This involves analyzing the content of text, images, or audio recordings to identify specific words, phrases, or themes. Content analysis can be used to study communication, media, and discourse.
  • Multivariate analysis: This involves analyzing data that have multiple variables or factors. Multivariate analysis can be used to identify patterns and relationships among variables, cluster similar observations, and reduce the dimensionality of the data.
  • Network analysis: This involves analyzing the structure and dynamics of networks, such as social networks, communication networks, or ecological networks. Network analysis can be used to study the relationships and interactions among individuals, groups, or entities.
  • Machine learning : This involves using algorithms and models to analyze and make predictions based on data. Machine learning can be used to identify patterns, classify observations, and make predictions based on complex data sets.

Basic Research Methodology

Basic research methodology refers to the approach, techniques, and procedures used to conduct basic research. The following are some common steps involved in basic research methodology:

  • Formulating research questions or hypotheses : This involves identifying the research problem and formulating specific questions or hypotheses that can guide the research.
  • Reviewing the literature: This involves reviewing and synthesizing existing research on the topic of interest to identify gaps, controversies, and areas for further investigation.
  • Designing the study: This involves designing a study that is appropriate for the research question or hypothesis. The study design can involve experiments, observations, surveys, case studies, or other methods.
  • Collecting data: This involves collecting data using appropriate methods and instruments, such as observation, surveys, experiments, or interviews.
  • Analyzing data: This involves analyzing the collected data using appropriate methods, such as descriptive or inferential statistics, qualitative analysis, or content analysis.
  • Interpreting results : This involves interpreting the results of the data analysis in light of the research question or hypothesis and the existing literature.
  • Drawing conclusions: This involves drawing conclusions based on the interpretation of the results and assessing their implications for the research question or hypothesis.
  • Communicating findings : This involves communicating the research findings in the form of research reports, journal articles, conference presentations, or other forms of dissemination.

Applications of Basic Research

Some applications of basic research include:

  • Medical breakthroughs : Basic research in fields such as biology, chemistry, and physics has led to important medical breakthroughs, including the discovery of antibiotics, vaccines, and new drugs.
  • Technology advancements: Basic research in fields such as computer science, physics, and engineering has led to advancements in technology, such as the development of the internet, smartphones, and other electronic devices.
  • Environmental solutions: Basic research in fields such as ecology, geology, and meteorology has led to the development of solutions to environmental problems, such as climate change, air pollution, and water contamination.
  • Economic growth: Basic research can stimulate economic growth by creating new industries and markets based on scientific discoveries and technological advancements.
  • National security: Basic research in fields such as physics, chemistry, and biology has led to the development of new technologies for national security, including encryption, radar, and stealth technology.

Examples of Basic Research

Here are some examples of basic research:

  • Astronomy : Astronomers conduct basic research to understand the fundamental principles that govern the universe, such as the laws of gravity, the behavior of stars and galaxies, and the origins of the universe.
  • Genetics : Geneticists conduct basic research to understand the genetic basis of various traits, diseases, and disorders. This research can lead to the development of new treatments and therapies for genetic diseases.
  • Physics : Physicists conduct basic research to understand the fundamental principles of matter and energy, such as quantum mechanics, particle physics, and cosmology. This research can lead to new technologies and advancements in fields such as medicine and engineering.
  • Neuroscience: Neuroscientists conduct basic research to understand the structure and function of the brain, including how it processes information and controls behavior. This research can lead to new treatments and therapies for neurological disorders and brain injuries.
  • Mathematics : Mathematicians conduct basic research to develop and explore new mathematical theories, such as number theory, topology, and geometry. This research can lead to new applications in fields such as computer science, physics, and engineering.
  • Chemistry : Chemists conduct basic research to understand the fundamental properties of matter and how it interacts with other substances. This research can lead to the development of new materials, drugs, and technologies.

Purpose of Basic Research

The purpose of basic research, also known as fundamental or pure research, is to expand knowledge in a particular field or discipline without any specific practical application in mind. The primary goal of basic research is to advance our understanding of the natural world and to uncover fundamental principles and relationships that underlie complex phenomena.

Basic research is often exploratory in nature, with researchers seeking to answer fundamental questions about how the world works. The research may involve conducting experiments, collecting and analyzing data, or developing new theories and hypotheses. Basic research often requires a high degree of creativity, innovation, and intellectual curiosity, as well as a willingness to take risks and pursue unconventional lines of inquiry.

