Jan-Philip Gehrcke, PhD

  • twitter.com/gehrcke

Steven D. Schafersman’s Introduction to Science

In 1997, Steven D. Schaferman (Professor for geology, Miami) has published an essay titled “Scientific Thinking and the Scientific Method” . Its primary source is this website: http://pbisotopes.ess.sunysb.edu/esp/files/scientific-method.html , created with Frontpage 3.0 (and a nice brownish-yellowish background.). I feel the urge to share this text with you, and to prevent it from getting lost in the net. The essay manages to bridge fundamental scientific approaches and philosophy, in simple words. As a scientist, I often have those unstructured thoughts about “why the hell am I doing this” — while reading the text I got the feeling that it brings some of these thoughts into order. Also, for some of us it might be nice to explicitly read why we have been educated the way we were educated. Keep in mind that this is only an introduction to the huge philosophical topic of scientific theory, but as a primer it serves well.

The essay is referenced and quoted in many places, also in books. However, most of the online references contain dead links. Hence, I want to provide another platform for the essay, in modern HMTL in readable form, even mobile-friendly. Here it is.

An Introduction to Science

Scientific thinking and the scientific method.

Steven D. Schafersman Department of Geology Miami University January, 1997

Introduction

To succeed in this science course and, more specifically, to answer some of the questions on the first exam, you should be familiar with a few of the concepts regarding the definition of science, scientific thinking, and the methods of science. Most textbooks do an inadequate job of this task, so this essay provides that information. This information in its present form is not in your textbook, so please read it carefully here, and pay close attention to the words in boldface and the definitions in italics.

The Definition of Science

Science is not merely a collection of facts, concepts, and useful ideas about nature, or even the systematic investigation of nature, although both are common definitions of science. Science is a method of investigating nature–a way of knowing about nature–that discovers reliable knowledge about it. In other words, science is a method of discovering reliable knowledge about nature. There are other methods of discovering and learning knowledge about nature (these other knowledge methods or systems will be discussed below in contradistinction to science), but science is the only method that results in the acquisition of reliable knowledge.

Reliable knowledge is knowledge that has a high probablility of being true because its veracity has been justified by a reliable method. Reliable knowledge is sometimes called justified true belief, to distinguish reliable knowledge from belief that is false and unjustified or even true but unjustified. (Please note that I do not, as some do, make a distinction between belief and knowledge; I think that what one believes is one’s knowledge. The important distinction that should be made is whether one’s knowledge or beliefs are true and, if true, are justifiably true.) Every person has knowledge or beliefs, but not all of each person’s knowledge is reliably true and justified. In fact, most individuals believe in things that are untrue or unjustified or both: most people possess a lot of unreliable knowledge and, what’s worse, they act on that knowledge! Other ways of knowing, and there are many in addition to science, are not reliable because their discovered knowledge is not justified . Science is a method that allows a person to possess, with the highest degree of certainty possible, reliable knowledge (justified true belief) about nature. The method used to justify scientific knowledge, and thus make it reliable, is called the scientific method. I will explain the formal procedures of the scientific method later in this essay, but first let’s describe the more general practice of scientific or critical thinking.

Scientific and Critical Thinking

When one uses the scientific method to study or investigate nature or the universe, one is practicing scientific thinking. All scientists practice scientific thinking, of course, since they are actively studying nature and investigating the universe by using the scientific method. But scientific thinking is not reserved solely for scientists. Anyone can "think like a scientist" who learns the scientific method and, most importantly, applies its precepts, whether he or she is investigating nature or not. When one uses the methods and principles of scientific thinking in everyday life–such as when studying history or literature, investigating societies or governments, seeking solutions to problems of economics or philosophy, or just trying to answer personal questions about oneself or the meaning of existence–one is said to be practicing critical thinking. Critical thinking is thinking correctly for oneself that successfully leads to the most reliable answers to questions and solutions to problems. In other words, critical thinking gives you reliable knowledge about all aspects of your life and society, and is not restricted to the formal study of nature. Scientific thinking is identical in theory and practice, but the term would be used to describe the method that gives you reliable knowledge about the natural world. Clearly, scientific and critical thinking are the same thing, but where one (scientific thinking) is always practiced by scientists, the other (critical thinking) is sometimes used by humans and sometimes not. Scientific and critical thinking was not discovered and developed by scientists (that honor must go to ancient Hellenistic philosophers, such as Aristotle, who also are sometimes considered the first scientists), but scientists were the ones to bring the practice of critical thinking to the attention and use of modern society (in the 17th and 18th centuries), and they are the most explicit, rigorous, and successful practitioners of critical thinking today. Some professionals in the humanities, social sciences, jurisprudence, business, and journalism practice critical thinking as well as any scientist, but many, alas, do not. Scientists must practice critical thinking to be successful, but the qualifications for success in other professions do not necessarily require the use of critical thinking, a fact that is the source of much confusion, discord, and unhappiness in our sociey .

The scientific method has proven to be the most reliable and successful method of thinking in human history, and it is quite possible to use scientific thinking in other human endeavors. For this reason, critical thinking–the application of scientific thinking to all areas of study and topics of investigation–is being taught in schools throughout the United States, and its teaching is being encouraged as a universal ideal. You may perhaps have been exposed to critical thinking skills and exercises earlier in your education. The important point is this: critical thinking is perhaps the most important skill a student can learn in school and college, since if you master its skills, you know how to think successfully and reach reliable conclusions, and such ability will prove valuable in any human endeavor, including the humanities, social sciences, commerce, law, journalism, and government, as well as in scholarly and scientific pursuits. Since critical thinking and scientific thinking are, as I claim, the same thing, only applied for different purposes, it is therefore reasonable to believe that if one learns scientific thinking in a science class, one learns, at the same time, the most important skill a student can possess–critical thinking. This, to my mind, is perhaps the foremost reason for college students to study science, no matter what one’s eventual major, interest, or profession.

The Three Central Components of Scientific and Critical Thinking

What is scientific thinking? At this point, it is customary to discuss questions, observations, data, hypotheses, testing, and theories, which are the formal parts of the scientific method, but these are NOT the most important components of the scientific method. The scientific method is practiced within a context of scientific thinking, and scientific (and critical) thinking is based on three things: using empirical evidence (empiricism), practicing logical reasonsing (rationalism), and possessing a skeptical attitude (skepticism) about presumed knowledge that leads to self-questioning, holding tentative conclusions, and being undogmatic (willingness to change one’s beliefs). These three ideas or principles are universal throughout science; without them, there would be no scientific or critical thinking. Let’s examine each in turn.

1. Empiricism: The Use of Empirical Evidence

Empirical evidence is evidence that one can see, hear, touch, taste, or smell; it is evidence that is susceptible to one’s senses. Empirical evidence is important because it is evidence that others besides yourself can experience, and it is repeatable, so empirical evidence can be checked by yourself and others after knowledge claims are made by an individual. Empirical evidence is the only type of evidence that possesses these attributes and is therefore the only type used by scientists and critical thinkers to make vital decisions and reach sound conclusions.

We can contrast empirical evidence with other types of evidence to understand its value. Hearsay evidence is what someone says they heard another say; it is not reliable because you cannot check its source. Better is testimonial evidence, which, unlike hearsay evidence, is allowed in courts of law. But even testimonial evidence is notoriously unreliable, as numerous studies have shown. Courts also allow circumstantial evidence (e.g., means, motive, and opportunity), but this is obviously not reliable. Revelatory evidence or revelation is what someone says was revealed to them by some deity or supernatural power; it is not reliable because it cannot be checked by others and is not repeatable. Spectral evidence is evidence supposedly manifested by ghosts, spirits, and other paranormal or supernatural entities; spectral evidence was once used, for example, to convict and hang a number of innocent women on charges of witchcraft in Salem, Massachusetts, in the seventeenth century, before the colonial governor banned the use of such evidence, and the witchcraft trials ended. Emotional evidence is evidence derived from one’s subjective feelings; such evidence is often repeatable, but only for one person, so it is unreliable.

The most common alternative to empirical evidence, authoritarian evidence, is what authorities (people, books, billboards, television commercials, etc.) tell you to believe. Sometimes, if the authority is reliable, authoritarian evidence is reliable evidence, but many authorities are not reliable, so you must check the reliability of each authority before you accept its evidence. In the end, you must be your own authority and rely on your own powers of critical thinking to know if what you believe is reliably true. (Transmitting knowledge by authority is, however, the most common method among humans for three reasons: first, we are all conditioned from birth by our parents through the use of positive and negative reinforcement to listen to, believe, and obey authorities; second, it is believed that human societies that relied on a few experienced or trained authorities for decisions that affected all had a higher survival value than those that didn’t, and thus the behaviorial trait of susceptibility to authority was strengthened and passed along to future generations by natural selection; third, authoritarian instruction is the quickest and most efficient method for transmitting information we know about. But remember: some authoritarian evidence and knowledge should be validated by empirical evidence, logical reasoning, and critical thinking before you should consider it reliable, and, in most cases, only you can do this for yourself.

It is, of course, impossible to receive an adequate education today without relying almost entirely upon authoritarian evidence. Teachers, instructors, and professors are generally considered to be reliable and trustworthy authorities, but even they should be questioned on occasion. The use of authoritarian evidence in education is so pervasive, that its use has been questioned as antithetical to the true spirit of scholarly and scientific inquiry, and attempts have been made in education at all levels in recent years to correct this bias by implementing discovery and inquiry methodologies and curricula in classrooms and laboratories. The recently revised geology laboratory course at Miami University, GLG 115.L, is one such attempt, as are the Natural Systems courses in the Western College Program at Miami. It is easier to utilize such programs in humanities and social sciences, in which different yet equally valid conclusions can be reached by critical thinking, rather than in the natural sciences, in which the objective reality of nature serves as a constant judge and corrective mechanism.

Another name for empirical evidence is natural evidence: the evidence found in nature. Naturalism is the philosophy that says that "Reality and existence (i.e. the universe, cosmos, or nature) can be described and explained solely in terms of natural evidence, natural processes, and natural laws." This is exactly what science tries to do. Another popular definition of naturalism is that "The universe exists as science says it does." This definition emphasizes the strong link between science and natural evidence and law, and it reveals that our best understanding of material reality and existence is ultimately based on philosophy. This is not bad, however, for, whether naturalism is ultimately true or not, science and naturalism reject the concept of ultimate or absolute truth in favor of a concept of proximate reliable truth that is far more successful and intellectually satisfying than the alternative, the philosophy of supernaturalism. The supernatural, if it exists, cannot be examined or tested by science, so it is irrelevant to science. It is impossible to possess reliable knowledge about the supernatural by the use of scientific and critical thinking. Individuals who claim to have knowledge about the supernatural do not possess this knowledge by the use of critical thinking, but by other methods of knowing.

Science has unquestionably been the most successful human endeavor in the history of civilization, because it is the only method that successfully discovers and formulates reliable knowledge. The evidence for this statement is so overwhelming that many individuals overlook exactly how modern civilization came to be (our modern civilization is based, from top to bottom, on the discoveries of science and their application, known as technology, to human purposes.). Philosophies that claim to possess absolute or ultimate truth invariably find that they have to justify their beliefs by faith in dogma, authority, revelation, or philosophical speculation, since it is impossible to use finite human logic or natural evidence to demonstrate the existence of the absolute or ultimate in either the natural or supernatural worlds. Scientific and critical thinking require that one reject blind faith, authority, revelation, and subjective human feelings as a basis for reliable belief and knowledge. These human cognitive methods have their place in human life, but not as the foundation for reliable knowledge.

2. Rationalism: The Practice of Logical Reasoning

Scientists and critical thinkers always use logical reasoning. Logic allows us to reason correctly, but it is a complex topic and not easily learned; many books are devoted to explaining how to reason correctly, and we can not go into the details here. However, I must point out that most individuals do not reason logically, because they have never learned how to do so. Logic is not an ability that humans are born with or one that will gradually develop and improve on its own, but is a skill or discipline that must be learned within a formal educational environment. Emotional thinking, hopeful thinking, and wishful thinking are much more common than logical thinking, because they are far easier and more congenial to human nature. Most individuals would rather believe something is true because they feel it is true, hope it is true, or wish it were true, rather than deny their emotions and accept that their beliefs are false.

Often the use of logical reasoning requires a struggle with the will, because logic sometimes forces one to deny one’s emotions and face reality, and this is often painful. But remember this: emotions are not evidence, feelings are not facts, and subjective beliefs are not substantive beliefs. Every successful scientist and critical thinker spent years learning how to think logically, almost always in a formal educational context. Some people can learn logical thinking by trial and error, but this method wastes time, is inefficient, is sometimes unsuccessful, and is often painful.

The best way to learn to think logically is to study logic and reasoning in a philosophy class, take mathematics and science courses that force you to use logic, read great literature and study history, and write frequently. Reading, writing, and math are the traditional methods that young people learned to think logically (i.e. correctly), but today science is a fourth method. Perhaps the best way is to do a lot of writing that is then reviewed by someone who has critical thinking skills. Most people never learn to think logically; many illogical arguments and statements are accepted and unchallenged in modern society–often leading to results that are counterproductive to the good of society or even tragic–because so many people don’t recognize them for what they are.

3. Skepticism: Possessing a Skeptical Attitude

The final key idea in science and critical thinking is skepticism, the constant questioning of your beliefs and conclusions. Good scientists and critical thinkers constantly examine the evidence, arguments, and reasons for their beliefs. Self-deception and deception of yourself by others are two of the most common human failings. Self-deception often goes unrecognized because most people deceive themselves. The only way to escape both deception by others and the far more common trait of self-deception is to repeatedly and rigorously examine your basis for holding your beliefs. You must question the truth and reliability of both the knowledge claims of others and the knowledge you already possess. One way to do this is to test your beliefs against objective reality by predicting the consequences or logical outcomes of your beliefs and the actions that follow from your beliefs. If the logical consequences of your beliefs match objective reality–as measured by empirical evidence–you can conclude that your beliefs are reliable knowledge (that is, your beliefs have a high probability of being true).

Many people believe that skeptics are closed-minded and, once possessing reliable knowledge, resist changing their minds–but just the opposite is true. A skeptic holds beliefs tentatively, and is open to new evidence and rational arguments about those beliefs. Skeptics are undogmatic, i.e., they are willing to change their minds, but only in the face of new reliable evidence or sound reasons that compel one to do so. Skeptics have open minds, but not so open that their brains fall out: they resist believing something in the first place without adequate evidence or reason, and this attribute is worthy of emulation. Science treats new ideas with the same skepticism: extraordinary claims require extraordinary evidence to justify one’s credulity. We are faced every day with fantastic, bizarre, and outrageous claims about the natural world; if we don’t wish to believe every pseudoscientific allegation or claim of the paranormal, we must have some method of deciding what to believe or not, and that method is the scientific method which uses critical thinking.

The Scientific Method in Practice

Now, we are ready to put the scientific method into action. Many books have been written about the scientific method, and it is a long and complex topic. Here I will only treat it briefly and superficially. The scientific method, as used in both scientific thinking and critical thinking, follows a number of steps.

  • One must ask a meaningful question or identify a significant problem, and one should be able to state the problem or question in a way that it is conceivably possible to answer it. Any attempt to gain knowledge must start here. Here is where emotions and outside influences come in. For example, all scientists are very curious about nature, and they have to possess this emotional characteristic to sustain the motivation and energy necessary to perform the hard and often tedious work of science. Other emotions that can enter are excitement, ambition, anger, a sense of unfairness, happiness, and so forth. Note that scientists have emotions, some in high degree; however, they don’t let their emotions give false validity to their conclusions, and, in fact, the scientific method prevents them from trying to do this even if they wished.

Many outside factors can come into play here. Scientists must choose which problems to work on, they decide how much time to devote to different problems, and they are often influenced by cultural, social, political, and economic factors. Scientists live and work within a culture that often shapes their approach to problems; they work within theories that often shape their current understanding of nature; they work within a society that often decides what scientific topics will be financially supported and which will not; and they work within a political system that often determines which topics are permitted and financially rewarded and which are not.

Also, at this point, normally nonscientific emotional factors can lead to divergent pathways. Scientists could be angry at polluters and choose to investigate the effects of pollutants; other scientists could investigate the results of smoking cigarettes on humans because they can earn a living doing this by working for tobacco companies; intuition can be used to suggest different approaches to problems; even dreams can suggest creative solutions to problems. I wish to emphasize, however, that the existence of these frankly widespread nonscientific emotional and cultural influences does not compromize the ultimate reliability and objectivity of scientific results, because subsequent steps in the scientific method serve to eliminate these outside factors and allow science to reach reliable and objective conclusions (admittedly it may take some time for subjective and unreliable scientific results to be eliminated). There exists a school of thought today in the humanities (philosophy, history, and sociology) called post-modernism or scientific constructivism, that claims that science is a social and cultural construct, that scientific knowledge inevitably changes as societies and cultures change, and that science has no inherently valid foundation on which to base its knowledge claims of objectivity and reliability. In brief, post-modernists believe that the modern, scientific world of Enlightenment rationality and objectivity must now give way to a post-modern world of relativism, social constructivism, and equality of belief. Almost all scientists who are aware of this school of thought reject it, as do I; post-modernism is considered irrelevant by scientists and has had no impact on the practice of science at all. We will have to leave this interesting topic for a later time, unfortunately, but you may be exposed to these ideas in a humanities class. If you are, remember to think critically!

  • One must next gather relevant information to attempt to answer the question or solve the problem by making observations. The first observations could be data obtained from the library or information from your own experience. Another souce of observations could be from trial experiments or past experiments. These observations, and all that follow, must be empirical in nature–that is, they must be sensible, measurable, and repeatable, so that others can make the same observations. Great ingenuity and hard work on the part of the scientist is often necessary to make scientific observations. Furthermore, a great deal of training is necessary in order to learn the methods and techniques of gathering scientific data.
  • Now one can propose a solution or answer to the problem or question. In science, this suggested solution or answer is called a scientific hypothesis, and this is one of the most important steps a scientist can perform, because the proposed hypothesis must be stated in such a way that it is testable. A scientific hypothesis is an informed,testable, and predictive solution to a scientific problem that explains a natural phenomenon, process, or event. In critical thinking, as in science, your proposed answer or solution must be testable, otherwise it is essentially useless for further investigation. Most individuals–noncritical thinkers all–stop here, and are satisfied with their first answer or solution, but this lack of skepticism is a major roadblock to gaining reliable knowledge. While some of these early proposed answers may be true, most will be false, and further investigation will almost always be necessary to determine their validity.
  • Next, one must test the hypothesis before it is corroborated and given any real validity. There are two ways to do this. First, one can conduct an experiment. This is often presented in science textbooks as the only way to test hypotheses in science, but a little reflection will show that many natural problems are not amenable to experimentation, such as questions about stars, galaxies, mountain formation, the formation of the solar system, ancient evolutionary events, and so forth. The second way to test a hypothesis is to make further observations. Every hypothesis has consequences and makes certain predictions about the phenomenon or process under investigation. Using logic and empirical evidence, one can test the hypothesis by examining how successful the predictions are, that is, how well the predictions and consequences agree with new data, further insights, new patterns, and perhaps with models. The testability or predictiveness of a hypothesis is its most important characteristic. Only hypotheses involving natural processes, natural events, and natural laws can be tested; the supernatural cannot be tested, so it lies outside of science and its existence or nonexistence is irrelevant to science.
  • If the hypothesis fails the test, it must be rejected and either abandoned or modified. Most hypotheses are modified by scientists who don’t like to simply throw out an idea they think is correct and in which they have already invested a great deal of time or effort. Nevertheless, a modified hypothesis must be tested again. If the hypothesis passes the further tests, it is considered to be a corroborated hypothesis, and can now be published. A corroborated hypothesis is one that has passed its tests, i.e., one whose predictions have been verified. Now other scientists test the hypothesis. If further corroborated by subsequent tests, it becomes highly corroborated and is now considered to be reliable knowledge. By the way, the technical name for this part of the scientific method is the "hypothetico-deductive method," so named because one deduces the results of the predictions of the hypothesis and tests these deductions. Inductive reasoning, the alternative to deductive reasoning, was used earlier to help formulate the hypothesis. Both of these types of reasoning are therefore used in science, and both must be used logically.

Scientists never claim that a hypothesis is "proved" in a strict sense (but sometimes this is quite legitimately claimed when using popular language), because proof is something found only in mathematics and logic, disciplines in which all logical parameters or constraints can be defined, and something that is not true in the natural world. Scientists prefer to use the word "corroborated" rather than "proved," but the meaning is essentially the same. A highly corroborated hypothesis becomes something else in addition to reliable knowledge–it becomes a scientific fact. A scientific fact is a highly corroborated hypothesis that has been so repeatedly tested and for which so much reliable evidence exists, that it would be perverse or irrational to deny it. This type of reliable knowledge is the closest that humans can come to the "truth" about the universe (I put the word "truth" in quotation marks because there are many different kinds of truth, such as logical truth, emotional truth, religious truth, legal truth, philosophical truth, etc.; it should be clear that this essay deals with scientific truth, which, while certainly not the sole truth, is nevertheless the best truth humans can possess about the natural world).

There are many such scientific facts: the existence of gravity as a property of all matter, the past and present evolution of all living organisms, the presence of nucleic acids in all life, the motion of continents and giant tectonic plates on Earth, the expansion of the universe following a giant explosion, and so forth. Many scientific facts violate common sense and the beliefs of ancient philosophies and religions, so many people persist in denying them, but they thereby indulge in irrationality and perversity. Many other areas of human thought and philosophy, and many other knowledge systems (methods of gaining knowledge), exist that claim to have factual knowledge about the world. Some even claim that their facts are absolutely or ultimately true, something science would never claim. But their "facts" are not reliable knowledge, because–while they might fortuitously be true–they have not been justified by a reliable method. If such unreliable "facts" are true–and I certainly don’t maintain that all such knowledge claims are false–we can never be sure that they are true, as we can with scientific facts.

  • The final step of the scientific method is to construct, support, or cast doubt on a scientific theory. A theory in science is not a guess, speculation, or suggestion, which is the popular definition of the word "theory." A scientific theory is a unifying and self-consistent explanation of fundamental natural processes or phenomena that is totally constructed of corroborated hypotheses. A theory, therefore, is built of reliable knowledge–built of scientific facts–and its purpose is to explain major natural processes or phenomena. Scientific theories explain nature by unifying many once-unrelated facts or corroborated hypotheses; they are the strongest and most truthful explanations of how the universe, nature, and life came to be, how they work, what they are made of, and what will become of them. Since humans are living organisms and are part of the universe, science explains all of these things about ourselves.

Copyright © 1997 by Steven D. Schafersman

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

[…] Evidently, these points are not new. This is all human, and the natural cure to the listed problems is science. Now I want you to relax, and approach this topic scientifically, to a certain degree at least. In this context it is important to clarify: what does “scientifically” mean? Let me quote Steven D. Schafersman: […]

  • Search Menu
  • Sign in through your institution
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Politics of Development
  • Public Policy
  • Public Administration
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Thinking and Reasoning

  • < Previous chapter
  • Next chapter >

35 Scientific Thinking and Reasoning

Kevin N. Dunbar, Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD

David Klahr, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA

  • Published: 21 November 2012
  • Cite Icon Cite
  • Permissions Icon Permissions

Scientific thinking refers to both thinking about the content of science and the set of reasoning processes that permeate the field of science: induction, deduction, experimental design, causal reasoning, concept formation, hypothesis testing, and so on. Here we cover both the history of research on scientific thinking and the different approaches that have been used, highlighting common themes that have emerged over the past 50 years of research. Future research will focus on the collaborative aspects of scientific thinking, on effective methods for teaching science, and on the neural underpinnings of the scientific mind.

There is no unitary activity called “scientific discovery”; there are activities of designing experiments, gathering data, inventing and developing observational instruments, formulating and modifying theories, deducing consequences from theories, making predictions from theories, testing theories, inducing regularities and invariants from data, discovering theoretical constructs, and others. — Simon, Langley, & Bradshaw, 1981 , p. 2

What Is Scientific Thinking and Reasoning?

There are two kinds of thinking we call “scientific.” The first, and most obvious, is thinking about the content of science. People are engaged in scientific thinking when they are reasoning about such entities and processes as force, mass, energy, equilibrium, magnetism, atoms, photosynthesis, radiation, geology, or astrophysics (and, of course, cognitive psychology!). The second kind of scientific thinking includes the set of reasoning processes that permeate the field of science: induction, deduction, experimental design, causal reasoning, concept formation, hypothesis testing, and so on. However, these reasoning processes are not unique to scientific thinking: They are the very same processes involved in everyday thinking. As Einstein put it:

The scientific way of forming concepts differs from that which we use in our daily life, not basically, but merely in the more precise definition of concepts and conclusions; more painstaking and systematic choice of experimental material, and greater logical economy. (The Common Language of Science, 1941, reprinted in Einstein, 1950 , p. 98)

Nearly 40 years after Einstein's remarkably insightful statement, Francis Crick offered a similar perspective: that great discoveries in science result not from extraordinary mental processes, but rather from rather common ones. The greatness of the discovery lies in the thing discovered.

I think what needs to be emphasized about the discovery of the double helix is that the path to it was, scientifically speaking, fairly commonplace. What was important was not the way it was discovered , but the object discovered—the structure of DNA itself. (Crick, 1988 , p. 67; emphasis added)

Under this view, scientific thinking involves the same general-purpose cognitive processes—such as induction, deduction, analogy, problem solving, and causal reasoning—that humans apply in nonscientific domains. These processes are covered in several different chapters of this handbook: Rips, Smith, & Medin, Chapter 11 on induction; Evans, Chapter 8 on deduction; Holyoak, Chapter 13 on analogy; Bassok & Novick, Chapter 21 on problem solving; and Cheng & Buehner, Chapter 12 on causality. One might question the claim that the highly specialized procedures associated with doing science in the “real world” can be understood by investigating the thinking processes used in laboratory studies of the sort described in this volume. However, when the focus is on major scientific breakthroughs, rather than on the more routine, incremental progress in a field, the psychology of problem solving provides a rich source of ideas about how such discoveries might occur. As Simon and his colleagues put it:

It is understandable, if ironic, that ‘normal’ science fits … the description of expert problem solving, while ‘revolutionary’ science fits the description of problem solving by novices. It is understandable because scientific activity, particularly at the revolutionary end of the continuum, is concerned with the discovery of new truths, not with the application of truths that are already well-known … it is basically a journey into unmapped terrain. Consequently, it is mainly characterized, as is novice problem solving, by trial-and-error search. The search may be highly selective—but it reaches its goal only after many halts, turnings, and back-trackings. (Simon, Langley, & Bradshaw, 1981 , p. 5)

The research literature on scientific thinking can be roughly categorized according to the two types of scientific thinking listed in the opening paragraph of this chapter: (1) One category focuses on thinking that directly involves scientific content . Such research ranges from studies of young children reasoning about the sun-moon-earth system (Vosniadou & Brewer, 1992 ) to college students reasoning about chemical equilibrium (Davenport, Yaron, Klahr, & Koedinger, 2008 ), to research that investigates collaborative problem solving by world-class researchers in real-world molecular biology labs (Dunbar, 1995 ). (2) The other category focuses on “general” cognitive processes, but it tends to do so by analyzing people's problem-solving behavior when they are presented with relatively complex situations that involve the integration and coordination of several different types of processes, and that are designed to capture some essential features of “real-world” science in the psychology laboratory (Bruner, Goodnow, & Austin, 1956 ; Klahr & Dunbar, 1988 ; Mynatt, Doherty, & Tweney, 1977 ).

There are a number of overlapping research traditions that have been used to investigate scientific thinking. We will cover both the history of research on scientific thinking and the different approaches that have been used, highlighting common themes that have emerged over the past 50 years of research.

A Brief History of Research on Scientific Thinking

Science is often considered one of the hallmarks of the human species, along with art and literature. Illuminating the thought processes used in science thus reveal key aspects of the human mind. The thought processes underlying scientific thinking have fascinated both scientists and nonscientists because the products of science have transformed our world and because the process of discovery is shrouded in mystery. Scientists talk of the chance discovery, the flash of insight, the years of perspiration, and the voyage of discovery. These images of science have helped make the mental processes underlying the discovery process intriguing to cognitive scientists as they attempt to uncover what really goes on inside the scientific mind and how scientists really think. Furthermore, the possibilities that scientists can be taught to think better by avoiding mistakes that have been clearly identified in research on scientific thinking, and that their scientific process could be partially automated, makes scientific thinking a topic of enduring interest.

The cognitive processes underlying scientific discovery and day-to-day scientific thinking have been a topic of intense scrutiny and speculation for almost 400 years (e.g., Bacon, 1620 ; Galilei 1638 ; Klahr 2000 ; Tweney, Doherty, & Mynatt, 1981 ). Understanding the nature of scientific thinking has been a central issue not only for our understanding of science but also for our understating of what it is to be human. Bacon's Novumm Organum in 1620 sketched out some of the key features of the ways that experiments are designed and data interpreted. Over the ensuing 400 years philosophers and scientists vigorously debated about the appropriate methods that scientists should use (see Giere, 1993 ). These debates over the appropriate methods for science typically resulted in the espousal of a particular type of reasoning method, such as induction or deduction. It was not until the Gestalt psychologists began working on the nature of human problem solving, during the 1940s, that experimental psychologists began to investigate the cognitive processes underlying scientific thinking and reasoning.

The Gestalt psychologist Max Wertheimer pioneered the investigation of scientific thinking (of the first type described earlier: thinking about scientific content ) in his landmark book Productive Thinking (Wertheimer, 1945 ). Wertheimer spent a considerable amount of time corresponding with Albert Einstein, attempting to discover how Einstein generated the concept of relativity. Wertheimer argued that Einstein had to overcome the structure of Newtonian physics at each step in his theorizing, and the ways that Einstein actually achieved this restructuring were articulated in terms of Gestalt theories. (For a recent and different account of how Einstein made his discovery, see Galison, 2003 .) We will see later how this process of overcoming alternative theories is an obstacle that both scientists and nonscientists need to deal with when evaluating and theorizing about the world.

One of the first investigations of scientific thinking of the second type (i.e., collections of general-purpose processes operating on complex, abstract, components of scientific thought) was carried out by Jerome Bruner and his colleagues at Harvard (Bruner et al., 1956 ). They argued that a key activity engaged in by scientists is to determine whether a particular instance is a member of a category. For example, a scientist might want to discover which substances undergo fission when bombarded by neutrons and which substances do not. Here, scientists have to discover the attributes that make a substance undergo fission. Bruner et al. saw scientific thinking as the testing of hypotheses and the collecting of data with the end goal of determining whether something is a member of a category. They invented a paradigm where people were required to formulate hypotheses and collect data that test their hypotheses. In one type of experiment, the participants were shown a card such as one with two borders and three green triangles. The participants were asked to determine the concept that this card represented by choosing other cards and getting feedback from the experimenter as to whether the chosen card was an example of the concept. In this case the participant may have thought that the concept was green and chosen a card with two green squares and one border. If the underlying concept was green, then the experimenter would say that the card was an example of the concept. In terms of scientific thinking, choosing a new card is akin to conducting an experiment, and the feedback from the experimenter is similar to knowing whether a hypothesis is confirmed or disconfirmed. Using this approach, Bruner et al. identified a number of strategies that people use to formulate and test hypotheses. They found that a key factor determining which hypothesis-testing strategy that people use is the amount of memory capacity that the strategy takes up (see also Morrison & Knowlton, Chapter 6 ; Medin et al., Chapter 11 ). Another key factor that they discovered was that it was much more difficult for people to discover negative concepts (e.g., not blue) than positive concepts (e.g., blue). Although Bruner et al.'s research is most commonly viewed as work on concepts, they saw their work as uncovering a key component of scientific thinking.

A second early line of research on scientific thinking was developed by Peter Wason and his colleagues (Wason, 1968 ). Like Bruner et al., Wason saw a key component of scientific thinking as being the testing of hypotheses. Whereas Bruner et al. focused on the different types of strategies that people use to formulate hypotheses, Wason focused on whether people adopt a strategy of trying to confirm or disconfirm their hypotheses. Using Popper's ( 1959 ) theory that scientists should try and falsify rather than confirm their hypotheses, Wason devised a deceptively simple task in which participants were given three numbers, such as 2-4-6, and were asked to discover the rule underlying the three numbers. Participants were asked to generate other triads of numbers and the experimenter would tell the participant whether the triad was consistent or inconsistent with the rule. They were told that when they were sure they knew what the rule was they should state it. Most participants began the experiment by thinking that the rule was even numbers increasing by 2. They then attempted to confirm their hypothesis by generating a triad like 8-10-12, then 14-16-18. These triads are consistent with the rule and the participants were told yes, that the triads were indeed consistent with the rule. However, when they proposed the rule—even numbers increasing by 2—they were told that the rule was incorrect. The correct rule was numbers of increasing magnitude! From this research, Wason concluded that people try to confirm their hypotheses, whereas normatively speaking, they should try to disconfirm their hypotheses. One implication of this research is that confirmation bias is not just restricted to scientists but is a general human tendency.

It was not until the 1970s that a general account of scientific reasoning was proposed. Herbert Simon, often in collaboration with Allan Newell, proposed that scientific thinking is a form of problem solving. He proposed that problem solving is a search in a problem space. Newell and Simon's theory of problem solving is discussed in many places in this handbook, usually in the context of specific problems (see especially Bassok & Novick, Chapter 21 ). Herbert Simon, however, devoted considerable time to understanding many different scientific discoveries and scientific reasoning processes. The common thread in his research was that scientific thinking and discovery is not a mysterious magical process but a process of problem solving in which clear heuristics are used. Simon's goal was to articulate the heuristics that scientists use in their research at a fine-grained level. By constructing computer programs that simulated the process of several major scientific discoveries, Simon and colleagues were able to articulate the specific computations that scientists could have used in making those discoveries (Langley, Simon, Bradshaw, & Zytkow, 1987 ; see section on “Computational Approaches to Scientific Thinking”). Particularly influential was Simon and Lea's ( 1974 ) work demonstrating that concept formation and induction consist of a search in two problem spaces: a space of instances and a space of rules. This idea has influenced problem-solving accounts of scientific thinking that will be discussed in the next section.

Overall, the work of Bruner, Wason, and Simon laid the foundations for contemporary research on scientific thinking. Early research on scientific thinking is summarized in Tweney, Doherty and Mynatt's 1981 book On Scientific Thinking , where they sketched out many of the themes that have dominated research on scientific thinking over the past few decades. Other more recent books such as Cognitive Models of Science (Giere, 1993 ), Exploring Science (Klahr, 2000 ), Cognitive Basis of Science (Carruthers, Stich, & Siegal, 2002 ), and New Directions in Scientific and Technical Thinking (Gorman, Kincannon, Gooding, & Tweney, 2004 ) provide detailed analyses of different aspects of scientific discovery. Another important collection is Vosnadiau's handbook on conceptual change research (Vosniadou, 2008 ). In this chapter, we discuss the main approaches that have been used to investigate scientific thinking.

How does one go about investigating the many different aspects of scientific thinking? One common approach to the study of the scientific mind has been to investigate several key aspects of scientific thinking using abstract tasks designed to mimic some essential characteristics of “real-world” science. There have been numerous methodologies that have been used to analyze the genesis of scientific concepts, theories, hypotheses, and experiments. Researchers have used experiments, verbal protocols, computer programs, and analyzed particular scientific discoveries. A more recent development has been to increase the ecological validity of such research by investigating scientists as they reason “live” (in vivo studies of scientific thinking) in their own laboratories (Dunbar, 1995 , 2002 ). From a “Thinking and Reasoning” standpoint the major aspects of scientific thinking that have been most actively investigated are problem solving, analogical reasoning, hypothesis testing, conceptual change, collaborative reasoning, inductive reasoning, and deductive reasoning.

Scientific Thinking as Problem Solving

One of the primary goals of accounts of scientific thinking has been to provide an overarching framework to understand the scientific mind. One framework that has had a great influence in cognitive science is that scientific thinking and scientific discovery can be conceived as a form of problem solving. As noted in the opening section of this chapter, Simon ( 1977 ; Simon, Langley, & Bradshaw, 1981 ) argued that both scientific thinking in general and problem solving in particular could be thought of as a search in a problem space. A problem space consists of all the possible states of a problem and all the operations that a problem solver can use to get from one state to the next. According to this view, by characterizing the types of representations and procedures that people use to get from one state to another it is possible to understand scientific thinking. Thus, scientific thinking can be characterized as a search in various problem spaces (Simon, 1977 ). Simon investigated a number of scientific discoveries by bringing participants into the laboratory, providing the participants with the data that a scientist had access to, and getting the participants to reason about the data and rediscover a scientific concept. He then analyzed the verbal protocols that participants generated and mapped out the types of problem spaces that the participants search in (e.g., Qin & Simon, 1990 ). Kulkarni and Simon ( 1988 ) used a more historical approach to uncover the problem-solving heuristics that Krebs used in his discovery of the urea cycle. Kulkarni and Simon analyzed Krebs's diaries and proposed a set of problem-solving heuristics that he used in his research. They then built a computer program incorporating the heuristics and biological knowledge that Krebs had before he made his discoveries. Of particular importance are the search heuristics that the program uses, which include experimental proposal heuristics and data interpretation heuristics. A key heuristic was an unusualness heuristic that focused on unusual findings, which guided search through a space of theories and a space of experiments.

Klahr and Dunbar ( 1988 ) extended the search in a problem space approach and proposed that scientific thinking can be thought of as a search through two related spaces: an hypothesis space and an experiment space. Each problem space that a scientist uses will have its own types of representations and operators used to change the representations. Search in the hypothesis space constrains search in the experiment space. Klahr and Dunbar found that some participants move from the hypothesis space to the experiment space, whereas others move from the experiment space to the hypothesis space. These different types of searches lead to the proposal of different types of hypotheses and experiments. More recent work has extended the dual-space approach to include alternative problem-solving spaces, including those for data, instrumentation, and domain-specific knowledge (Klahr & Simon, 1999 ; Schunn & Klahr, 1995 , 1996 ).