Although basic research is not conducted with a specific practical outcome in mind, it can lead to significant practical applications in various fields. Many of the major scientific discoveries and technological advancements of the past century have been rooted in basic research, from the discovery of antibiotics to the development of the internet.

In summary, the purpose of basic research is to expand knowledge and understanding in a particular field or discipline, with the goal of uncovering fundamental principles and relationships that can help us better understand the natural world. While the practical applications of basic research may not always be immediately apparent, it has led to significant scientific and technological advancements that have benefited society in numerous ways.

When to use Basic Research

Basic research is generally conducted when scientists and researchers are seeking to expand knowledge and understanding in a particular field or discipline. It is particularly useful when there are gaps in our understanding of fundamental principles and relationships that underlie complex phenomena. Here are some situations where basic research might be particularly useful:

  • Exploring new fields: Basic research can be particularly valuable when researchers are exploring new fields or areas of inquiry where little is known. By conducting basic research, scientists can establish a foundation of knowledge that can be built upon in future studies.
  • Testing new theories: Basic research can be useful when researchers are testing new theories or hypotheses that have not been tested before. This can help scientists to gain a better understanding of how the world works and to identify areas where further research is needed.
  • Developing new technologies : Basic research can be important for developing new technologies and innovations. By conducting basic research, scientists can uncover new materials, properties, and relationships that can be used to develop new products or technologies.
  • Investigating complex phenomena : Basic research can be particularly valuable when investigating complex phenomena that are not yet well understood. By conducting basic research, scientists can gain a better understanding of the underlying principles and relationships that govern complex systems.
  • Advancing scientific knowledge: Basic research is important for advancing scientific knowledge in general. By conducting basic research, scientists can uncover new principles and relationships that can be applied across multiple fields of study.

Characteristics of Basic Research

Here are some of the main characteristics of basic research:

  • Focus on fundamental knowledge : Basic research is focused on expanding our understanding of the natural world and uncovering fundamental principles and relationships that underlie complex phenomena. The primary goal of basic research is to advance knowledge without any specific practical application in mind.
  • Exploratory in nature: Basic research is often exploratory in nature, with researchers seeking to answer fundamental questions about how the world works. The research may involve conducting experiments, collecting and analyzing data, or developing new theories and hypotheses.
  • Long-term focus: Basic research is often focused on long-term outcomes rather than immediate practical applications. The insights and discoveries generated by basic research may take years or even decades to translate into practical applications.
  • High degree of creativity and innovation : Basic research often requires a high degree of creativity, innovation, and intellectual curiosity. Researchers must be willing to take risks and pursue unconventional lines of inquiry.
  • Emphasis on scientific rigor: Basic research is conducted using the scientific method, which emphasizes the importance of rigorous experimental design, data collection and analysis, and peer review.
  • Interdisciplinary: Basic research is often interdisciplinary, drawing on multiple fields of study to address complex research questions. Basic research can be conducted in fields ranging from physics and chemistry to biology and psychology.
  • Open-ended : Basic research is open-ended, meaning that it does not have a specific end goal in mind. Researchers may follow unexpected paths or uncover new lines of inquiry that they had not anticipated.

Advantages of Basic Research

Here are some of the main advantages of basic research:

  • Advancing scientific knowledge: Basic research is essential for expanding our understanding of the natural world and uncovering fundamental principles and relationships that underlie complex phenomena. This knowledge can be applied across multiple fields of study and can lead to significant scientific and technological advancements.
  • Fostering innovation: Basic research often requires a high degree of creativity, innovation, and intellectual curiosity. By encouraging scientists to pursue unconventional lines of inquiry and take risks, basic research can lead to breakthrough discoveries and innovations.
  • Stimulating economic growth : Basic research can lead to the development of new technologies and products that can stimulate economic growth and create new industries. Many of the major scientific and technological advancements of the past century have been rooted in basic research.
  • Improving health and well-being: Basic research can lead to the development of new drugs, therapies, and medical treatments that can improve health and well-being. For example, many of the major advances in medical science, such as the development of antibiotics and vaccines, were rooted in basic research.
  • Training the next generation of scientists : Basic research is essential for training the next generation of scientists and researchers. By providing opportunities for young scientists to engage in research and gain hands-on experience, basic research helps to develop the skills and expertise needed to advance scientific knowledge in the future.
  • Encouraging interdisciplinary collaboration : Basic research often requires collaboration between scientists from different fields of study. By fostering interdisciplinary collaboration, basic research can lead to new insights and discoveries that would not be possible through single-discipline research alone.

Limitations of Basic Research

Here are some of the main limitations of basic research:

  • Lack of immediate practical applications : Basic research is often focused on long-term outcomes rather than immediate practical applications. The insights and discoveries generated by basic research may take years or even decades to translate into practical applications.
  • High cost and time requirements: Basic research can be expensive and time-consuming, as it often requires sophisticated equipment, specialized facilities, and large research teams. Funding for basic research can be limited, making it difficult to sustain long-term projects.
  • Ethical concerns : Basic research may involve working with animal models or human subjects, raising ethical concerns around the use of animals or the safety and well-being of human participants.
  • Uncertainty around outcomes: Basic research is often open-ended, meaning that it does not have a specific end goal in mind. This uncertainty can make it difficult to justify funding for basic research, as it is difficult to predict what outcomes the research will produce.
  • Difficulty in communicating results : Basic research can produce complex and technical findings that may be difficult to communicate to the general public or policymakers. This can make it challenging to generate public support for basic research or to translate basic research findings into policy or practical applications.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Survey Research

Survey Research – Types, Methods, Examples

Focus Groups in Qualitative Research

Focus Groups – Steps, Examples and Guide

Qualitative Research

Qualitative Research – Methods, Analysis Types...

Applied Research

Applied Research – Types, Methods and Examples

Transformative Design

Transformative Design – Methods, Types, Guide

Quasi-Experimental Design

Quasi-Experimental Research Design – Types...

The National Archives Catalog

National Archives Logo

Contribution Type: Person Names

Mandatory Repeatable Edit Type Data Type Source Level Available Public Element
No Yes Read Only Variable Character Length (13 characters per element) Catalog Community Member;
NARA Staff;
NARA Partner;
AI/Machine Generated
File Unit
Item
Item AV
Digital Object
Yes

The Person Name Elements are used to identify a person in a record.

 

precedes a person’s name (for example, Ms. or Dr.). is a person’s personal name. It can be the name given to a person at birth or a name legally chosen by the person. is a personal name or names used by a person in addition to their first personal name. It can be the name given to a person at birth or a name legally chosen by the person. It might be a middle initial if a full middle name is not provided. is the name identified on the document as the family name of a person. In English it is also referred to as the last name due to it commonly being used following a person’s first or given name. However in other languages, surnames may commonly be written before a person’s given name. Surnames may consist of one name (for example, Smith) or multiple names which may or may not be hyphenated (for example, Beth Smith Jones or Beth Smith-Jones). follows a person’s name (for example, Jr. or IV).

 

To allow contributors to identify people named in records thereby providing additional context to descriptions and make digitized and born digital content more discoverable.
Each of the Name Elements are independent from each other but are connected as one instance of a name. They can be added in any combination. Name Elements have an attribution type modifier and may have a related contributor name.

Name Elements are added to Catalog descriptions and digital objects voluntarily by contributors including Citizen Archivists, staff, and NARA partners following the guidance provided on the page and the on Archives.gov. Name elements may be suggested or generated by AI / Machine tools.

 

- Revolutionary War Pension and Bounty Land Warrant Application File R. 12837, Aaron Burr, Continental (N.J.). ( )
- Eliza
- Brown
- Burr

- Col.
- Aaron
- Burr
 

Previous Element Next Element Table of Contents Lifecycle Data Requirements Guide

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is Qualitative Research? | Methods & Examples

What Is Qualitative Research? | Methods & Examples

Published on June 19, 2020 by Pritha Bhandari . Revised on June 22, 2023.

Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research.

Qualitative research is the opposite of quantitative research , which involves collecting and analyzing numerical data for statistical analysis.

Qualitative research is commonly used in the humanities and social sciences, in subjects such as anthropology, sociology, education, health sciences, history, etc.