Scientific Thinking as Hypothesis Testing

Many researchers have regarded testing specific hypotheses predicted by theories as one of the key attributes of scientific thinking. Hypothesis testing is the process of evaluating a proposition by collecting evidence regarding its truth. Experimental cognitive research on scientific thinking that specifically examines this issue has tended to fall into two broad classes of investigations. The first class is concerned with the types of reasoning that lead scientists astray, thus blocking scientific ingenuity. A large amount of research has been conducted on the potentially faulty reasoning strategies that both participants in experiments and scientists use, such as considering only one favored hypothesis at a time and how this prevents the scientists from making discoveries. The second class is concerned with uncovering the mental processes underlying the generation of new scientific hypotheses and concepts. This research has tended to focus on the use of analogy and imagery in science, as well as the use of specific types of problem-solving heuristics.

Turning first to investigations of what diminishes scientific creativity, philosophers, historians, and experimental psychologists have devoted a considerable amount of research to “confirmation bias.” This occurs when scientists only consider one hypothesis (typically the favored hypothesis) and ignore other alternative hypotheses or potentially relevant hypotheses. This important phenomenon can distort the design of experiments, formulation of theories, and interpretation of data. Beginning with the work of Wason ( 1968 ) and as discussed earlier, researchers have repeatedly shown that when participants are asked to design an experiment to test a hypothesis they will predominantly design experiments that they think will yield results consistent with the hypothesis. Using the 2-4-6 task mentioned earlier, Klayman and Ha ( 1987 ) showed that in situations where one's hypothesis is likely to be confirmed, seeking confirmation is a normatively incorrect strategy, whereas when the probability of confirming one's hypothesis is low, then attempting to confirm one's hypothesis can be an appropriate strategy. Historical analyses by Tweney ( 1989 ), concerning the way that Faraday made his discoveries, and experiments investigating people testing hypotheses, have revealed that people use a confirm early, disconfirm late strategy: When people initially generate or are given hypotheses, they try and gather evidence that is consistent with the hypothesis. Once enough evidence has been gathered, then people attempt to find the boundaries of their hypothesis and often try to disconfirm their hypotheses.

In an interesting variant on the confirmation bias paradigm, Gorman ( 1989 ) showed that when participants are told that there is the possibility of error in the data that they receive, participants assume that any data that are inconsistent with their favored hypothesis are due to error. Thus, the possibility of error “insulates” hypotheses against disconfirmation. This intriguing hypothesis has not been confirmed by other researchers (Penner & Klahr, 1996 ), but it is an intriguing hypothesis that warrants further investigation.

Confirmation bias is very difficult to overcome. Even when participants are asked to consider alternate hypotheses, they will often fail to conduct experiments that could potentially disconfirm their hypothesis. Tweney and his colleagues provide an excellent overview of this phenomenon in their classic monograph On Scientific Thinking (1981). The precise reasons for this type of block are still widely debated. Researchers such as Michael Doherty have argued that working memory limitations make it difficult for people to consider more than one hypothesis. Consistent with this view, Dunbar and Sussman ( 1995 ) have shown that when participants are asked to hold irrelevant items in working memory while testing hypotheses, the participants will be unable to switch hypotheses in the face of inconsistent evidence. While working memory limitations are involved in the phenomenon of confirmation bias, even groups of scientists can also display confirmation bias. For example, the controversy over cold fusion is an example of confirmation bias. Here, large groups of scientists had other hypotheses available to explain their data yet maintained their hypotheses in the face of other more standard alternative hypotheses. Mitroff ( 1974 ) provides some interesting examples of NASA scientists demonstrating confirmation bias, which highlight the roles of commitment and motivation in this process. See also MacPherson and Stanovich ( 2007 ) for specific strategies that can be used to overcome confirmation bias.

Causal Thinking in Science

Much of scientific thinking and scientific theory building pertains to the development of causal models between variables of interest. For example, do vaccines cause illnesses? Do carbon dioxide emissions cause global warming? Does water on a planet indicate that there is life on the planet? Scientists and nonscientists alike are constantly bombarded with statements regarding the causal relationship between such variables. How does one evaluate the status of such claims? What kinds of data are informative? How do scientists and nonscientists deal with data that are inconsistent with their theory?

A central issue in the causal reasoning literature, one that is directly relevant to scientific thinking, is the extent to which scientists and nonscientists alike are governed by the search for causal mechanisms (i.e., how a variable works) versus the search for statistical data (i.e., how often variables co-occur). This dichotomy can be boiled down to the search for qualitative versus quantitative information about the paradigm the scientist is investigating. Researchers from a number of cognitive psychology laboratories have found that people prefer to gather more information about an underlying mechanism than covariation between a cause and an effect (e.g., Ahn, Kalish, Medin, & Gelman, 1995 ). That is, the predominant strategy that students in simulations of scientific thinking use is to gather as much information as possible about how the objects under investigation work, rather than collecting large amounts of quantitative data to determine whether the observations hold across multiple samples. These findings suggest that a central component of scientific thinking may be to formulate explicit mechanistic causal models of scientific events.

One type of situation in which causal reasoning has been observed extensively is when scientists obtain unexpected findings. Both historical and naturalistic research has revealed that reasoning causally about unexpected findings plays a central role in science. Indeed, scientists themselves frequently state that a finding was due to chance or was unexpected. Given that claims of unexpected findings are such a frequent component of scientists' autobiographies and interviews in the media, Dunbar ( 1995 , 1997 , 1999 ; Dunbar & Fugelsang, 2005 ; Fugelsang, Stein, Green, & Dunbar, 2004 ) decided to investigate the ways that scientists deal with unexpected findings. In 1991–1992 Dunbar spent 1 year in three molecular biology laboratories and one immunology laboratory at a prestigious U.S. university. He used the weekly laboratory meeting as a source of data on scientific discovery and scientific reasoning. (He termed this type of study “in vivo” cognition.) When he looked at the types of findings that the scientists made, he found that over 50% of the findings were unexpected and that these scientists had evolved a number of effective strategies for dealing with such findings. One clear strategy was to reason causally about the findings: Scientists attempted to build causal models of their unexpected findings. This causal model building results in the extensive use of collaborative reasoning, analogical reasoning, and problem-solving heuristics (Dunbar, 1997 , 2001 ).

Many of the key unexpected findings that scientists reasoned about in the in vivo studies of scientific thinking were inconsistent with the scientists' preexisting causal models. A laboratory equivalent of the biology labs involved creating a situation in which students obtained unexpected findings that were inconsistent with their preexisting theories. Dunbar and Fugelsang ( 2005 ) examined this issue by creating a scientific causal thinking simulation where experimental outcomes were either expected or unexpected. Dunbar ( 1995 ) has called the study of people reasoning in a cognitive laboratory “in vitro” cognition. These investigators found that students spent considerably more time reasoning about unexpected findings than expected findings. In addition, when assessing the overall degree to which their hypothesis was supported or refuted, participants spent the majority of their time considering unexpected findings. An analysis of participants' verbal protocols indicates that much of this extra time was spent formulating causal models for the unexpected findings. Similarly, scientists spend more time considering unexpected than expected findings, and this time is devoted to building causal models (Dunbar & Fugelsang, 2004 ).

Scientists know that unexpected findings occur often, and they have developed many strategies to take advantage of their unexpected findings. One of the most important places that they anticipate the unexpected is in designing experiments (Baker & Dunbar, 2000 ). They build different causal models of their experiments incorporating many conditions and controls. These multiple conditions and controls allow unknown mechanisms to manifest themselves. Thus, rather than being the victims of the unexpected, they create opportunities for unexpected events to occur, and once these events do occur, they have causal models that allow them to determine exactly where in the causal chain their unexpected finding arose. The results of these in vivo and in vitro studies all point to a more complex and nuanced account of how scientists and nonscientists alike test and evaluate hypotheses about theories.

The Roles of Inductive, Abductive, and Deductive Thinking in Science

One of the most basic characteristics of science is that scientists assume that the universe that we live in follows predictable rules. Scientists reason using a variety of different strategies to make new scientific discoveries. Three frequently used types of reasoning strategies that scientists use are inductive, abductive, and deductive reasoning. In the case of inductive reasoning, a scientist may observe a series of events and try to discover a rule that governs the event. Once a rule is discovered, scientists can extrapolate from the rule to formulate theories of observed and yet-to-be-observed phenomena. One example is the discovery using inductive reasoning that a certain type of bacterium is a cause of many ulcers (Thagard, 1999 ). In a fascinating series of articles, Thagard documented the reasoning processes that Marshall and Warren went through in proposing this novel hypothesis. One key reasoning process was the use of induction by generalization. Marshall and Warren noted that almost all patients with gastric entritis had a spiral bacterium in their stomachs, and he formed the generalization that this bacterium is the cause of stomach ulcers. There are numerous other examples of induction by generalization in science, such as Tycho De Brea's induction about the motion of planets from his observations, Dalton's use of induction in chemistry, and the discovery of prions as the source of mad cow disease. Many theories of induction have used scientific discovery and reasoning as examples of this important reasoning process.

Another common type of inductive reasoning is to map a feature of one member of a category to another member of a category. This is called categorical induction. This type of induction is a way of projecting a known property of one item onto another item that is from the same category. Thus, knowing that the Rous Sarcoma virus is a retrovirus that uses RNA rather than DNA, a biologist might assume that another virus that is thought to be a retrovirus also uses RNA rather than DNA. While research on this type of induction typically has not been discussed in accounts of scientific thinking, this type of induction is common in science. For an influential contribution to this literature, see Smith, Shafir, and Osherson ( 1993 ), and for reviews of this literature see Heit ( 2000 ) and Medin et al. (Chapter 11 ).

While less commonly mentioned than inductive reasoning, abductive reasoning is an important form of reasoning that scientists use when they are seeking to propose explanations for events such as unexpected findings (see Lombrozo, Chapter 14 ; Magnani, et al., 2010 ). In Figure 35.1 , taken from King ( 2011 ), the differences between inductive, abductive, and deductive thinking are highlighted. In the case of abduction, the reasoner attempts to generate explanations of the form “if situation X had occurred, could it have produced the current evidence I am attempting to interpret?” (For an interesting of analysis of abductive reasoning see the brief paper by Klahr & Masnick, 2001 ). Of course, as in classical induction, such reasoning may produce a plausible account that is still not the correct one. However, abduction does involve the generation of new knowledge, and is thus also related to research on creativity.

The different processes underlying inductive, abductive, and deductive reasoning in science. (Figure reproduced from King 2011 ).)

Turning now to deductive thinking, many thinking processes that scientists adhere to follow traditional rules of deductive logic. These processes correspond to those conditions in which a hypothesis may lead to, or is deducible to, a conclusion. Though they are not always phrased in syllogistic form, deductive arguments can be phrased as “syllogisms,” or as brief, mathematical statements in which the premises lead to the conclusion. Deductive reasoning is an extremely important aspect of scientific thinking because it underlies a large component of how scientists conduct their research. By looking at many scientific discoveries, we can often see that deductive reasoning is at work. Deductive reasoning statements all contain information or rules that state an assumption about how the world works, as well as a conclusion that would necessarily follow from the rule. Numerous discoveries in physics such as the discovery of dark matter by Vera Rubin are based on deductions. In the dark matter case, Rubin measured galactic rotation curves and based on the differences between the predicted and observed angular motions of galaxies she deduced that the structure of the universe was uneven. This led her to propose that dark matter existed. In contemporary physics the CERN Large Hadron Collider is being used to search for the Higgs Boson. The Higgs Boson is a deductive prediction from contemporary physics. If the Higgs Boson is not found, it may lead to a radical revision of the nature of physics and a new understanding of mass (Hecht, 2011 ).

The Roles of Analogy in Scientific Thinking

One of the most widely mentioned reasoning processes used in science is analogy. Scientists use analogies to form a bridge between what they already know and what they are trying to explain, understand, or discover. In fact, many scientists have claimed that the making of certain analogies was instrumental in their making a scientific discovery, and almost all scientific autobiographies and biographies feature one particular analogy that is discussed in depth. Coupled with the fact that there has been an enormous research program on analogical thinking and reasoning (see Holyoak, Chapter 13 ), we now have a number of models and theories of analogical reasoning that suggest how analogy can play a role in scientific discovery (see Gentner, Holyoak, & Kokinov, 2001 ). By analyzing several major discoveries in the history of science, Thagard and Croft ( 1999 ), Nersessian ( 1999 , 2008 ), and Gentner and Jeziorski ( 1993 ) have all shown that analogical reasoning is a key aspect of scientific discovery.

Traditional accounts of analogy distinguish between two components of analogical reasoning: the target and the source (Holyoak, Chapter 13 ; Gentner 2010 ). The target is the concept or problem that a scientist is attempting to explain or solve. The source is another piece of knowledge that the scientist uses to understand the target or to explain the target to others. What the scientist does when he or she makes an analogy is to map features of the source onto features of the target. By mapping the features of the source onto the target, new features of the target may be discovered, or the features of the target may be rearranged so that a new concept is invented and a scientific discovery is made. For example, a common analogy that is used with computers is to describe a harmful piece of software as a computer virus. Once a piece of software is called a virus, people can map features of biological viruses, such as that it is small, spreads easily, self-replicates using a host, and causes damage. People not only map individual features of the source onto the target but also the systems of relations. For example, if a computer virus is similar to a biological virus, then an immune system can be created on computers that can protect computers from future variants of a virus. One of the reasons that scientific analogy is so powerful is that it can generate new knowledge, such as the creation of a computational immune system having many of the features of a real biological immune system. This analogy also leads to predictions that there will be newer computer viruses that are the computational equivalent of retroviruses, lacking DNA, or standard instructions, that will elude the computational immune system.

The process of making an analogy involves a number of key steps: retrieval of a source from memory, aligning the features of the source with those of the target, mapping features of the source onto those of the target, and possibly making new inferences about the target. Scientific discoveries are made when the source highlights a hitherto unknown feature of the target or restructures the target into a new set of relations. Interestingly, research on analogy has shown that participants do not easily use remote analogies (see Gentner et al., 1997 ; Holyoak & Thagard 1995 ). Participants in experiments tend to focus on the sharing of a superficial feature between the source and the target, rather than the relations among features. In his in vivo studies of science, Dunbar ( 1995 , 2001 , 2002 ) investigated the ways that scientists use analogies while they are conducting their research and found that scientists use both relational and superficial features when they make analogies. Whether they use superficial or relational features depends on their goals. If their goal is to fix a problem in an experiment, their analogies are based upon superficial features. However, if their goal is to formulate hypotheses, they focus on analogies based upon sets of relations. One important difference between scientists and participants in experiments is that the scientists have deep relational knowledge of the processes that they are investigating and can hence use this relational knowledge to make analogies (see Holyoak, Chapter 13 for a thorough review of analogical reasoning).

Are scientific analogies always useful? Sometimes analogies can lead scientists and students astray. For example, Evelyn Fox-Keller ( 1985 ) shows how an analogy between the pulsing of a lighthouse and the activity of the slime mold dictyostelium led researchers astray for a number of years. Likewise, the analogy between the solar system (the source) and the structure of the atom (the target) has been shown to be potentially misleading to students taking more advanced courses in physics or chemistry. The solar system analogy has a number of misalignments to the structure of the atom, such as electrons being repelled from each other rather than attracted; moreover, electrons do not have individual orbits like planets but have orbit clouds of electron density. Furthermore, students have serious misconceptions about the nature of the solar system, which can compound their misunderstanding of the nature of the atom (Fischler & Lichtfeld, 1992 ). While analogy is a powerful tool in science, like all forms of induction, incorrect conclusions can be reached.

Conceptual Change in Science

Scientific knowledge continually accumulates as scientists gather evidence about the natural world. Over extended time, this knowledge accumulation leads to major revisions, extensions, and new organizational forms for expressing what is known about nature. Indeed, these changes are so substantial that philosophers of science speak of “revolutions” in a variety of scientific domains (Kuhn, 1962 ). The psychological literature that explores the idea of revolutionary conceptual change can be roughly divided into (a) investigations of how scientists actually make discoveries and integrate those discoveries into existing scientific contexts, and (b) investigations of nonscientists ranging from infants, to children, to students in science classes. In this section we summarize the adult studies of conceptual change, and in the next section we look at its developmental aspects.

Scientific concepts, like all concepts, can be characterized as containing a variety of “knowledge elements”: representations of words, thoughts, actions, objects, and processes. At certain points in the history of science, the accumulated evidence has demanded major shifts in the way these collections of knowledge elements are organized. This “radical conceptual change” process (see Keil, 1999 ; Nersessian 1998 , 2002 ; Thagard, 1992 ; Vosniadou 1998, for reviews) requires the formation of a new conceptual system that organizes knowledge in new ways, adds new knowledge, and results in a very different conceptual structure. For more recent research on conceptual change, The International Handbook of Research on Conceptual Change (Vosniadou, 2008 ) provides a detailed compendium of theories and controversies within the field.

While conceptual change in science is usually characterized by large-scale changes in concepts that occur over extensive periods of time, it has been possible to observe conceptual change using in vivo methodologies. Dunbar ( 1995 ) reported a major conceptual shift that occurred in immunologists, where they obtained a series of unexpected findings that forced the scientists to propose a new concept in immunology that in turn forced the change in other concepts. The drive behind this conceptual change was the discovery of a series of different unexpected findings or anomalies that required the scientists to both revise and reorganize their conceptual knowledge. Interestingly, this conceptual change was achieved by a group of scientists reasoning collaboratively, rather than by a scientist working alone. Different scientists tend to work on different aspects of concepts, and also different concepts, that when put together lead to a rapid change in entire conceptual structures.

Overall, accounts of conceptual change in individuals indicate that it is indeed similar to that of conceptual change in entire scientific fields. Individuals need to be confronted with anomalies that their preexisting theories cannot explain before entire conceptual structures are overthrown. However, replacement conceptual structures have to be generated before the old conceptual structure can be discarded. Sometimes, people do not overthrow their original conceptual theories and through their lives maintain their original views of many fundamental scientific concepts. Whether people actively possess naive theories, or whether they appear to have a naive theory because of the demand characteristics of the testing context, is a lively source of debate within the science education community (see Gupta, Hammer, & Redish, 2010 ).

Scientific Thinking in Children

Well before their first birthday, children appear to know several fundamental facts about the physical world. For example, studies with infants show that they behave as if they understand that solid objects endure over time (e.g., they don't just disappear and reappear, they cannot move through each other, and they move as a result of collisions with other solid objects or the force of gravity (Baillargeon, 2004 ; Carey 1985 ; Cohen & Cashon, 2006 ; Duschl, Schweingruber, & Shouse, 2007 ; Gelman & Baillargeon, 1983 ; Gelman & Kalish, 2006 ; Mandler, 2004 ; Metz 1995 ; Munakata, Casey, & Diamond, 2004 ). And even 6-month-olds are able to predict the future location of a moving object that they are attempting to grasp (Von Hofsten, 1980 ; Von Hofsten, Feng, & Spelke, 2000 ). In addition, they appear to be able to make nontrivial inferences about causes and their effects (Gopnik et al., 2004 ).

The similarities between children's thinking and scientists' thinking have an inherent allure and an internal contradiction. The allure resides in the enthusiastic wonder and openness with which both children and scientists approach the world around them. The paradox comes from the fact that different investigators of children's thinking have reached diametrically opposing conclusions about just how “scientific” children's thinking really is. Some claim support for the “child as a scientist” position (Brewer & Samarapungavan, 1991 ; Gelman & Wellman, 1991 ; Gopnik, Meltzoff, & Kuhl, 1999 ; Karmiloff-Smith 1988 ; Sodian, Zaitchik, & Carey, 1991 ; Samarapungavan 1992 ), while others offer serious challenges to the view (Fay & Klahr, 1996 ; Kern, Mirels, & Hinshaw, 1983 ; Kuhn, Amsel, & O'Laughlin, 1988 ; Schauble & Glaser, 1990 ; Siegler & Liebert, 1975 .) Such fundamentally incommensurate conclusions suggest that this very field—children's scientific thinking—is ripe for a conceptual revolution!

A recent comprehensive review (Duschl, Schweingruber, & Shouse, 2007 ) of what children bring to their science classes offers the following concise summary of the extensive developmental and educational research literature on children's scientific thinking:

Children entering school already have substantial knowledge of the natural world, much of which is implicit.

What children are capable of at a particular age is the result of a complex interplay among maturation, experience, and instruction. What is developmentally appropriate is not a simple function of age or grade, but rather is largely contingent on children's prior opportunities to learn.

Students' knowledge and experience play a critical role in their science learning, influencing four aspects of science understanding, including (a) knowing, using, and interpreting scientific explanations of the natural world; (b) generating and evaluating scientific evidence and explanations, (c) understanding how scientific knowledge is developed in the scientific community, and (d) participating in scientific practices and discourse.

Students learn science by actively engaging in the practices of science.

In the previous section of this article we discussed conceptual change with respect to scientific fields and undergraduate science students. However, the idea that children undergo radical conceptual change in which old “theories” need to be overthrown and reorganized has been a central topic in understanding changes in scientific thinking in both children and across the life span. This radical conceptual change is thought to be necessary for acquiring many new concepts in physics and is regarded as the major source of difficulty for students. The factors that are at the root of this conceptual shift view have been difficult to determine, although there have been a number of studies in cognitive development (Carey, 1985 ; Chi 1992 ; Chi & Roscoe, 2002 ), in the history of science (Thagard, 1992 ), and in physics education (Clement, 1982 ; Mestre 1991 ) that give detailed accounts of the changes in knowledge representation that occur while people switch from one way of representing scientific knowledge to another.

One area where students show great difficulty in understanding scientific concepts is physics. Analyses of students' changing conceptions, using interviews, verbal protocols, and behavioral outcome measures, indicate that large-scale changes in students' concepts occur in physics education (see McDermott & Redish, 1999 , for a review of this literature). Following Kuhn ( 1962 ), many researchers, but not all, have noted that students' changing conceptions resemble the sequences of conceptual changes in physics that have occurred in the history of science. These notions of radical paradigm shifts and ensuing incompatibility with past knowledge-states have called attention to interesting parallels between the development of particular scientific concepts in children and in the history of physics. Investigations of nonphysicists' understanding of motion indicate that students have extensive misunderstandings of motion. Some researchers have interpreted these findings as an indication that many people hold erroneous beliefs about motion similar to a medieval “impetus” theory (McCloskey, Caramazza, & Green, 1980 ). Furthermore, students appear to maintain “impetus” notions even after one or two courses in physics. In fact, some authors have noted that students who have taken one or two courses in physics can perform worse on physics problems than naive students (Mestre, 1991 ). Thus, it is only after extensive learning that we see a conceptual shift from impetus theories of motion to Newtonian scientific theories.

How one's conceptual representation shifts from “naive” to Newtonian is a matter of contention, as some have argued that the shift involves a radical conceptual change, whereas others have argued that the conceptual change is not really complete. For example, Kozhevnikov and Hegarty ( 2001 ) argue that much of the naive impetus notions of motion are maintained at the expense of Newtonian principles even with extensive training in physics. However, they argue that such impetus principles are maintained at an implicit level. Thus, although students can give the correct Newtonian answer to problems, their reaction times to respond indicate that they are also using impetus theories when they respond. An alternative view of conceptual change focuses on whether there are real conceptual changes at all. Gupta, Hammer and Redish ( 2010 ) and Disessa ( 2004 ) have conducted detailed investigations of changes in physics students' accounts of phenomena covered in elementary physics courses. They have found that rather than students possessing a naive theory that is replaced by the standard theory, many introductory physics students have no stable physical theory but rather construct their explanations from elementary pieces of knowledge of the physical world.

Computational Approaches to Scientific Thinking

Computational approaches have provided a more complete account of the scientific mind. Computational models provide specific detailed accounts of the cognitive processes underlying scientific thinking. Early computational work consisted of taking a scientific discovery and building computational models of the reasoning processes involved in the discovery. Langley, Simon, Bradshaw, and Zytkow ( 1987 ) built a series of programs that simulated discoveries such as those of Copernicus, Bacon, and Stahl. These programs had various inductive reasoning algorithms built into them, and when given the data that the scientists used, they were able to propose the same rules. Computational models make it possible to propose detailed models of the cognitive subcomponents of scientific thinking that specify exactly how scientific theories are generated, tested, and amended (see Darden, 1997 , and Shrager & Langley, 1990 , for accounts of this branch of research). More recently, the incorporation of scientific knowledge into computer programs has resulted in a shift in emphasis from using programs to simulate discoveries to building programs that are used to help scientists make discoveries. A number of these computer programs have made novel discoveries. For example, Valdes-Perez ( 1994 ) has built systems for discoveries in chemistry, and Fajtlowicz has done this in mathematics (Erdos, Fajtlowicz, & Staton, 1991 ).

These advances in the fields of computer discovery have led to new fields, conferences, journals, and even departments that specialize in the development of programs devised to search large databases in the hope of making new scientific discoveries (Langley, 2000 , 2002 ). This process is commonly known as “data mining.” This approach has only proved viable relatively recently, due to advances in computer technology. Biswal et al. ( 2010 ), Mitchell ( 2009 ), and Yang ( 2009 ) provide recent reviews of data mining in different scientific fields. Data mining is at the core of drug discovery, our understanding of the human genome, and our understanding of the universe for a number of reasons. First, vast databases concerning drug actions, biological processes, the genome, the proteome, and the universe itself now exist. Second, the development of high throughput data-mining algorithms makes it possible to search for new drug targets, novel biological mechanisms, and new astronomical phenomena in relatively short periods of time. Research programs that took decades, such as the development of penicillin, can now be done in days (Yang, 2009 ).

Another recent shift in the use of computers in scientific discovery has been to have both computers and people make discoveries together, rather than expecting that computers make an entire scientific discovery. Now instead of using computers to mimic the entire scientific discovery process as used by humans, computers can use powerful algorithms that search for patterns on large databases and provide the patterns to humans who can then use the output of these computers to make discoveries, ranging from the human genome to the structure of the universe. However, there are some robots such as ADAM, developed by King ( 2011 ), that can actually perform the entire scientific process, from the generation of hypotheses, to the conduct of experiments and the interpretation of results, with little human intervention. The ongoing development of scientific robots by some scientists (King et al., 2009 ) thus continues the tradition started by Herbert Simon in the 1960s. However, many of the controversies as to whether the robot is a “real scientist” or not continue to the present (Evans & Rzhetsky, 2010 , Gianfelici, 2010 ; Haufe, Elliott, Burian, & O' Malley, 2010 ; O'Malley 2011 ).

Scientific Thinking and Science Education

Accounts of the nature of science and research on scientific thinking have had profound effects on science education along many levels, particularly in recent years. Science education from the 1900s until the 1970s was primarily concerned with teaching students both the content of science (such as Newton's laws of motion) or the methods that scientists need to use in their research (such as using experimental and control groups). Beginning in the 1980s, a number of reports (e.g., American Association for the Advancement of Science, 1993; National Commission on Excellence in Education, 1983; Rutherford & Ahlgren, 1991 ) stressed the need for teaching scientific thinking skills rather than just methods and content. The addition of scientific thinking skills to the science curriculum from kindergarten through adulthood was a major shift in focus. Many of the particular scientific thinking skills that have been emphasized are skills covered in previous sections of this chapter, such as teaching deductive and inductive thinking strategies. However, rather than focusing on one particular skill, such as induction, researchers in education have focused on how the different components of scientific thinking are put together in science. Furthermore, science educators have focused upon situations where science is conducted collaboratively, rather than being the product of one person thinking alone. These changes in science education parallel changes in methodologies used to investigate science, such as analyzing the ways that scientists think and reason in their laboratories.

By looking at science as a complex multilayered and group activity, many researchers in science education have adopted a constructivist approach. This approach sees learning as an active rather than a passive process, and it suggests that students learn through constructing their scientific knowledge. We will first describe a few examples of the constructivist approach to science education. Following that, we will address several lines of work that challenge some of the assumptions of the constructivist approach to science education.

Often the goal of constructivist science education is to produce conceptual change through guided instruction where the teacher or professor acts as a guide to discovery, rather than the keeper of all the facts. One recent and influential approach to science education is the inquiry-based learning approach. Inquiry-based learning focuses on posing a problem or a puzzling event to students and asking them to propose a hypothesis that could explain the event. Next, the student is asked to collect data that test the hypothesis, make conclusions, and then reflect upon both the original problem and the thought processes that they used to solve the problem. Often students use computers that aid in their construction of new knowledge. The computers allow students to learn many of the different components of scientific thinking. For example, Reiser and his colleagues have developed a learning environment for biology, where students are encouraged to develop hypotheses in groups, codify the hypotheses, and search databases to test these hypotheses (Reiser et al., 2001 ).

One of the myths of science is the lone scientist suddenly shouting “Eureka, I have made a discovery!” Instead, in vivo studies of scientists (e.g., Dunbar, 1995 , 2002 ), historical analyses of scientific discoveries (Nersessian, 1999 ), and studies of children learning science at museums have all pointed to collaborative scientific discovery mechanisms as being one of the driving forces of science (Atkins et al., 2009 ; Azmitia & Crowley, 2001 ). What happens during collaborative scientific thinking is that there is usually a triggering event, such as an unexpected result or situation that a student does not understand. This results in other members of the group adding new information to the person's representation of knowledge, often adding new inductions and deductions that both challenge and transform the reasoner's old representations of knowledge (Chi & Roscoe, 2002 ; Dunbar 1998 ). Social mechanisms play a key component in fostering changes in concepts that have been ignored in traditional cognitive research but are crucial for both science and science education. In science education there has been a shift to collaborative learning, particularly at the elementary level; however, in university education, the emphasis is still on the individual scientist. As many domains of science now involve collaborations across scientific disciplines, we expect the explicit teaching of heuristics for collaborative science to increase.

What is the best way to teach and learn science? Surprisingly, the answer to this question has been difficult to uncover. For example, toward the end of the last century, influenced by several thinkers who advocated a constructivist approach to learning, ranging from Piaget (Beilin, 1994 ) to Papert ( 1980 ), many schools answered this question by adopting a philosophy dubbed “discovery learning.” Although a clear operational definition of this approach has yet to be articulated, the general idea is that children are expected to learn science by reconstructing the processes of scientific discovery—in a range of areas from computer programming to chemistry to mathematics. The premise is that letting students discover principles on their own, set their own goals, and collaboratively explore the natural world produces deeper knowledge that transfers widely.

The research literature on science education is far from consistent in its use of terminology. However, our reading suggests that “discovery learning” differs from “inquiry-based learning” in that few, if any, guidelines are given to students in discovery learning contexts, whereas in inquiry learning, students are given hypotheses and specific goals to achieve (see the second paragraph of this section for a definition of inquiry-based learning). Even though thousands of schools have adopted discovery learning as an alternative to more didactic approaches to teaching and learning, the evidence showing that it is more effective than traditional, direct, teacher-controlled instructional approaches is mixed, at best (Lorch et al., 2010 ; Minner, Levy, & Century, 2010 ). In several cases where the distinctions between direct instruction and more open-ended constructivist instruction have been clearly articulated, implemented, and assessed, direct instruction has proven to be superior to the alternatives (Chen & Klahr, 1999 ; Toth, Klahr, & Chen, 2000 ). For example, in a study of third- and fourth-grade children learning about experimental design, Klahr and Nigam ( 2004 ) found that many more children learned from direct instruction than from discovery learning. Furthermore, they found that among the few children who did manage to learn from a discovery method, there was no better performance on a far transfer test of scientific reasoning than that observed for the many children who learned from direct instruction.

The idea of children learning most of their science through a process of self-directed discovery has some romantic appeal, and it may accurately describe the personal experience of a handful of world-class scientists. However, the claim has generated some contentious disagreements (Kirschner, Sweller, & Clark, 2006 ; Klahr, 2010 ; Taber 2009 ; Tobias & Duffy, 2009 ), and the jury remains out on the extent to which most children can learn science that way.

Conclusions and Future Directions

The field of scientific thinking is now a thriving area of research with strong underpinnings in cognitive psychology and cognitive science. In recent years, a new professional society has been formed that aims to facilitate this integrative and interdisciplinary approach to the psychology of science, with its own journal and regular professional meetings. 1 Clearly the relations between these different aspects of scientific thinking need to be combined in order to produce a truly comprehensive picture of the scientific mind.

While much is known about certain aspects of scientific thinking, much more remains to be discovered. In particular, there has been little contact between cognitive, neuroscience, social, personality, and motivational accounts of scientific thinking. Research in thinking and reasoning has been expanded to use the methods and theories of cognitive neuroscience (see Morrison & Knowlton, Chapter 6 ). A similar approach can be taken in exploring scientific thinking (see Dunbar et al., 2007 ). There are two main reasons for taking a neuroscience approach to scientific thinking. First, functional neuroimaging allows the researcher to look at the entire human brain, making it possible to see the many different sites that are involved in scientific thinking and gain a more complete understanding of the entire range of mechanisms involved in this type of thought. Second, these brain-imaging approaches allow researchers to address fundamental questions in research on scientific thinking, such as the extent to which ordinary thinking in nonscientific contexts and scientific thinking recruit similar versus disparate neural structures of the brain.

Dunbar ( 2009 ) has used some novel methods to explore Simon's assertion, cited at the beginning of this chapter, that scientific thinking uses the same cognitive mechanisms that all human beings possess (rather than being an entirely different type of thinking) but combines them in ways that are specific to a particular aspect of science or a specific discipline of science. For example, Fugelsang and Dunbar ( 2009 ) compared causal reasoning when two colliding circular objects were labeled balls or labeled subatomic particles. They obtained different brain activation patterns depending on whether the stimuli were labeled balls or subatomic particles. In another series of experiments, Dunbar and colleagues used functional magnetic resonance imaging (fMRI) to study patterns of activation in the brains of students who have and who have not undergone conceptual change in physics. For example, Fugelsang and Dunbar ( 2005 ) and Dunbar et al. ( 2007 ) have found differences in the activation of specific brain sites (such as the anterior cingulate) for students when they encounter evidence that is inconsistent with their current conceptual understandings. These initial cognitive neuroscience investigations have the potential to reveal the ways that knowledge is organized in the scientific brain and provide detailed accounts of the nature of the representation of scientific knowledge. Petitto and Dunbar ( 2004 ) proposed the term “educational neuroscience” for the integration of research on education, including science education, with research on neuroscience. However, see Fitzpatrick (in press) for a very different perspective on whether neuroscience approaches are relevant to education. Clearly, research on the scientific brain is just beginning. We as scientists are beginning to get a reasonable grasp of the inner workings of the subcomponents of the scientific mind (i.e., problem solving, analogy, induction). However, great advances remain to be made concerning how these processes interact so that scientific discoveries can be made. Future research will focus on both the collaborative aspects of scientific thinking and the neural underpinnings of the scientific mind.

The International Society for the Psychology of Science and Technology (ISPST). Available at http://www.ispstonline.org/

Ahn, W., Kalish, C. W., Medin, D. L., & Gelman, S. A. ( 1995 ). The role of covariation versus mechanism information in causal attribution.   Cognition , 54 , 299–352.

American Association for the Advancement of Science. ( 1993 ). Benchmarks for scientific literacy . New York: Oxford University Press.

Google Scholar

Google Preview

Atkins, L. J., Velez, L., Goudy, D., & Dunbar, K. N. ( 2009 ). The unintended effects of interactive objects and labels in the science museum.   Science Education , 54 , 161–184.

Azmitia, M. A., & Crowley, K. ( 2001 ). The rhythms of scientific thinking: A study of collaboration in an earthquake microworld. In K. Crowley, C. Schunn, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 45–72). Mahwah, NJ: Erlbaum.

Bacon, F. ( 1620 /1854). Novum organum (B. Monatgue, Trans.). Philadelphia, P A: Parry & McMillan.

Baillargeon, R. ( 2004 ). Infants' reasoning about hidden objects: Evidence for event-general and event-specific expectations (article with peer commentaries and response, listed below).   Developmental Science , 54 , 391–424.

Baker, L. M., & Dunbar, K. ( 2000 ). Experimental design heuristics for scientific discovery: The use of baseline and known controls.   International Journal of Human Computer Studies , 54 , 335–349.

Beilin, H. ( 1994 ). Jean Piaget's enduring contribution to developmental psychology. In R. D. Parke, P. A. Ornstein, J. J. Rieser, & C. Zahn-Waxler (Eds.), A century of developmental psychology (pp. 257–290). Washington, DC US: American Psychological Association.

Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S.M., et al. ( 2010 ). Toward discovery science of human brain function.   Proceedings of the National Academy of Sciences of the United States of America , 107, 4734–4739.

Brewer, W. F., & Samarapungavan, A. ( 1991 ). Children's theories vs. scientific theories: Differences in reasoning or differences in knowledge? In R. R. Hoffman & D. S. Palermo (Eds.), Cognition and the symbolic processes: Applied and ecological perspectives (pp. 209–232). Hillsdale, NJ: Erlbaum.

Bruner, J. S., Goodnow, J. J., & Austin, G. A. ( 1956 ). A study of thinking . New York: NY Science Editions.

Carey, S. ( 1985 ). Conceptual change in childhood . Cambridge, MA: MIT Press.

Carruthers, P., Stich, S., & Siegal, M. ( 2002 ). The cognitive basis of science . New York: Cambridge University Press.

Chi, M. ( 1992 ). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science (pp. 129–186). Minneapolis: University of Minnesota Press.

Chi, M. T. H., & Roscoe, R. D. ( 2002 ). The processes and challenges of conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp 3–27). Amsterdam, Netherlands: Kluwer Academic Publishers.