  • How does social media shape body image in teenagers?
  • How do children and adults interpret healthy eating in the UK?
  • What factors influence employee retention in a large organization?
  • How is anxiety experienced around the world?
  • How can teachers integrate social issues into science curriculums?

Table of contents

Approaches to qualitative research, qualitative research methods, qualitative data analysis, advantages of qualitative research, disadvantages of qualitative research, other interesting articles, frequently asked questions about qualitative research.

Qualitative research is used to understand how people experience the world. While there are many approaches to qualitative research, they tend to be flexible and focus on retaining rich meaning when interpreting data.

Common approaches include grounded theory, ethnography , action research , phenomenological research, and narrative research. They share some similarities, but emphasize different aims and perspectives.

Qualitative research approaches
Approach What does it involve?
Grounded theory Researchers collect rich data on a topic of interest and develop theories .
Researchers immerse themselves in groups or organizations to understand their cultures.
Action research Researchers and participants collaboratively link theory to practice to drive social change.
Phenomenological research Researchers investigate a phenomenon or event by describing and interpreting participants’ lived experiences.
Narrative research Researchers examine how stories are told to understand how participants perceive and make sense of their experiences.

Note that qualitative research is at risk for certain research biases including the Hawthorne effect , observer bias , recall bias , and social desirability bias . While not always totally avoidable, awareness of potential biases as you collect and analyze your data can prevent them from impacting your work too much.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research meaning and types

Each of the research approaches involve using one or more data collection methods . These are some of the most common qualitative methods:

  • Observations: recording what you have seen, heard, or encountered in detailed field notes.
  • Interviews:  personally asking people questions in one-on-one conversations.
  • Focus groups: asking questions and generating discussion among a group of people.
  • Surveys : distributing questionnaires with open-ended questions.
  • Secondary research: collecting existing data in the form of texts, images, audio or video recordings, etc.
  • You take field notes with observations and reflect on your own experiences of the company culture.
  • You distribute open-ended surveys to employees across all the company’s offices by email to find out if the culture varies across locations.
  • You conduct in-depth interviews with employees in your office to learn about their experiences and perspectives in greater detail.

Qualitative researchers often consider themselves “instruments” in research because all observations, interpretations and analyses are filtered through their own personal lens.

For this reason, when writing up your methodology for qualitative research, it’s important to reflect on your approach and to thoroughly explain the choices you made in collecting and analyzing the data.

Qualitative data can take the form of texts, photos, videos and audio. For example, you might be working with interview transcripts, survey responses, fieldnotes, or recordings from natural settings.

Most types of qualitative data analysis share the same five steps:

  • Prepare and organize your data. This may mean transcribing interviews or typing up fieldnotes.
  • Review and explore your data. Examine the data for patterns or repeated ideas that emerge.
  • Develop a data coding system. Based on your initial ideas, establish a set of codes that you can apply to categorize your data.
  • Assign codes to the data. For example, in qualitative survey analysis, this may mean going through each participant’s responses and tagging them with codes in a spreadsheet. As you go through your data, you can create new codes to add to your system if necessary.
  • Identify recurring themes. Link codes together into cohesive, overarching themes.

There are several specific approaches to analyzing qualitative data. Although these methods share similar processes, they emphasize different concepts.

Qualitative data analysis
Approach When to use Example
To describe and categorize common words, phrases, and ideas in qualitative data. A market researcher could perform content analysis to find out what kind of language is used in descriptions of therapeutic apps.
To identify and interpret patterns and themes in qualitative data. A psychologist could apply thematic analysis to travel blogs to explore how tourism shapes self-identity.
To examine the content, structure, and design of texts. A media researcher could use textual analysis to understand how news coverage of celebrities has changed in the past decade.
To study communication and how language is used to achieve effects in specific contexts. A political scientist could use discourse analysis to study how politicians generate trust in election campaigns.

Qualitative research often tries to preserve the voice and perspective of participants and can be adjusted as new research questions arise. Qualitative research is good for:

  • Flexibility

The data collection and analysis process can be adapted as new ideas or patterns emerge. They are not rigidly decided beforehand.

  • Natural settings

Data collection occurs in real-world contexts or in naturalistic ways.

  • Meaningful insights

Detailed descriptions of people’s experiences, feelings and perceptions can be used in designing, testing or improving systems or products.

  • Generation of new ideas

Open-ended responses mean that researchers can uncover novel problems or opportunities that they wouldn’t have thought of otherwise.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Researchers must consider practical and theoretical limitations in analyzing and interpreting their data. Qualitative research suffers from:

  • Unreliability

The real-world setting often makes qualitative research unreliable because of uncontrolled factors that affect the data.

  • Subjectivity

Due to the researcher’s primary role in analyzing and interpreting data, qualitative research cannot be replicated . The researcher decides what is important and what is irrelevant in data analysis, so interpretations of the same data can vary greatly.

  • Limited generalizability

Small samples are often used to gather detailed data about specific contexts. Despite rigorous analysis procedures, it is difficult to draw generalizable conclusions because the data may be biased and unrepresentative of the wider population .

  • Labor-intensive

Although software can be used to manage and record large amounts of text, data analysis often has to be checked or performed manually.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square goodness of fit test
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Inclusion and exclusion criteria

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). What Is Qualitative Research? | Methods & Examples. Scribbr. Retrieved July 10, 2024, from https://www.scribbr.com/methodology/qualitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, qualitative vs. quantitative research | differences, examples & methods, how to do thematic analysis | step-by-step guide & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Measuring well-being and progress

GDP is a well-established tool for measuring economic output, but it does not tell us whether life as a whole is getting better, and for whom. The OECD Well-being Framework helps to monitor societal progress “beyond GDP” and is informing people-centric and integrated policy making across the many dimensions that matter for people, the planet and future generations. The Framework provides a compass to understand how human well-being is evolving in the context of the ecological and digital transitions, and what key actions are needed to support it.

  • Well-being frameworks for people-focused policies
  • OECD World Forums on Well-being

research meaning and types

Select a language

Key messages, improving people’s well-being requires balancing economic, social and environmental objectives and focusing on relationships and social connectedness.

Assessing the well-being of individuals, communities and societies requires looking at multiple aspects that matter for people’s lives. This holistic perspective is even more relevant in a context of fast societal changes. The OECD Well-being Framework considers current well-being outcomes – and inequalities in these – to capture the material conditions that shape people’s economic options, their quality of life, and their relationships. The Framework also includes the systemic resources that are needed to sustain well-being in the future and within planetary and social boundaries. The Framework can support governments and other actors to design policies that promote synergies between economic, social and environmental goals and that put a primary focus on promoting mental health at individual and community level.

The OECD collects statistics on the key components of well-being to monitor people’s quality of life and relational well-being in the context of the digital, demographic and green transitions and to help countries understand whether life is getting better and whether the benefits of progress are being shared equally.

Countries have started to collect internationally harmonised statistics on well-being and should expand this practice further

Frequent, timely and high-quality data on well-being is essential to inform policy decisions. The OECD is advancing the statistical agenda by supporting data producers with methodological guidance on new frontiers of well-being measurement, including subjective well-being, trust, mental health and social connectedness. Although more work remains to be done, this has helped to close data gaps, especially in dimensions of life where internationally harmonised well-being data is most scarce.

The OECD is continuing to update its advice to reflect the latest evidence. For instance, the 2013 Guidelines on Measuring Subjective Well-being are currently being expanded to include guidance on child subjective well-being as well as more globally inclusive measures. 

A well-being lens can bring a more integrated perspective to policy challenges, such as mental health

Mental health affects every aspect of life and is influenced by people’s economic, social and environmental living conditions. However, despite mental health’s strong interactions with factors such as income, education, employment and the environment, integrated approaches across government departments remain limited or small-scale. Reasons include inter-departmental task forces often being time-limited and without decision-making power and resource constraints remain a challenge.

The OECD uses a well-being lens to underscore the reciprocal relationships between mental health and socio-economic outcomes and shows how policies to promote mental health can contribute to achieving other social, economic and environmental policy goals.

OECD governments are increasingly using well-being evidence to inform their policy practices

The real pressure test for well-being initiatives is whether they will be able to graduate from “yet another report” to tangibly influencing government decision-making, and ultimately, people’s quality of life. Multidimensional well-being frameworks and concepts are increasingly being employed by OECD countries in budgeting, policy appraisal and evaluation, strategic coordination, and performance management. Mainstreaming well-being in policy is not a simple add-on to existing practice: it requires and supports new ways of thinking and acting that are more people-focused, more long-term and more joined-up across economic, social, and environmental policy objectives.