Chen, Z., & Klahr, D. ( 1999 ). All other things being equal: Children's acquisition of the control of variables strategy.   Child Development , 54 (5), 1098–1120.

Clement, J. ( 1982 ). Students' preconceptions in introductory mechanics.   American Journal of Physics , 54 , 66–71.

Cohen, L. B., & Cashon, C. H. ( 2006 ). Infant cognition. In W. Damon & R. M. Lerner (Series Eds.) & D. Kuhn & R. S. Siegler (Vol. Eds.), Handbook of child psychology. Vol. 2: Cognition, perception, and language (6th ed., pp. 214–251). New York: Wiley.

National Commission on Excellence in Education. ( 1983 ). A nation at risk: The imperative for educational reform . Washington, DC: US Department of Education.

Crick, F. H. C. ( 1988 ). What mad pursuit: A personal view of science . New York: Basic Books.

Darden, L. ( 2002 ). Strategies for discovering mechanisms: Schema instantiation, modular subassembly, forward chaining/backtracking.   Philosophy of Science , 69, S354–S365.

Davenport, J. L., Yaron, D., Klahr, D., & Koedinger, K. ( 2008 ). Development of conceptual understanding and problem solving expertise in chemistry. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 751–756). Austin, TX: Cognitive Science Society.

diSessa, A. A. ( 2004 ). Contextuality and coordination in conceptual change. In E. Redish & M. Vicentini (Eds.), Proceedings of the International School of Physics “Enrico Fermi:” Research on physics education (pp. 137–156). Amsterdam, Netherlands: ISO Press/Italian Physics Society

Dunbar, K. ( 1995 ). How scientists really reason: Scientific reasoning in real-world laboratories. In R. J. Sternberg, & J. Davidson (Eds.), Mechanisms of insight (pp. 365–395). Cambridge, MA: MIT press.

Dunbar, K. ( 1997 ). How scientists think: Online creativity and conceptual change in science. In T. B. Ward, S. M. Smith, & S. Vaid (Eds.), Conceptual structures and processes: Emergence, discovery and change (pp. 461–494). Washington, DC: American Psychological Association.

Dunbar, K. ( 1998 ). Problem solving. In W. Bechtel & G. Graham (Eds.), A companion to cognitive science (pp. 289–298). London: Blackwell

Dunbar, K. ( 1999 ). The scientist InVivo : How scientists think and reason in the laboratory. In L. Magnani, N. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 85–100). New York: Plenum.

Dunbar, K. ( 2001 ). The analogical paradox: Why analogy is so easy in naturalistic settings, yet so difficult in the psychology laboratory. In D. Gentner, K. J. Holyoak, & B. Kokinov Analogy: Perspectives from cognitive science (pp. 313–334). Cambridge, MA: MIT press.

Dunbar, K. ( 2002 ). Science as category: Implications of InVivo science for theories of cognitive development, scientific discovery, and the nature of science. In P. Caruthers, S. Stich, & M. Siegel (Eds.) Cognitive models of science (pp. 154–170). New York: Cambridge University Press.

Dunbar, K. ( 2009 ). The biology of physics: What the brain reveals about our physical understanding of the world. In M. Sabella, C. Henderson, & C. Singh. (Eds.), Proceedings of the Physics Education Research Conference (pp. 15–18). Melville, NY: American Institute of Physics.

Dunbar, K., & Fugelsang, J. ( 2004 ). Causal thinking in science: How scientists and students interpret the unexpected. In M. E. Gorman, A. Kincannon, D. Gooding, & R. D. Tweney (Eds.), New directions in scientific and technical thinking (pp. 57–59). Mahway, NJ: Erlbaum.

Dunbar, K., Fugelsang, J., & Stein, C. ( 2007 ). Do naïve theories ever go away? In M. Lovett & P. Shah (Eds.), Thinking with Data: 33 rd Carnegie Symposium on Cognition (pp. 193–206). Mahwah, NJ: Erlbaum.

Dunbar, K., & Sussman, D. ( 1995 ). Toward a cognitive account of frontal lobe function: Simulating frontal lobe deficits in normal subjects.   Annals of the New York Academy of Sciences , 54 , 289–304.

Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). ( 2007 ). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.

Einstein, A. ( 1950 ). Out of my later years . New York: Philosophical Library

Erdos, P., Fajtlowicz, S., & Staton, W. ( 1991 ). Degree sequences in the triangle-free graphs,   Discrete Mathematics , 54 (91), 85–88.

Evans, J., & Rzhetsky, A. ( 2010 ). Machine science.   Science , 54 , 399–400.

Fay, A., & Klahr, D. ( 1996 ). Knowing about guessing and guessing about knowing: Preschoolers' understanding of indeterminacy.   Child Development , 54 , 689–716.

Fischler, H., & Lichtfeldt, M. ( 1992 ). Modern physics and students conceptions.   International Journal of Science Education , 54 , 181–190.

Fitzpatrick, S. M. (in press). Functional brain imaging: Neuro-turn or wrong turn? In M. M., Littlefield & J.M., Johnson (Eds.), The neuroscientific turn: Transdisciplinarity in the age of the brain. Ann Arbor: University of Michigan Press.

Fox-Keller, E. ( 1985 ). Reflections on gender and science . New Haven, CT: Yale University Press.

Fugelsang, J., & Dunbar, K. ( 2005 ). Brain-based mechanisms underlying complex causal thinking.   Neuropsychologia , 54 , 1204–1213.

Fugelsang, J., & Dunbar, K. ( 2009 ). Brain-based mechanisms underlying causal reasoning. In E. Kraft (Ed.), Neural correlates of thinking (pp. 269–279). Berlin, Germany: Springer

Fugelsang, J., Stein, C., Green, A., & Dunbar, K. ( 2004 ). Theory and data interactions of the scientific mind: Evidence from the molecular and the cognitive laboratory.   Canadian Journal of Experimental Psychology , 54 , 132–141

Galilei, G. ( 1638 /1991). Dialogues concerning two new sciences (A. de Salvio & H. Crew, Trans.). Amherst, NY: Prometheus Books.

Galison, P. ( 2003 ). Einstein's clocks, Poincaré's maps: Empires of time . New York: W. W. Norton.

Gelman, R., & Baillargeon, R. ( 1983 ). A review of Piagetian concepts. In P. H. Mussen (Series Ed.) & J. H. Flavell & E. M. Markman (Vol. Eds.), Handbook of child psychology (4th ed., Vol. 3, pp. 167–230). New York: Wiley.

Gelman, S. A., & Kalish, C. W. ( 2006 ). Conceptual development. In D. Kuhn & R. Siegler (Eds.), Handbook of child psychology. Vol. 2: Cognition, perception and language (pp. 687–733). New York: Wiley.

Gelman, S., & Wellman, H. ( 1991 ). Insides and essences.   Cognition , 54 , 214–244.

Gentner, D. ( 2010 ). Bootstrapping the mind: Analogical processes and symbol systems.   Cognitive Science , 54 , 752–775.

Gentner, D., Brem, S., Ferguson, R. W., Markman, A. B., Levidow, B. B., Wolff, P., & Forbus, K. D. ( 1997 ). Analogical reasoning and conceptual change: A case study of Johannes Kepler.   The Journal of the Learning Sciences , 54 (1), 3–40.

Gentner, D., Holyoak, K. J., & Kokinov, B. ( 2001 ). The analogical mind: Perspectives from cognitive science . Cambridge, MA: MIT Press.

Gentner, D., & Jeziorski, M. ( 1993 ). The shift from metaphor to analogy in western science. In A. Ortony (Ed.), Metaphor and thought (2nd ed., pp. 447–480). Cambridge, England: Cambridge University Press.

Gianfelici, F. ( 2010 ). Machine science: Truly machine-aided science.   Science , 54 , 317–319.

Giere, R. ( 1993 ). Cognitive models of science . Minneapolis: University of Minnesota Press.

Gopnik, A. N., Meltzoff, A. N., & Kuhl, P. K. ( 1999 ). The scientist in the crib: Minds, brains and how children learn . New York: Harper Collins

Gorman, M. E. ( 1989 ). Error, falsification and scientific inference: An experimental investigation.   Quarterly Journal of Experimental Psychology: Human Experimental Psychology , 41A , 385–412

Gorman, M. E., Kincannon, A., Gooding, D., & Tweney, R. D. ( 2004 ). New directions in scientific and technical thinking . Mahwah, NJ: Erlbaum.

Gupta, A., Hammer, D., & Redish, E. F. ( 2010 ). The case for dynamic models of learners' ontologies in physics.   Journal of the Learning Sciences , 54 (3), 285–321.

Haufe, C., Elliott, K. C., Burian, R., & O'Malley, M. A. ( 2010 ). Machine science: What's missing.   Science , 54 , 318–320.

Hecht, E. ( 2011 ). On defining mass.   The Physics Teacher , 54 , 40–43.

Heit, E. ( 2000 ). Properties of inductive reasoning.   Psychonomic Bulletin and Review , 54 , 569–592.

Holyoak, K. J., & Thagard, P. ( 1995 ). Mental leaps . Cambridge, MA: MIT Press.

Karmiloff-Smith, A. ( 1988 ) The child is a theoretician, not an inductivist.   Mind and Language , 54 , 183–195.

Keil, F. C. ( 1999 ). Conceptual change. In R. Wilson & F. Keil (Eds.), The MIT encyclopedia of cognitive science . (pp. 179–182) Cambridge, MA: MIT press.

Kern, L. H., Mirels, H. L., & Hinshaw, V. G. ( 1983 ). Scientists' understanding of propositional logic: An experimental investigation.   Social Studies of Science , 54 , 131–146.

King, R. D. ( 2011 ). Rise of the robo scientists.   Scientific American , 54 (1), 73–77.

King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., et al. ( 2009 ). The automation of science.   Science , 54 , 85–89.

Kirschner, P. A., Sweller, J., & Clark, R. ( 2006 ) Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching.   Educational Psychologist , 54 , 75–86

Klahr, D. ( 2000 ). Exploring science: The cognition and development of discovery processes . Cambridge, MA: MIT Press.

Klahr, D. ( 2010 ). Coming up for air: But is it oxygen or phlogiston? A response to Taber's review of constructivist instruction: Success or failure?   Education Review , 54 (13), 1–6.

Klahr, D., & Dunbar, K. ( 1988 ). Dual space search during scientific reasoning.   Cognitive Science , 54 , 1–48.

Klahr, D., & Nigam, M. ( 2004 ). The equivalence of learning paths in early science instruction: effects of direct instruction and discovery learning.   Psychological Science , 54 (10), 661–667.

Klahr, D. & Masnick, A. M. ( 2002 ). Explaining, but not discovering, abduction. Review of L. Magnani (2001) abduction, reason, and science: Processes of discovery and explanation.   Contemporary Psychology , 47, 740–741.

Klahr, D., & Simon, H. ( 1999 ). Studies of scientific discovery: Complementary approaches and convergent findings.   Psychological Bulletin , 54 , 524–543.

Klayman, J., & Ha, Y. ( 1987 ). Confirmation, disconfirmation, and information in hypothesis testing.   Psychological Review , 54 , 211–228.

Kozhevnikov, M., & Hegarty, M. ( 2001 ). Impetus beliefs as default heuristic: Dissociation between explicit and implicit knowledge about motion.   Psychonomic Bulletin and Review , 54 , 439–453.

Kuhn, T. ( 1962 ). The structure of scientific revolutions . Chicago, IL: University of Chicago Press.

Kuhn, D., Amsel, E., & O'Laughlin, M. ( 1988 ). The development of scientific thinking skills . Orlando, FL: Academic Press.

Kulkarni, D., & Simon, H. A. ( 1988 ). The processes of scientific discovery: The strategy of experimentation.   Cognitive Science , 54 , 139–176.

Langley, P. ( 2000 ). Computational support of scientific discovery.   International Journal of Human-Computer Studies , 54 , 393–410.

Langley, P. ( 2002 ). Lessons for the computational discovery of scientific knowledge. In Proceedings of the First International Workshop on Data Mining Lessons Learned (pp. 9–12).

Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. ( 1987 ). Scientific discovery: Computational explorations of the creative processes . Cambridge, MA: MIT Press.

Lorch, R. F., Jr., Lorch, E. P., Calderhead, W. J., Dunlap, E. E., Hodell, E. C., & Freer, B. D. ( 2010 ). Learning the control of variables strategy in higher and lower achieving classrooms: Contributions of explicit instruction and experimentation.   Journal of Educational Psychology , 54 (1), 90–101.

Magnani, L., Carnielli, W., & Pizzi, C., (Eds.) ( 2010 ). Model-based reasoning in science and technology: Abduction, logic,and computational discovery. Series Studies in Computational Intelligence (Vol. 314). Heidelberg/Berlin: Springer.

Mandler, J.M. ( 2004 ). The foundations of mind: Origins of conceptual thought . Oxford, England: Oxford University Press.

Macpherson, R., & Stanovich, K. E. ( 2007 ). Cognitive ability, thinking dispositions, and instructional set as predictors of critical thinking.   Learning and Individual Differences , 54 , 115–127.

McCloskey, M., Caramazza, A., & Green, B. ( 1980 ). Curvilinear motion in the absence of external forces: Naive beliefs about the motion of objects.   Science , 54 , 1139–1141.

McDermott, L. C., & Redish, L. ( 1999 ). Research letter on physics education research.   American Journal of Psychics , 54 , 755.

Mestre, J. P. ( 1991 ). Learning and instruction in pre-college physical science.   Physics Today , 54 , 56–62.

Metz, K. E. ( 1995 ). Reassessment of developmental constraints on children's science instruction.   Review of Educational Research , 54 (2), 93–127.

Minner, D. D., Levy, A. J., & Century, J. ( 2010 ). Inquiry-based science instruction—what is it and does it matter? Results from a research synthesis years 1984 to 2002.   Journal of Research in Science Teaching , 54 (4), 474–496.

Mitchell, T. M. ( 2009 ). Mining our reality.   Science , 54 , 1644–1645.

Mitroff, I. ( 1974 ). The subjective side of science . Amsterdam, Netherlands: Elsevier.

Munakata, Y., Casey, B. J., & Diamond, A. ( 2004 ). Developmental cognitive neuroscience: Progress and potential.   Trends in Cognitive Sciences , 54 , 122–128.

Mynatt, C. R., Doherty, M. E., & Tweney, R. D. ( 1977 ) Confirmation bias in a simulated research environment: An experimental study of scientific inference.   Quarterly Journal of Experimental Psychology , 54 , 89–95.

Nersessian, N. ( 1998 ). Conceptual change. In W. Bechtel, & G. Graham (Eds.), A companion to cognitive science (pp. 157–166). London, England: Blackwell.

Nersessian, N. ( 1999 ). Models, mental models, and representations: Model-based reasoning in conceptual change. In L. Magnani, N. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5–22). New York: Plenum.

Nersessian, N. J. ( 2002 ). The cognitive basis of model-based reasoning in science In. P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 133–152). New York: Cambridge University Press.

Nersessian, N. J. ( 2008 ) Creating scientific concepts . Cambridge, MA: MIT Press.

O' Malley, M. A. ( 2011 ). Exploration, iterativity and kludging in synthetic biology.   Comptes Rendus Chimie , 54 (4), 406–412 .

Papert, S. ( 1980 ) Mindstorms: Children computers and powerful ideas. New York: Basic Books.

Penner, D. E., & Klahr, D. ( 1996 ). When to trust the data: Further investigations of system error in a scientific reasoning task.   Memory and Cognition , 54 (5), 655–668.

Petitto, L. A., & Dunbar, K. ( 2004 ). New findings from educational neuroscience on bilingual brains, scientific brains, and the educated mind. In K. Fischer & T. Katzir (Eds.), Building usable knowledge in mind, brain, and education Cambridge, England: Cambridge University Press.

Popper, K. R. ( 1959 ). The logic of scientific discovery . London, England: Hutchinson.

Qin, Y., & Simon, H.A. ( 1990 ). Laboratory replication of scientific discovery processes.   Cognitive Science , 54 , 281–312.

Reiser, B. J., Tabak, I., Sandoval, W. A., Smith, B., Steinmuller, F., & Leone, T. J., ( 2001 ). BGuILE: Stategic and conceptual scaffolds for scientific inquiry in biology classrooms. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 263–306). Mahwah, NJ: Erlbaum

Riordan, M., Rowson, P. C., & Wu, S. L. ( 2001 ). The search for the higgs boson.   Science , 54 , 259–260.

Rutherford, F. J., & Ahlgren, A. ( 1991 ). Science for all Americans. New York: Oxford University Press.

Samarapungavan, A. ( 1992 ). Children's judgments in theory choice tasks: Scientifc rationality in childhood.   Cognition , 54 , 1–32.

Schauble, L., & Glaser, R. ( 1990 ). Scientific thinking in children and adults. In D. Kuhn (Ed.), Developmental perspectives on teaching and learning thinking skills. Contributions to Human Development , (Vol. 21, pp. 9–26). Basel, Switzerland: Karger.

Schunn, C. D., & Klahr, D. ( 1995 ). A 4-space model of scientific discovery. In Proceedings of the 17th Annual Conference of the Cognitive Science Society (pp. 106–111). Mahwah, NJ: Erlbaum.

Schunn, C. D., & Klahr, D. ( 1996 ). The problem of problem spaces: When and how to go beyond a 2-space model of scientific discovery. Part of symposium on Building a theory of problem solving and scientific discovery: How big is N in N-space search? In Proceedings of the 18th Annual Conference of the Cognitive Science Society (pp. 25–26). Mahwah, NJ: Erlbaum.

Shrager, J., & Langley, P. ( 1990 ). Computational models of scientific discovery and theory formation . San Mateo, CA: Morgan Kaufmann.

Siegler, R. S., & Liebert, R. M. ( 1975 ). Acquisition of formal scientific reasoning by 10- and 13-year-olds: Designing a factorial experiment.   Developmental Psychology , 54 , 401–412.

Simon, H. A. ( 1977 ). Models of discovery . Dordrecht, Netherlands: D. Reidel Publishing.

Simon, H. A., Langley, P., & Bradshaw, G. L. ( 1981 ). Scientific discovery as problem solving.   Synthese , 54 , 1–27.

Simon, H. A., & Lea, G. ( 1974 ). Problem solving and rule induction. In H. Simon (Ed.), Models of thought (pp. 329–346). New Haven, CT: Yale University Press.

Smith, E. E., Shafir, E., & Osherson, D. ( 1993 ). Similarity, plausibility, and judgments of probability.   Cognition. Special Issue: Reasoning and decision making , 54 , 67–96.

Sodian, B., Zaitchik, D., & Carey, S. ( 1991 ). Young children's differentiation of hypothetical beliefs from evidence.   Child Development , 54 , 753–766.

Taber, K. S. ( 2009 ). Constructivism and the crisis in U.S. science education: An essay review.   Education Review , 54 (12), 1–26.

Thagard, P. ( 1992 ). Conceptual revolutions . Cambridge, MA: MIT Press.

Thagard, P. ( 1999 ). How scientists explain disease . Princeton, NJ: Princeton University Press.

Thagard, P., & Croft, D. ( 1999 ). Scientific discovery and technological innovation: Ulcers, dinosaur extinction, and the programming language Java. In L. Magnani, N. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 125–138). New York: Plenum.

Tobias, S., & Duffy, T. M. (Eds.). ( 2009 ). Constructivist instruction: Success or failure? New York: Routledge.

Toth, E. E., Klahr, D., & Chen, Z. ( 2000 ) Bridging research and practice: A cognitively-based classroom intervention for teaching experimentation skills to elementary school children.   Cognition and Instruction , 54 (4), 423–459.

Tweney, R. D. ( 1989 ). A framework for the cognitive psychology of science. In B. Gholson, A. Houts, R. A. Neimeyer, & W. Shadish (Eds.), Psychology of science: Contributions to metascience (pp. 342–366). Cambridge, England: Cambridge University Press.

Tweney, R. D., Doherty, M. E., & Mynatt, C. R. ( 1981 ). On scientific thinking . New York: Columbia University Press.

Valdes-Perez, R. E. ( 1994 ). Conjecturing hidden entities via simplicity and conservation laws: Machine discovery in chemistry.   Artificial Intelligence , 54 (2), 247–280.

Von Hofsten, C. ( 1980 ). Predictive reaching for moving objects by human infants.   Journal of Experimental Child Psychology , 54 , 369–382.

Von Hofsten, C., Feng, Q., & Spelke, E. S. ( 2000 ). Object representation and predictive action in infancy.   Developmental Science , 54 , 193–205.

Vosnaidou, S. (Ed.). ( 2008 ). International handbook of research on conceptual change . New York: Taylor & Francis.

Vosniadou, S., & Brewer, W. F. ( 1992 ). Mental models of the earth: A study of conceptual change in childhood.   Cognitive Psychology , 54 , 535–585.

Wason, P. C. ( 1968 ). Reasoning about a rule.   Quarterly Journal of Experimental Psychology , 54 , 273–281.

Wertheimer, M. ( 1945 ). Productive thinking . New York: Harper.

Yang, Y. ( 2009 ). Target discovery from data mining approaches.   Drug Discovery Today , 54 (3–4), 147–154.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Accelerate Learning

  • MISSION / VISION
  • DIVERSITY STATEMENT
  • CAREER OPPORTUNITIES
  • Kide Science
  • STEMscopes Science
  • Collaborate Science
  • STEMscopes Math
  • Math Nation
  • STEMscopes Coding
  • Mastery Coding
  • DIVE-in Engineering
  • STEMscopes Streaming
  • Tuva Data Literacy
  • NATIONAL INSTITUTE FOR STEM EDUCATION
  • STEMSCOPES PROFESSIONAL LEARNING
  • RESEARCH & EFFICACY STUDIES
  • STEM EDUCATION WEBINARS
  • LEARNING EQUITY
  • DISTANCE LEARNING
  • PRODUCT UPDATES
  • LMS INTEGRATIONS
  • STEMSCOPES BLOG
  • FREE RESOURCES
  • TESTIMONIALS

Critical Thinking in Science: Fostering Scientific Reasoning Skills in Students

ALI Staff | Published  July 13, 2023

Thinking like a scientist is a central goal of all science curricula.

As students learn facts, methodologies, and methods, what matters most is that all their learning happens through the lens of scientific reasoning what matters most is that it’s all through the lens of scientific reasoning.

That way, when it comes time for them to take on a little science themselves, either in the lab or by theoretically thinking through a solution, they understand how to do it in the right context.

One component of this type of thinking is being critical. Based on facts and evidence, critical thinking in science isn’t exactly the same as critical thinking in other subjects.

Students have to doubt the information they’re given until they can prove it’s right.

They have to truly understand what’s true and what’s hearsay. It’s complex, but with the right tools and plenty of practice, students can get it right.

What is critical thinking?

This particular style of thinking stands out because it requires reflection and analysis. Based on what's logical and rational, thinking critically is all about digging deep and going beyond the surface of a question to establish the quality of the question itself.

It ensures students put their brains to work when confronted with a question rather than taking every piece of information they’re given at face value.

It’s engaged, higher-level thinking that will serve them well in school and throughout their lives.

Why is critical thinking important?

Critical thinking is important when it comes to making good decisions.

It gives us the tools to think through a choice rather than quickly picking an option — and probably guessing wrong. Think of it as the all-important ‘why.’

Why is that true? Why is that right? Why is this the only option?

Finding answers to questions like these requires critical thinking. They require you to really analyze both the question itself and the possible solutions to establish validity.

Will that choice work for me? Does this feel right based on the evidence?

How does critical thinking in science impact students?

Critical thinking is essential in science.

It’s what naturally takes students in the direction of scientific reasoning since evidence is a key component of this style of thought.

It’s not just about whether evidence is available to support a particular answer but how valid that evidence is.

It’s about whether the information the student has fits together to create a strong argument and how to use verifiable facts to get a proper response.

Critical thinking in science helps students:

  • Actively evaluate information
  • Identify bias
  • Separate the logic within arguments
  • Analyze evidence

4 Ways to promote critical thinking

Figuring out how to develop critical thinking skills in science means looking at multiple strategies and deciding what will work best at your school and in your class.

Based on your student population, their needs and abilities, not every option will be a home run.

These particular examples are all based on the idea that for students to really learn how to think critically, they have to practice doing it. 

Each focuses on engaging students with science in a way that will motivate them to work independently as they hone their scientific reasoning skills.

Project-Based Learning

Project-based learning centers on critical thinking.

Teachers can shape a project around the thinking style to give students practice with evaluating evidence or other critical thinking skills.

Critical thinking also happens during collaboration, evidence-based thought, and reflection.

For example, setting students up for a research project is not only a great way to get them to think critically, but it also helps motivate them to learn.

Allowing them to pick the topic (that isn’t easy to look up online), develop their own research questions, and establish a process to collect data to find an answer lets students personally connect to science while using critical thinking at each stage of the assignment.

They’ll have to evaluate the quality of the research they find and make evidence-based decisions.

Self-Reflection

Adding a question or two to any lab practicum or activity requiring students to pause and reflect on what they did or learned also helps them practice critical thinking.

At this point in an assignment, they’ll pause and assess independently. 

You can ask students to reflect on the conclusions they came up with for a completed activity, which really makes them think about whether there's any bias in their answer.

Addressing Assumptions

One way critical thinking aligns so perfectly with scientific reasoning is that it encourages students to challenge all assumptions. 

Evidence is king in the science classroom, but even when students work with hard facts, there comes the risk of a little assumptive thinking.

Working with students to identify assumptions in existing research or asking them to address an issue where they suspend their own judgment and simply look at established facts polishes their that critical eye.

They’re getting practice without tossing out opinions, unproven hypotheses, and speculation in exchange for real data and real results, just like a scientist has to do.

Lab Activities With Trial-And-Error

Another component of critical thinking (as well as thinking like a scientist) is figuring out what to do when you get something wrong.

Backtracking can mean you have to rethink a process, redesign an experiment, or reevaluate data because the outcomes don’t make sense, but it’s okay.

The ability to get something wrong and recover is not only a valuable life skill, but it’s where most scientific breakthroughs start. Reminding students of this is always a valuable lesson.

Labs that include comparative activities are one way to increase critical thinking skills, especially when introducing new evidence that might cause students to change their conclusions once the lab has begun.

For example, you provide students with two distinct data sets and ask them to compare them.

With only two choices, there are a finite amount of conclusions to draw, but then what happens when you bring in a third data set? Will it void certain conclusions? Will it allow students to make new conclusions, ones even more deeply rooted in evidence?

Thinking like a scientist

When students get the opportunity to think critically, they’re learning to trust the data over their ‘gut,’ to approach problems systematically and make informed decisions using ‘good’ evidence.

When practiced enough, this ability will engage students in science in a whole new way, providing them with opportunities to dig deeper and learn more.

It can help enrich science and motivate students to approach the subject just like a professional would.

New call-to-action

Share this post!

Related articles.

Is Math A Language: Exploring the Relationship of Language and Math

Is Math A Language: Exploring the Relationship of Language and Math

Perhaps you’ve heard someone make the claim that “math is a language.”

Maybe you’ve made that statement yourself...

The Top 7 Elements of a Highly Effective Math Class

The Top 7 Elements of a Highly Effective Math Class

Effective math instruction is key to helping students understand and enjoy math. It's not just about numbers; it's...

Play-based Learning in Preschool: Learning Through Play

Play-based Learning in Preschool: Learning Through Play

Play is a natural part of early childhood development, making play-based learning a perfect fit for preschool...

STAY INFORMED ON THE LATEST IN STEM. SUBSCRIBE TODAY!

Which stem subjects are of interest to you.

STEMscopes Tech Specifications      STEMscopes Security Information & Compliance      Privacy Policy      Terms and Conditions

© 2024 Accelerate Learning  

Christopher Dwyer Ph.D.

3 Core Critical Thinking Skills Every Thinker Should Have

Critically thinking about critical thinking skills..

Posted March 13, 2020 | Reviewed by Ekua Hagan

  • Why Education Is Important
  • Find a Child Therapist

I recently received an email from an educator friend, asking me to briefly describe the skills necessary for critical thinking. They were happy to fill in the blanks themselves from outside reading but wanted to know what specific skills they should focus on teaching their students. I took this as a good opportunity to dedicate a post here to such discussion, in order to provide my friend and any other interested parties with an overview.

To understand critical thinking skills and how they factor into critical thinking, one first needs a definition of the latter. Critical thinking (CT) is a metacognitive process, consisting of a number of skills and dispositions, that when used through self-regulatory reflective judgment, increases the chances of producing a logical conclusion to an argument or solution to a problem (Dwyer, 2017; Dwyer, Hogan & Stewart, 2014). On the surface, this definition clarifies two issues. First, critical thinking is metacognitive—simply, it requires the individual to think about thinking; second, its main components are reflective judgment, dispositions, and skills.

Below the surface, this description requires clarification; hence the impetus for this entry—what is meant by reflective judgment, disposition towards CT, and CT skills? Reflective judgment (i.e. an individuals' understanding of the nature, limits, and certainty of knowing and how this can affect their judgments [King & Kitchener, 1994]) and disposition towards CT (i.e. an inclination, tendency or willingness to perform a given thinking skill [Dwyer, 2017; Facione, Facione & Giancarlo, 1997; Ku, 2009; Norris, 1992; Siegel, 1999; Valenzuela, Nieto & Saiz, 2011]) have both already been covered in my posts; so, consistent with the aim of this piece, let’s discuss CT skills.

CT skills allow individuals to transcend lower-order, memorization-based learning strategies to gain a more complex understanding of the information or problems they encounter (Halpern, 2014). Though debate is ongoing over the definition of CT, one list stands out as a reasonable consensus conceptualization of CT skills. In 1988, a committee of 46 experts in the field of CT gathered to discuss CT conceptualisations, resulting in the Delphi Report; within which was overwhelmingly agreement (i.e. 95% consensus) that analysis , evaluation and inference were the core skills necessary for CT (Facione, 1990). Indeed, over 30 years later, these three CT skills remain the most commonly cited.

1. Analysis

Analysis is a core CT skill used to identify and examine the structure of an argument, the propositions within an argument and the role they play (e.g. the main conclusion, the premises and reasons provided to support the conclusion, objections to the conclusion and inferential relationships among propositions), as well as the sources of the propositions (e.g. personal experience, common belief, and research).

When it comes to analysing the basis for a standpoint, the structure of the argument can be extracted for subsequent evaluation (e.g. from dialogue and text). This can be accomplished through looking for propositions that either support or refute the central claim or other reasons and objections. Through analysis, the argument’s hierarchical structure begins to appear. Notably, argument mapping can aid the visual representation of this hierarchical structure and is supported by research as having positive effects on critical thinking (Butchart et al., 2009; Dwyer, 2011; Dwyer, Hogan & Stewart, 2012; van Gelder, Bisset & Cumming, 2004).

2. Evaluation

Evaluation is a core CT skill that is used in the assessment of propositions and claims (identified through the previous analysis ) with respect to their credibility; relevance; balance, bias (and potential omissions); as well as the logical strength amongst propositions (i.e. the strength of the inferential relationships). Such assessment allows for informed judgment regarding the overall strength or weakness of an argument (Dwyer, 2017; Facione, 1990). If an argument (or its propositions) is not credible, relevant, logical, and unbiased, you should consider excluding it or discussing its weaknesses as an objection.

Evaluating the credibility of claims and arguments involves progressing beyond merely identifying the source of propositions in an argument, to actually examining the "trustworthiness" of those identified sources (e.g. personal experiences, common beliefs/opinions, expert/authority opinion and scientific evidence). This is particularly important because some sources are more credible than others. Evaluation also implies deep consideration of the relevance of claims within an argument, which is accomplished by assessing the contextual relevance of claims and premises—that is, the pertinence or applicability of one proposition to another.

With respect to balance, bias (and potential omissions), it's important to consider the "slant" of an argument—if it seems imbalanced in favour of one line of thinking, then it’s quite possible that the argument has omitted key, opposing points that should also be considered. Imbalance may also imply some level of bias in the argument—another factor that should also be assessed.

3 central components of scientific and critical thinking

However, just because an argument is balanced does not mean that it isn’t biased. It may very well be the case that the "opposing views" presented have been "cherry-picked" because they are easily disputed (akin to building a strawman ); thus, making supporting reasons appear stronger than they may actually be—and this is just one example of how a balanced argument may, in fact, be biased. The take-home message regarding balance, bias, and potential omissions should be that, in any argument, you should construct an understanding of the author or speaker’s motivations and consider how these might influence the structure and contents of the argument.

Finally, evaluating the logical strength of an argument is accomplished through monitoring both the logical relationships amongst propositions and the claims they infer. Assessment of logical strength can actually be aided through subsequent inference, as a means of double-checking the logical strength. For example, this can be checked by asking whether or not a particular proposition can actually be inferred based on the propositions that precede it. A useful means of developing this sub-skill is through practicing syllogistic reasoning .

3. Inference

Similar to other educational concepts like synthesis (e.g., see Bloom et al., 1956; Dwyer, 2011; 2017), the final core CT skill, inference , involves the “gathering” of credible, relevant and logical evidence based on the previous analysis and evaluation, for the purpose of drawing a reasonable conclusion (Dwyer, 2017; Facione, 1990). Drawing a conclusion always implies some act of synthesis (i.e. the ability to put parts of information together to form a new whole; see Dwyer, 2011). However, inference is a unique form of synthesis in that it involves the formulation of a set of conclusions derived from a series of arguments or a body of evidence. This inference may imply accepting a conclusion pointed to by an author in light of the evidence they present, or "conjecturing an alternative," equally logical, conclusion or argument based on the available evidence (Facione, 1990). The ability to infer a conclusion in this manner can be completed through formal logic strategies, informal logic strategies (or both) in order to derive intermediate conclusions, as well as central claims.

Another important aspect of inference involves the querying of available evidence, for example, by recognising the need for additional information, gathering it and judging the plausibility of utilising such information for the purpose of drawing a conclusion. Notably, in the context of querying evidence and conjecturing alternative conclusions, inference overlaps with evaluation to a certain degree in that both skills are used to judge the relevance and acceptability of a claim or argument. Furthermore, after inferring a conclusion, the resulting argument should be re-evaluated to ensure that it is reasonable to draw the conclusion that was derived.

Overall, the application of critical thinking skills is a process—one must analyse, evaluate and then infer; and this process can be repeated to ensure that a reasonable conclusion has been drawn. In an effort to simplify the description of this process, for the past few years, I’ve used the analogy of picking apples for baking . We begin by picking apples from a tree. Consider the tree as an analogy, in its own right, for an argument, which is often hierarchically structured like a tree-diagram. By picking apples, I mean identifying propositions and the role they play (i.e. analysis). Once we pick an apple, we evaluate it—we make sure it isn’t rotten (i.e. lacks credibility, is biased) and is suitable for baking (i.e. relevant and logically strong). Finally, we infer— we gather the apples in a basket and bring them home and group them together based on some rationale for construction— maybe four for a pie, three for a crumble and another four for a tart. By the end of the process, we have baked some apple-based goods, or developed a conclusion, solution or decision through critical thinking.

Of course, there is more to critical thinking than the application of skills—a critical thinker must also have the disposition to think critically and engage reflective judgment. However, without the appropriate skills—analysis, evaluation, and inference, it is not likely that CT will be applied. For example, though one might be willing to use CT skills and engage reflective judgment, they may not know how to do so. Conversely, though one might be aware of which CT skills to use in a given context and may have the capacity to perform well when using these skills, they may not be disposed to use them (Valenzuela, Nieto & Saiz, 2011). Though the core CT skills of analysis, evaluation, and inference are not the only important aspects of CT, they are essential for its application.

Bloom, B.S. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook 1: Cognitive domain. New York: McKay.

Butchart, S., Bigelow, J., Oppy, G., Korb, K., & Gold, I. (2009). Improving critical thinking using web-based argument mapping exercises with automated feedback. Australasian Journal of Educational Technology, 25, 2, 268-291.

Dwyer, C.P. (2011). The evaluation of argument mapping as a learning tool. Doctoral Thesis. National University of Ireland, Galway.

Dwyer, C.P. (2017). Critical thinking: Conceptual perspectives and practical guidelines.Cambridge, UK: Cambridge University Press.

Dwyer, C.P., Hogan, M.J., & Stewart, I. (2012). An evaluation of argument mapping as a method of enhancing critical thinking performance in e-learning environments. Metacognition and Learning, 7, 219-244.

Dwyer, C. P., Hogan, M. J., & Stewart, I. (2014). An integrated critical thinking framework for the 21st century. Thinking Skills & Creativity, 12, 43–52.

Facione, P.A. (1990). The Delphi report: Committee on pre-college philosophy. Millbrae, CA: California Academic Press.

Facione, P.A., Facione, N.C., & Giancarlo, C.A. (1997). Setting expectations for student learning: New directions for higher education. Millbrae: California Academic Press.

Halpern, D.F. (2014). Thought & knowledge: An introduction to critical thinking (5th Ed.). UK: Psychology Press.

King, P. M., & Kitchener, K. S. (1994). Developing reflective judgment: Understanding and promoting intellectual growth and critical thinking in adolescents and adults. San Francisco: Jossey Bass.

Ku, K.Y.L. (2009). Assessing students’ critical thinking performance: Urging for measurements using multi-response format. Thinking Skills and Creativity, 4, 1, 70- 76.

Norris, S. P. (Ed.). (1992). The generalizability of critical thinking: Multiple perspectives on an educational ideal. New York: Teachers College Press.

Siegel, H. (1999). What (good) are thinking dispositions? Educational Theory, 49, 2, 207-221.

Valenzuela, J., Nieto, A.M., & Saiz, C. (2011). Critical thinking motivational scale: A contribution to the study of relationship between critical thinking and motivation. Journal of Research in Educational Psychology, 9, 2, 823-848.

van Gelder, T.J., Bissett, M., & Cumming, G. (2004). Enhancing expertise in informal reasoning. Canadian Journal of Experimental Psychology 58, 142-52.