In 2023, the OECD launched the Knowledge Exchange Platform on Well-being Metrics and Policy Practice to provide a space for sharing experiences and solutions and to support governments interested in developing policy-focused well-being initiatives. 

How’s life in your country?

The OECD has developed innovative data visualisations that help to illustrate each country’s relative well-being strengths and weaknesses across themes like income, work and job quality, housing conditions, health, safety, social connectedness and civic engagement. The longer a bar in the “well-being wheel”, the better the outcomes in a specific area of well-being, compared to other OECD countries.

Mental health shapes many aspects of life

The OECD used the dimensions of its Well-being Framework to illustrate how economic, social and environmental outcomes intersect with mental health. People experiencing worse mental health tend to fare far worse in most other aspects of their well-being. For example, compared to the general population, those at risk of mental distress are nearly twice as likely to be at the bottom of the income distribution, to be unemployed, or to be unhappy with how they spend their time; their risk for feeling lonely is more than four times greater.

Related content

research meaning and types

  • Tool OECD Better Life Index There is more to life than the cold numbers of GDP and economic statistics – This Index allows you to compare well-being across countries, based on 11 topics the OECD has identified as essential, in the areas of material living conditions and quality of life. oecdbetterlifeindex.org
  • OECD Data Explorer data-explorer.oecd.org

Related publications

research meaning and types

Related policy issues

  • Well-being and beyond GDP To understand whether policies are improving lives we need to look "beyond GDP" and consider a broader range of economic, social and environmental outcomes for people. This also allows to understand what matters to people and what drives their behaviours, providing another channel of action to policies. The OECD is leading efforts to develop indicators that measure the well-being of individuals, families, society, future generations and the planet at a time of deep changes and transformations. Learn more

COMMENTS

  1. What is Research

    Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  2. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  3. What is Research? Definition, Types, Methods, and Examples

    Definition, Types, Methods, and Examples. Academic research is a methodical way of exploring new ideas or understanding things we already know. It involves gathering and studying information to answer questions or test ideas and requires careful thinking and persistence to reach meaningful conclusions. Let's try to understand what research is.

  4. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  5. Types of Research

    Therefore, this type of research design is better suited to extracting meaning from an event or phenomenon (the 'why') than its cause (the 'how'). For example, examining the effects of sleep deprivation on mood. Quantitative Research. ... In this type of research, reality is explained by general laws that point to certain conclusions ...

  6. Types of Research Designs Compared

    Other interesting articles. If you want to know more about statistics, methodology, or research bias, make sure to check out some of our other articles with explanations and examples. Statistics. Normal distribution. Skewness. Kurtosis. Degrees of freedom. Variance. Null hypothesis.

  7. Research

    Original research, also called primary research, is research that is not exclusively based on a summary, review, or synthesis of earlier publications on the subject of research.This material is of a primary-source character. The purpose of the original research is to produce new knowledge rather than present the existing knowledge in a new form (e.g., summarized or classified).

  8. Research

    Research. Definition: Research refers to the process of investigating a particular topic or question in order to discover new information, develop new insights, or confirm or refute existing knowledge.It involves a systematic and rigorous approach to collecting, analyzing, and interpreting data, and requires careful planning and attention to detail. ...

  9. 19 Types of Research (With Definitions and Examples)

    Read more: Types of Qualitative Research: Definition and Examples 19. Quantitative research Quantitative research depends on numerical data, such as statistics and measurements, to investigate specific questions, like who, what, where or when. The results are usually presented in tables or graphs. Types of quantitative methods include: Survey ...

  10. Research Methods

    Research Methods | Definition, Types, Examples. Research methods are specific procedures for collecting and analysing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make.

  11. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  12. Scientific Research

    Definition: Scientific research is the systematic and empirical investigation of phenomena, theories, or hypotheses, using various methods and techniques in order to acquire new knowledge or to validate existing knowledge. ... This type of research involves the use of an experimental group, which receives a treatment, and a control group, which ...

  13. What is Research?

    Introduction: Research is a systematic and structured investigation that seeks to expand knowledge, uncover new insights, and provide evidence-based understanding in various fields.It is vital in advancing human understanding, addressing complex problems, and driving innovation. Research encompasses a wide range of methodologies, including empirical studies, experiments, surveys, and ...