Christopher Dwyer Ph.D.

Christopher Dwyer, Ph.D., is a lecturer at the Technological University of the Shannon in Athlone, Ireland.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • CBE Life Sci Educ
  • v.17(1); Spring 2018

Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers

Jason e. dowd.

† Department of Biology, Duke University, Durham, NC 27708

Robert J. Thompson, Jr.

‡ Department of Psychology and Neuroscience, Duke University, Durham, NC 27708

Leslie A. Schiff

§ Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455

Julie A. Reynolds

Associated data.

This study empirically examines the relationship between students’ critical-thinking skills and scientific reasoning as reflected in undergraduate thesis writing in biology. Writing offers a unique window into studying this relationship, and the findings raise potential implications for instruction.

Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students’ development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference , while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc.) are not significantly related to critical-thinking skills. Science reasoning in writing is not merely a proxy for critical thinking. In linking features of students’ writing to their critical-thinking skills, this study 1) provides a bridge to prior work suggesting that engagement in science writing enhances critical thinking and 2) serves as a foundational step for subsequently determining whether instruction focused explicitly on developing critical-thinking skills (particularly inference ) can actually improve students’ scientific reasoning in their writing.

INTRODUCTION

Critical-thinking and scientific reasoning skills are core learning objectives of science education for all students, regardless of whether or not they intend to pursue a career in science or engineering. Consistent with the view of learning as construction of understanding and meaning ( National Research Council, 2000 ), the pedagogical practice of writing has been found to be effective not only in fostering the development of students’ conceptual and procedural knowledge ( Gerdeman et al. , 2007 ) and communication skills ( Clase et al. , 2010 ), but also scientific reasoning ( Reynolds et al. , 2012 ) and critical-thinking skills ( Quitadamo and Kurtz, 2007 ).

Critical thinking and scientific reasoning are similar but different constructs that include various types of higher-order cognitive processes, metacognitive strategies, and dispositions involved in making meaning of information. Critical thinking is generally understood as the broader construct ( Holyoak and Morrison, 2005 ), comprising an array of cognitive processes and dispostions that are drawn upon differentially in everyday life and across domains of inquiry such as the natural sciences, social sciences, and humanities. Scientific reasoning, then, may be interpreted as the subset of critical-thinking skills (cognitive and metacognitive processes and dispositions) that 1) are involved in making meaning of information in scientific domains and 2) support the epistemological commitment to scientific methodology and paradigm(s).

Although there has been an enduring focus in higher education on promoting critical thinking and reasoning as general or “transferable” skills, research evidence provides increasing support for the view that reasoning and critical thinking are also situational or domain specific ( Beyer et al. , 2013 ). Some researchers, such as Lawson (2010) , present frameworks in which science reasoning is characterized explicitly in terms of critical-thinking skills. There are, however, limited coherent frameworks and empirical evidence regarding either the general or domain-specific interrelationships of scientific reasoning, as it is most broadly defined, and critical-thinking skills.

The Vision and Change in Undergraduate Biology Education Initiative provides a framework for thinking about these constructs and their interrelationship in the context of the core competencies and disciplinary practice they describe ( American Association for the Advancement of Science, 2011 ). These learning objectives aim for undergraduates to “understand the process of science, the interdisciplinary nature of the new biology and how science is closely integrated within society; be competent in communication and collaboration; have quantitative competency and a basic ability to interpret data; and have some experience with modeling, simulation and computational and systems level approaches as well as with using large databases” ( Woodin et al. , 2010 , pp. 71–72). This framework makes clear that science reasoning and critical-thinking skills play key roles in major learning outcomes; for example, “understanding the process of science” requires students to engage in (and be metacognitive about) scientific reasoning, and having the “ability to interpret data” requires critical-thinking skills. To help students better achieve these core competencies, we must better understand the interrelationships of their composite parts. Thus, the next step is to determine which specific critical-thinking skills are drawn upon when students engage in science reasoning in general and with regard to the particular scientific domain being studied. Such a determination could be applied to improve science education for both majors and nonmajors through pedagogical approaches that foster critical-thinking skills that are most relevant to science reasoning.

Writing affords one of the most effective means for making thinking visible ( Reynolds et al. , 2012 ) and learning how to “think like” and “write like” disciplinary experts ( Meizlish et al. , 2013 ). As a result, student writing affords the opportunities to both foster and examine the interrelationship of scientific reasoning and critical-thinking skills within and across disciplinary contexts. The purpose of this study was to better understand the relationship between students’ critical-thinking skills and scientific reasoning skills as reflected in the genre of undergraduate thesis writing in biology departments at two research universities, the University of Minnesota and Duke University.

In the following subsections, we discuss in greater detail the constructs of scientific reasoning and critical thinking, as well as the assessment of scientific reasoning in students’ thesis writing. In subsequent sections, we discuss our study design, findings, and the implications for enhancing educational practices.

Critical Thinking

The advances in cognitive science in the 21st century have increased our understanding of the mental processes involved in thinking and reasoning, as well as memory, learning, and problem solving. Critical thinking is understood to include both a cognitive dimension and a disposition dimension (e.g., reflective thinking) and is defined as “purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considera­tions upon which that judgment is based” ( Facione, 1990, p. 3 ). Although various other definitions of critical thinking have been proposed, researchers have generally coalesced on this consensus: expert view ( Blattner and Frazier, 2002 ; Condon and Kelly-Riley, 2004 ; Bissell and Lemons, 2006 ; Quitadamo and Kurtz, 2007 ) and the corresponding measures of critical-­thinking skills ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ).

Both the cognitive skills and dispositional components of critical thinking have been recognized as important to science education ( Quitadamo and Kurtz, 2007 ). Empirical research demonstrates that specific pedagogical practices in science courses are effective in fostering students’ critical-thinking skills. Quitadamo and Kurtz (2007) found that students who engaged in a laboratory writing component in the context of a general education biology course significantly improved their overall critical-thinking skills (and their analytical and inference skills, in particular), whereas students engaged in a traditional quiz-based laboratory did not improve their critical-thinking skills. In related work, Quitadamo et al. (2008) found that a community-based inquiry experience, involving inquiry, writing, research, and analysis, was associated with improved critical thinking in a biology course for nonmajors, compared with traditionally taught sections. In both studies, students who exhibited stronger presemester critical-thinking skills exhibited stronger gains, suggesting that “students who have not been explicitly taught how to think critically may not reach the same potential as peers who have been taught these skills” ( Quitadamo and Kurtz, 2007 , p. 151).

Recently, Stephenson and Sadler-McKnight (2016) found that first-year general chemistry students who engaged in a science writing heuristic laboratory, which is an inquiry-based, writing-to-learn approach to instruction ( Hand and Keys, 1999 ), had significantly greater gains in total critical-thinking scores than students who received traditional laboratory instruction. Each of the four components—inquiry, writing, collaboration, and reflection—have been linked to critical thinking ( Stephenson and Sadler-McKnight, 2016 ). Like the other studies, this work highlights the value of targeting critical-thinking skills and the effectiveness of an inquiry-based, writing-to-learn approach to enhance critical thinking. Across studies, authors advocate adopting critical thinking as the course framework ( Pukkila, 2004 ) and developing explicit examples of how critical thinking relates to the scientific method ( Miri et al. , 2007 ).

In these examples, the important connection between writing and critical thinking is highlighted by the fact that each intervention involves the incorporation of writing into science, technology, engineering, and mathematics education (either alone or in combination with other pedagogical practices). However, critical-thinking skills are not always the primary learning outcome; in some contexts, scientific reasoning is the primary outcome that is assessed.

Scientific Reasoning

Scientific reasoning is a complex process that is broadly defined as “the skills involved in inquiry, experimentation, evidence evaluation, and inference that are done in the service of conceptual change or scientific understanding” ( Zimmerman, 2007 , p. 172). Scientific reasoning is understood to include both conceptual knowledge and the cognitive processes involved with generation of hypotheses (i.e., inductive processes involved in the generation of hypotheses and the deductive processes used in the testing of hypotheses), experimentation strategies, and evidence evaluation strategies. These dimensions are interrelated, in that “experimentation and inference strategies are selected based on prior conceptual knowledge of the domain” ( Zimmerman, 2000 , p. 139). Furthermore, conceptual and procedural knowledge and cognitive process dimensions can be general and domain specific (or discipline specific).

With regard to conceptual knowledge, attention has been focused on the acquisition of core methodological concepts fundamental to scientists’ causal reasoning and metacognitive distancing (or decontextualized thinking), which is the ability to reason independently of prior knowledge or beliefs ( Greenhoot et al. , 2004 ). The latter involves what Kuhn and Dean (2004) refer to as the coordination of theory and evidence, which requires that one question existing theories (i.e., prior knowledge and beliefs), seek contradictory evidence, eliminate alternative explanations, and revise one’s prior beliefs in the face of contradictory evidence. Kuhn and colleagues (2008) further elaborate that scientific thinking requires “a mature understanding of the epistemological foundations of science, recognizing scientific knowledge as constructed by humans rather than simply discovered in the world,” and “the ability to engage in skilled argumentation in the scientific domain, with an appreciation of argumentation as entailing the coordination of theory and evidence” ( Kuhn et al. , 2008 , p. 435). “This approach to scientific reasoning not only highlights the skills of generating and evaluating evidence-based inferences, but also encompasses epistemological appreciation of the functions of evidence and theory” ( Ding et al. , 2016 , p. 616). Evaluating evidence-based inferences involves epistemic cognition, which Moshman (2015) defines as the subset of metacognition that is concerned with justification, truth, and associated forms of reasoning. Epistemic cognition is both general and domain specific (or discipline specific; Moshman, 2015 ).

There is empirical support for the contributions of both prior knowledge and an understanding of the epistemological foundations of science to scientific reasoning. In a study of undergraduate science students, advanced scientific reasoning was most often accompanied by accurate prior knowledge as well as sophisticated epistemological commitments; additionally, for students who had comparable levels of prior knowledge, skillful reasoning was associated with a strong epistemological commitment to the consistency of theory with evidence ( Zeineddin and Abd-El-Khalick, 2010 ). These findings highlight the importance of the need for instructional activities that intentionally help learners develop sophisticated epistemological commitments focused on the nature of knowledge and the role of evidence in supporting knowledge claims ( Zeineddin and Abd-El-Khalick, 2010 ).

Scientific Reasoning in Students’ Thesis Writing

Pedagogical approaches that incorporate writing have also focused on enhancing scientific reasoning. Many rubrics have been developed to assess aspects of scientific reasoning in written artifacts. For example, Timmerman and colleagues (2011) , in the course of describing their own rubric for assessing scientific reasoning, highlight several examples of scientific reasoning assessment criteria ( Haaga, 1993 ; Tariq et al. , 1998 ; Topping et al. , 2000 ; Kelly and Takao, 2002 ; Halonen et al. , 2003 ; Willison and O’Regan, 2007 ).

At both the University of Minnesota and Duke University, we have focused on the genre of the undergraduate honors thesis as the rhetorical context in which to study and improve students’ scientific reasoning and writing. We view the process of writing an undergraduate honors thesis as a form of professional development in the sciences (i.e., a way of engaging students in the practices of a community of discourse). We have found that structured courses designed to scaffold the thesis-­writing process and promote metacognition can improve writing and reasoning skills in biology, chemistry, and economics ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In the context of this prior work, we have defined scientific reasoning in writing as the emergent, underlying construct measured across distinct aspects of students’ written discussion of independent research in their undergraduate theses.

The Biology Thesis Assessment Protocol (BioTAP) was developed at Duke University as a tool for systematically guiding students and faculty through a “draft–feedback–revision” writing process, modeled after professional scientific peer-review processes ( Reynolds et al. , 2009 ). BioTAP includes activities and worksheets that allow students to engage in critical peer review and provides detailed descriptions, presented as rubrics, of the questions (i.e., dimensions, shown in Table 1 ) upon which such review should focus. Nine rubric dimensions focus on communication to the broader scientific community, and four rubric dimensions focus on the accuracy and appropriateness of the research. These rubric dimensions provide criteria by which the thesis is assessed, and therefore allow BioTAP to be used as an assessment tool as well as a teaching resource ( Reynolds et al. , 2009 ). Full details are available at www.science-writing.org/biotap.html .

Theses assessment protocol dimensions

In previous work, we have used BioTAP to quantitatively assess students’ undergraduate honors theses and explore the relationship between thesis-writing courses (or specific interventions within the courses) and the strength of students’ science reasoning in writing across different science disciplines: biology ( Reynolds and Thompson, 2011 ); chemistry ( Dowd et al. , 2015b ); and economics ( Dowd et al. , 2015a ). We have focused exclusively on the nine dimensions related to reasoning and writing (questions 1–9), as the other four dimensions (questions 10–13) require topic-specific expertise and are intended to be used by the student’s thesis supervisor.

Beyond considering individual dimensions, we have investigated whether meaningful constructs underlie students’ thesis scores. We conducted exploratory factor analysis of students’ theses in biology, economics, and chemistry and found one dominant underlying factor in each discipline; we termed the factor “scientific reasoning in writing” ( Dowd et al. , 2015a , b , 2016 ). That is, each of the nine dimensions could be understood as reflecting, in different ways and to different degrees, the construct of scientific reasoning in writing. The findings indicated evidence of both general and discipline-specific components to scientific reasoning in writing that relate to epistemic beliefs and paradigms, in keeping with broader ideas about science reasoning discussed earlier. Specifically, scientific reasoning in writing is more strongly associated with formulating a compelling argument for the significance of the research in the context of current literature in biology, making meaning regarding the implications of the findings in chemistry, and providing an organizational framework for interpreting the thesis in economics. We suggested that instruction, whether occurring in writing studios or in writing courses to facilitate thesis preparation, should attend to both components.

Research Question and Study Design

The genre of thesis writing combines the pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-­McKnight, 2016 ). However, there is no empirical evidence regarding the general or domain-specific interrelationships of scientific reasoning and critical-thinking skills, particularly in the rhetorical context of the undergraduate thesis. The BioTAP studies discussed earlier indicate that the rubric-based assessment produces evidence of scientific reasoning in the undergraduate thesis, but it was not designed to foster or measure critical thinking. The current study was undertaken to address the research question: How are students’ critical-thinking skills related to scientific reasoning as reflected in the genre of undergraduate thesis writing in biology? Determining these interrelationships could guide efforts to enhance students’ scientific reasoning and writing skills through focusing instruction on specific critical-thinking skills as well as disciplinary conventions.

To address this research question, we focused on undergraduate thesis writers in biology courses at two institutions, Duke University and the University of Minnesota, and examined the extent to which students’ scientific reasoning in writing, assessed in the undergraduate thesis using BioTAP, corresponds to students’ critical-thinking skills, assessed using the California Critical Thinking Skills Test (CCTST; August, 2016 ).

Study Sample

The study sample was composed of students enrolled in courses designed to scaffold the thesis-writing process in the Department of Biology at Duke University and the College of Biological Sciences at the University of Minnesota. Both courses complement students’ individual work with research advisors. The course is required for thesis writers at the University of Minnesota and optional for writers at Duke University. Not all students are required to complete a thesis, though it is required for students to graduate with honors; at the University of Minnesota, such students are enrolled in an honors program within the college. In total, 28 students were enrolled in the course at Duke University and 44 students were enrolled in the course at the University of Minnesota. Of those students, two students did not consent to participate in the study; additionally, five students did not validly complete the CCTST (i.e., attempted fewer than 60% of items or completed the test in less than 15 minutes). Thus, our overall rate of valid participation is 90%, with 27 students from Duke University and 38 students from the University of Minnesota. We found no statistically significant differences in thesis assessment between students with valid CCTST scores and invalid CCTST scores. Therefore, we focus on the 65 students who consented to participate and for whom we have complete and valid data in most of this study. Additionally, in asking students for their consent to participate, we allowed them to choose whether to provide or decline access to academic and demographic background data. Of the 65 students who consented to participate, 52 students granted access to such data. Therefore, for additional analyses involving academic and background data, we focus on the 52 students who consented. We note that the 13 students who participated but declined to share additional data performed slightly lower on the CCTST than the 52 others (perhaps suggesting that they differ by other measures, but we cannot determine this with certainty). Among the 52 students, 60% identified as female and 10% identified as being from underrepresented ethnicities.

In both courses, students completed the CCTST online, either in class or on their own, late in the Spring 2016 semester. This is the same assessment that was used in prior studies of critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). It is “an objective measure of the core reasoning skills needed for reflective decision making concerning what to believe or what to do” ( Insight Assessment, 2016a ). In the test, students are asked to read and consider information as they answer multiple-choice questions. The questions are intended to be appropriate for all users, so there is no expectation of prior disciplinary knowledge in biology (or any other subject). Although actual test items are protected, sample items are available on the Insight Assessment website ( Insight Assessment, 2016b ). We have included one sample item in the Supplemental Material.

The CCTST is based on a consensus definition of critical thinking, measures cognitive and metacognitive skills associated with critical thinking, and has been evaluated for validity and reliability at the college level ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ). In addition to providing overall critical-thinking score, the CCTST assesses seven dimensions of critical thinking: analysis, interpretation, inference, evaluation, explanation, induction, and deduction. Scores on each dimension are calculated based on students’ performance on items related to that dimension. Analysis focuses on identifying assumptions, reasons, and claims and examining how they interact to form arguments. Interpretation, related to analysis, focuses on determining the precise meaning and significance of information. Inference focuses on drawing conclusions from reasons and evidence. Evaluation focuses on assessing the credibility of sources of information and claims they make. Explanation, related to evaluation, focuses on describing the evidence, assumptions, or rationale for beliefs and conclusions. Induction focuses on drawing inferences about what is probably true based on evidence. Deduction focuses on drawing conclusions about what must be true when the context completely determines the outcome. These are not independent dimensions; the fact that they are related supports their collective interpretation as critical thinking. Together, the CCTST dimensions provide a basis for evaluating students’ overall strength in using reasoning to form reflective judgments about what to believe or what to do ( August, 2016 ). Each of the seven dimensions and the overall CCTST score are measured on a scale of 0–100, where higher scores indicate superior performance. Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and below) skills.

Scientific Reasoning in Writing

At the end of the semester, students’ final, submitted undergraduate theses were assessed using BioTAP, which consists of nine rubric dimensions that focus on communication to the broader scientific community and four additional dimensions that focus on the exhibition of topic-specific expertise ( Reynolds et al. , 2009 ). These dimensions, framed as questions, are displayed in Table 1 .

Student theses were assessed on questions 1–9 of BioTAP using the same procedures described in previous studies ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In this study, six raters were trained in the valid, reliable use of BioTAP rubrics. Each dimension was rated on a five-point scale: 1 indicates the dimension is missing, incomplete, or below acceptable standards; 3 indicates that the dimension is adequate but not exhibiting mastery; and 5 indicates that the dimension is excellent and exhibits mastery (intermediate ratings of 2 and 4 are appropriate when different parts of the thesis make a single category challenging). After training, two raters independently assessed each thesis and then discussed their independent ratings with one another to form a consensus rating. The consensus score is not an average score, but rather an agreed-upon, discussion-based score. On a five-point scale, raters independently assessed dimensions to be within 1 point of each other 82.4% of the time before discussion and formed consensus ratings 100% of the time after discussion.