  14. Research Definition & Meaning

    The meaning of RESEARCH is studious inquiry or examination; especially : investigation or experimentation aimed at the discovery and interpretation of facts, revision of accepted theories or laws in the light of new facts, or practical application of such new or revised theories or laws. How to use research in a sentence.

  15. Research Methods

    Research Methods. Definition: Research Methods refer to the techniques, procedures, and processes used by researchers to collect, analyze, and interpret data in order to answer research questions or test hypotheses.The methods used in research can vary depending on the research questions, the type of data that is being collected, and the research design.

  16. A Beginner's Guide to Types of Research

    Understand the Purpose of Each Methodology. Becoming familiar with the four types of research - descriptive, correlational, experimental, and diagnostic - will enable you to select the most appropriate method for your research. Many times, you will want to use a combination of methods to gather meaningful data.

  17. What is a Research Design? Definition, Types, Methods and Examples

    Research design methods refer to the systematic approaches and techniques used to plan, structure, and conduct a research study. The choice of research design method depends on the research questions, objectives, and the nature of the study. Here are some key research design methods commonly used in various fields: 1.

  18. What Is Research? Types and Methods

    Research Definition; Types of Research ; Research Methods; Careers in Research; Showing Research Skills on Resumes; Research Definition. Research is an investigation into a topic or idea to discover new information. There's no all-encompassing definition for research because it's an incredibly varied approach to finding discoveries. For ...

  19. Research

    The word research is composed of two syllables, "re" and "search." "re" is a prefix meaning again, a new or over again and "search" is a verb meaning to examine closely and carefully, to test and try, or to probe. Together they form a noun describing a careful, systematic, patient study and investigation in some field of ...

  20. Research

    In the simplest of terms, the research definition is a process of seeking out knowledge. This knowledge can be new, or it can support an already known fact. The purpose of research is to inform ...

  21. Primary Research

    Primary Research | Definition, Types, & Examples. Published on January 14, 2023 by Tegan George.Revised on January 12, 2024. Primary research is a research method that relies on direct data collection, rather than relying on data that's already been collected by someone else.In other words, primary research is any type of research that you undertake yourself, firsthand, while using data that ...

  22. The 8 types of market research: Definitions, uses and examples

    The next market research types can be defined as qualitative and quantitative research types: 3. Qualitative research. Qualitative market research is the collection of primary or secondary data that is non-numerical in nature, and therefore hard to measure. Researchers collect this market research type because it can add more depth to the data.

  23. Medical Terms in Lay Language

    For clinical research-specific definitions, see also the Clinical Research Glossary developed by the Multi-Regional Clinical Trials (MRCT) Center of Brigham and Women's Hospital and Harvard and the Clinical Data Interchange Standards Consortium (CDISC). Alternative Lay Language for Medical Terms for use in Informed Consent Documents

  24. Basic Research

    Basic Research. Definition: Basic Research, also known as Fundamental or Pure Research, is scientific research that aims to increase knowledge and understanding about the natural world without necessarily having any practical or immediate applications.It is driven by curiosity and the desire to explore new frontiers of knowledge rather than by the need to solve a specific problem or to develop ...

  25. Contribution Type: Person Names

    Mandatory Repeatable Edit Type Data Type Source Level Available Public Element No Yes Read Only Variable Character Length (13 characters per element) Catalog Community Member; NARA Staff; NARA Partner; AI/Machine Generated File Unit Item Item AV Digital Object Yes Definition: The Person Name Elements are used to identify a person in a record. Prefix precedes a person's name (for example, Ms ...

  26. What Is Qualitative Research?

    Qualitative research is used to understand how people experience the world. While there are many approaches to qualitative research, they tend to be flexible and focus on retaining rich meaning when interpreting data. Common approaches include grounded theory, ethnography, action research, phenomenological research, and narrative research.

  27. Measuring well-being and progress

    GDP is a well-established tool for measuring economic output, but it does not tell us whether life as a whole is getting better, and for whom. The OECD Well-being Framework helps to monitor societal progress "beyond GDP" and is informing people-centric and integrated policy making across the many dimensions that matter for people, the planet and future generations. The Framework provides a ...