In this study, we consider both categorical (mastery/nonmastery, where a score of 5 corresponds to mastery) and numerical treatments of individual BioTAP scores to better relate the manifestation of critical thinking in BioTAP assessment to all of the prior studies. For comprehensive/cumulative measures of BioTAP, we focus on the partial sum of questions 1–5, as these questions relate to higher-order scientific reasoning (whereas questions 6–9 relate to mid- and lower-order writing mechanics [ Reynolds et al. , 2009 ]), and the factor scores (i.e., numerical representations of the extent to which each student exhibits the underlying factor), which are calculated from the factor loadings published by Dowd et al. (2016) . We do not focus on questions 6–9 individually in statistical analyses, because we do not expect critical-thinking skills to relate to mid- and lower-order writing skills.

The final, submitted thesis reflects the student’s writing, the student’s scientific reasoning, the quality of feedback provided to the student by peers and mentors, and the student’s ability to incorporate that feedback into his or her work. Therefore, our assessment is not the same as an assessment of unpolished, unrevised samples of students’ written work. While one might imagine that such an unpolished sample may be more strongly correlated with critical-thinking skills measured by the CCTST, we argue that the complete, submitted thesis, assessed using BioTAP, is ultimately a more appropriate reflection of how students exhibit science reasoning in the scientific community.

Statistical Analyses

We took several steps to analyze the collected data. First, to provide context for subsequent interpretations, we generated descriptive statistics for the CCTST scores of the participants based on the norms for undergraduate CCTST test takers. To determine the strength of relationships among CCTST dimensions (including overall score) and the BioTAP dimensions, partial-sum score (questions 1–5), and factor score, we calculated Pearson’s correlations for each pair of measures. To examine whether falling on one side of the nonmastery/mastery threshold (as opposed to a linear scale of performance) was related to critical thinking, we grouped BioTAP dimensions into categories (mastery/nonmastery) and conducted Student’s t tests to compare the means scores of the two groups on each of the seven dimensions and overall score of the CCTST. Finally, for the strongest relationship that emerged, we included additional academic and background variables as covariates in multiple linear-regression analysis to explore questions about how much observed relationships between critical-thinking skills and science reasoning in writing might be explained by variation in these other factors.

Although BioTAP scores represent discreet, ordinal bins, the five-point scale is intended to capture an underlying continuous construct (from inadequate to exhibiting mastery). It has been argued that five categories is an appropriate cutoff for treating ordinal variables as pseudo-continuous ( Rhemtulla et al. , 2012 )—and therefore using continuous-variable statistical methods (e.g., Pearson’s correlations)—as long as the underlying assumption that ordinal scores are linearly distributed is valid. Although we have no way to statistically test this assumption, we interpret adequate scores to be approximately halfway between inadequate and mastery scores, resulting in a linear scale. In part because this assumption is subject to disagreement, we also consider and interpret a categorical (mastery/nonmastery) treatment of BioTAP variables.

We corrected for multiple comparisons using the Holm-Bonferroni method ( Holm, 1979 ). At the most general level, where we consider the single, comprehensive measures for BioTAP (partial-sum and factor score) and the CCTST (overall score), there is no need to correct for multiple comparisons, because the multiple, individual dimensions are collapsed into single dimensions. When we considered individual CCTST dimensions in relation to comprehensive measures for BioTAP, we accounted for seven comparisons; similarly, when we considered individual dimensions of BioTAP in relation to overall CCTST score, we accounted for five comparisons. When all seven CCTST and five BioTAP dimensions were examined individually and without prior knowledge, we accounted for 35 comparisons; such a rigorous threshold is likely to reject weak and moderate relationships, but it is appropriate if there are no specific pre-existing hypotheses. All p values are presented in tables for complete transparency, and we carefully consider the implications of our interpretation of these data in the Discussion section.

CCTST scores for students in this sample ranged from the 39th to 99th percentile of the general population of undergraduate CCTST test takers (mean percentile = 84.3, median = 85th percentile; Table 2 ); these percentiles reflect overall scores that range from moderate to superior. Scores on individual dimensions and overall scores were sufficiently normal and far enough from the ceiling of the scale to justify subsequent statistical analyses.

Descriptive statistics of CCTST dimensions a

a Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and lower) skills.

The Pearson’s correlations between students’ cumulative scores on BioTAP (the factor score based on loadings published by Dowd et al. , 2016 , and the partial sum of scores on questions 1–5) and students’ overall scores on the CCTST are presented in Table 3 . We found that the partial-sum measure of BioTAP was significantly related to the overall measure of critical thinking ( r = 0.27, p = 0.03), while the BioTAP factor score was marginally related to overall CCTST ( r = 0.24, p = 0.05). When we looked at relationships between comprehensive BioTAP measures and scores for individual dimensions of the CCTST ( Table 3 ), we found significant positive correlations between the both BioTAP partial-sum and factor scores and CCTST inference ( r = 0.45, p < 0.001, and r = 0.41, p < 0.001, respectively). Although some other relationships have p values below 0.05 (e.g., the correlations between BioTAP partial-sum scores and CCTST induction and interpretation scores), they are not significant when we correct for multiple comparisons.

Correlations between dimensions of CCTST and dimensions of BioTAP a

a In each cell, the top number is the correlation, and the bottom, italicized number is the associated p value. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

b This is the partial sum of BioTAP scores on questions 1–5.

c This is the factor score calculated from factor loadings published by Dowd et al. (2016) .

When we expanded comparisons to include all 35 potential correlations among individual BioTAP and CCTST dimensions—and, accordingly, corrected for 35 comparisons—we did not find any additional statistically significant relationships. The Pearson’s correlations between students’ scores on each dimension of BioTAP and students’ scores on each dimension of the CCTST range from −0.11 to 0.35 ( Table 3 ); although the relationship between discussion of implications (BioTAP question 5) and inference appears to be relatively large ( r = 0.35), it is not significant ( p = 0.005; the Holm-Bonferroni cutoff is 0.00143). We found no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions (unpublished data), regardless of whether we correct for multiple comparisons.

The results of Student’s t tests comparing scores on each dimension of the CCTST of students who exhibit mastery with those of students who do not exhibit mastery on each dimension of BioTAP are presented in Table 4 . Focusing first on the overall CCTST scores, we found that the difference between those who exhibit mastery and those who do not in discussing implications of results (BioTAP question 5) is statistically significant ( t = 2.73, p = 0.008, d = 0.71). When we expanded t tests to include all 35 comparisons—and, like above, corrected for 35 comparisons—we found a significant difference in inference scores between students who exhibit mastery on question 5 and students who do not ( t = 3.41, p = 0.0012, d = 0.88), as well as a marginally significant difference in these students’ induction scores ( t = 3.26, p = 0.0018, d = 0.84; the Holm-Bonferroni cutoff is p = 0.00147). Cohen’s d effect sizes, which reveal the strength of the differences for statistically significant relationships, range from 0.71 to 0.88.

The t statistics and effect sizes of differences in ­dimensions of CCTST across dimensions of BioTAP a

a In each cell, the top number is the t statistic for each comparison, and the middle, italicized number is the associated p value. The bottom number is the effect size. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

Finally, we more closely examined the strongest relationship that we observed, which was between the CCTST dimension of inference and the BioTAP partial-sum composite score (shown in Table 3 ), using multiple regression analysis ( Table 5 ). Focusing on the 52 students for whom we have background information, we looked at the simple relationship between BioTAP and inference (model 1), a robust background model including multiple covariates that one might expect to explain some part of the variation in BioTAP (model 2), and a combined model including all variables (model 3). As model 3 shows, the covariates explain very little variation in BioTAP scores, and the relationship between inference and BioTAP persists even in the presence of all of the covariates.

Partial sum (questions 1–5) of BioTAP scores ( n = 52)

** p < 0.01.

*** p < 0.001.

The aim of this study was to examine the extent to which the various components of scientific reasoning—manifested in writing in the genre of undergraduate thesis and assessed using BioTAP—draw on general and specific critical-thinking skills (assessed using CCTST) and to consider the implications for educational practices. Although science reasoning involves critical-thinking skills, it also relates to conceptual knowledge and the epistemological foundations of science disciplines ( Kuhn et al. , 2008 ). Moreover, science reasoning in writing , captured in students’ undergraduate theses, reflects habits, conventions, and the incorporation of feedback that may alter evidence of individuals’ critical-thinking skills. Our findings, however, provide empirical evidence that cumulative measures of science reasoning in writing are nonetheless related to students’ overall critical-thinking skills ( Table 3 ). The particularly significant roles of inference skills ( Table 3 ) and the discussion of implications of results (BioTAP question 5; Table 4 ) provide a basis for more specific ideas about how these constructs relate to one another and what educational interventions may have the most success in fostering these skills.

Our results build on previous findings. The genre of thesis writing combines pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). Quitadamo and Kurtz (2007) reported that students who engaged in a laboratory writing component in a general education biology course significantly improved their inference and analysis skills, and Quitadamo and colleagues (2008) found that participation in a community-based inquiry biology course (that included a writing component) was associated with significant gains in students’ inference and evaluation skills. The shared focus on inference is noteworthy, because these prior studies actually differ from the current study; the former considered critical-­thinking skills as the primary learning outcome of writing-­focused interventions, whereas the latter focused on emergent links between two learning outcomes (science reasoning in writing and critical thinking). In other words, inference skills are impacted by writing as well as manifested in writing.

Inference focuses on drawing conclusions from argument and evidence. According to the consensus definition of critical thinking, the specific skill of inference includes several processes: querying evidence, conjecturing alternatives, and drawing conclusions. All of these activities are central to the independent research at the core of writing an undergraduate thesis. Indeed, a critical part of what we call “science reasoning in writing” might be characterized as a measure of students’ ability to infer and make meaning of information and findings. Because the cumulative BioTAP measures distill underlying similarities and, to an extent, suppress unique aspects of individual dimensions, we argue that it is appropriate to relate inference to scientific reasoning in writing . Even when we control for other potentially relevant background characteristics, the relationship is strong ( Table 5 ).

In taking the complementary view and focusing on BioTAP, when we compared students who exhibit mastery with those who do not, we found that the specific dimension of “discussing the implications of results” (question 5) differentiates students’ performance on several critical-thinking skills. To achieve mastery on this dimension, students must make connections between their results and other published studies and discuss the future directions of the research; in short, they must demonstrate an understanding of the bigger picture. The specific relationship between question 5 and inference is the strongest observed among all individual comparisons. Altogether, perhaps more than any other BioTAP dimension, this aspect of students’ writing provides a clear view of the role of students’ critical-thinking skills (particularly inference and, marginally, induction) in science reasoning.

While inference and discussion of implications emerge as particularly strongly related dimensions in this work, we note that the strongest contribution to “science reasoning in writing in biology,” as determined through exploratory factor analysis, is “argument for the significance of research” (BioTAP question 2, not question 5; Dowd et al. , 2016 ). Question 2 is not clearly related to critical-thinking skills. These findings are not contradictory, but rather suggest that the epistemological and disciplinary-specific aspects of science reasoning that emerge in writing through BioTAP are not completely aligned with aspects related to critical thinking. In other words, science reasoning in writing is not simply a proxy for those critical-thinking skills that play a role in science reasoning.

In a similar vein, the content-related, epistemological aspects of science reasoning, as well as the conventions associated with writing the undergraduate thesis (including feedback from peers and revision), may explain the lack of significant relationships between some science reasoning dimensions and some critical-thinking skills that might otherwise seem counterintuitive (e.g., BioTAP question 2, which relates to making an argument, and the critical-thinking skill of argument). It is possible that an individual’s critical-thinking skills may explain some variation in a particular BioTAP dimension, but other aspects of science reasoning and practice exert much stronger influence. Although these relationships do not emerge in our analyses, the lack of significant correlation does not mean that there is definitively no correlation. Correcting for multiple comparisons suppresses type 1 error at the expense of exacerbating type 2 error, which, combined with the limited sample size, constrains statistical power and makes weak relationships more difficult to detect. Ultimately, though, the relationships that do emerge highlight places where individuals’ distinct critical-thinking skills emerge most coherently in thesis assessment, which is why we are particularly interested in unpacking those relationships.

We recognize that, because only honors students submit theses at these institutions, this study sample is composed of a selective subset of the larger population of biology majors. Although this is an inherent limitation of focusing on thesis writing, links between our findings and results of other studies (with different populations) suggest that observed relationships may occur more broadly. The goal of improved science reasoning and critical thinking is shared among all biology majors, particularly those engaged in capstone research experiences. So while the implications of this work most directly apply to honors thesis writers, we provisionally suggest that all students could benefit from further study of them.

There are several important implications of this study for science education practices. Students’ inference skills relate to the understanding and effective application of scientific content. The fact that we find no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions suggests that such mid- to lower-order elements of BioTAP ( Reynolds et al. , 2009 ), which tend to be more structural in nature, do not focus on aspects of the finished thesis that draw strongly on critical thinking. In keeping with prior analyses ( Reynolds and Thompson, 2011 ; Dowd et al. , 2016 ), these findings further reinforce the notion that disciplinary instructors, who are most capable of teaching and assessing scientific reasoning and perhaps least interested in the more mechanical aspects of writing, may nonetheless be best suited to effectively model and assess students’ writing.

The goal of the thesis writing course at both Duke University and the University of Minnesota is not merely to improve thesis scores but to move students’ writing into the category of mastery across BioTAP dimensions. Recognizing that students with differing critical-thinking skills (particularly inference) are more or less likely to achieve mastery in the undergraduate thesis (particularly in discussing implications [question 5]) is important for developing and testing targeted pedagogical interventions to improve learning outcomes for all students.

The competencies characterized by the Vision and Change in Undergraduate Biology Education Initiative provide a general framework for recognizing that science reasoning and critical-thinking skills play key roles in major learning outcomes of science education. Our findings highlight places where science reasoning–related competencies (like “understanding the process of science”) connect to critical-thinking skills and places where critical thinking–related competencies might be manifested in scientific products (such as the ability to discuss implications in scientific writing). We encourage broader efforts to build empirical connections between competencies and pedagogical practices to further improve science education.

One specific implication of this work for science education is to focus on providing opportunities for students to develop their critical-thinking skills (particularly inference). Of course, as this correlational study is not designed to test causality, we do not claim that enhancing students’ inference skills will improve science reasoning in writing. However, as prior work shows that science writing activities influence students’ inference skills ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ), there is reason to test such a hypothesis. Nevertheless, the focus must extend beyond inference as an isolated skill; rather, it is important to relate inference to the foundations of the scientific method ( Miri et al. , 2007 ) in terms of the epistemological appreciation of the functions and coordination of evidence ( Kuhn and Dean, 2004 ; Zeineddin and Abd-El-Khalick, 2010 ; Ding et al. , 2016 ) and disciplinary paradigms of truth and justification ( Moshman, 2015 ).

Although this study is limited to the domain of biology at two institutions with a relatively small number of students, the findings represent a foundational step in the direction of achieving success with more integrated learning outcomes. Hopefully, it will spur greater interest in empirically grounding discussions of the constructs of scientific reasoning and critical-thinking skills.

This study contributes to the efforts to improve science education, for both majors and nonmajors, through an empirically driven analysis of the relationships between scientific reasoning reflected in the genre of thesis writing and critical-thinking skills. This work is rooted in the usefulness of BioTAP as a method 1) to facilitate communication and learning and 2) to assess disciplinary-specific and general dimensions of science reasoning. The findings support the important role of the critical-thinking skill of inference in scientific reasoning in writing, while also highlighting ways in which other aspects of science reasoning (epistemological considerations, writing conventions, etc.) are not significantly related to critical thinking. Future research into the impact of interventions focused on specific critical-thinking skills (i.e., inference) for improved science reasoning in writing will build on this work and its implications for science education.

Supplementary Material

Acknowledgments.

We acknowledge the contributions of Kelaine Haas and Alexander Motten to the implementation and collection of data. We also thank Mine Çetinkaya-­Rundel for her insights regarding our statistical analyses. This research was funded by National Science Foundation award DUE-1525602.

  • American Association for the Advancement of Science. (2011). Vision and change in undergraduate biology education: A call to action . Washington, DC: Retrieved September 26, 2017, from https://visionandchange.org/files/2013/11/aaas-VISchange-web1113.pdf . [ Google Scholar ]
  • August D. (2016). California Critical Thinking Skills Test user manual and resource guide . San Jose: Insight Assessment/California Academic Press. [ Google Scholar ]
  • Beyer C. H., Taylor E., Gillmore G. M. (2013). Inside the undergraduate teaching experience: The University of Washington’s growth in faculty teaching study . Albany, NY: SUNY Press. [ Google Scholar ]
  • Bissell A. N., Lemons P. P. (2006). A new method for assessing critical thinking in the classroom . BioScience , ( 1 ), 66–72. https://doi.org/10.1641/0006-3568(2006)056[0066:ANMFAC]2.0.CO;2 . [ Google Scholar ]
  • Blattner N. H., Frazier C. L. (2002). Developing a performance-based assessment of students’ critical thinking skills . Assessing Writing , ( 1 ), 47–64. [ Google Scholar ]
  • Clase K. L., Gundlach E., Pelaez N. J. (2010). Calibrated peer review for computer-assisted learning of biological research competencies . Biochemistry and Molecular Biology Education , ( 5 ), 290–295. [ PubMed ] [ Google Scholar ]
  • Condon W., Kelly-Riley D. (2004). Assessing and teaching what we value: The relationship between college-level writing and critical thinking abilities . Assessing Writing , ( 1 ), 56–75. https://doi.org/10.1016/j.asw.2004.01.003 . [ Google Scholar ]
  • Ding L., Wei X., Liu X. (2016). Variations in university students’ scientific reasoning skills across majors, years, and types of institutions . Research in Science Education , ( 5 ), 613–632. https://doi.org/10.1007/s11165-015-9473-y . [ Google Scholar ]
  • Dowd J. E., Connolly M. P., Thompson R. J., Jr., Reynolds J. A. (2015a). Improved reasoning in undergraduate writing through structured workshops . Journal of Economic Education , ( 1 ), 14–27. https://doi.org/10.1080/00220485.2014.978924 . [ Google Scholar ]
  • Dowd J. E., Roy C. P., Thompson R. J., Jr., Reynolds J. A. (2015b). “On course” for supporting expanded participation and improving scientific reasoning in undergraduate thesis writing . Journal of Chemical Education , ( 1 ), 39–45. https://doi.org/10.1021/ed500298r . [ Google Scholar ]
  • Dowd J. E., Thompson R. J., Jr., Reynolds J. A. (2016). Quantitative genre analysis of undergraduate theses: Uncovering different ways of writing and thinking in science disciplines . WAC Journal , , 36–51. [ Google Scholar ]
  • Facione P. A. (1990). Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations . Newark, DE: American Philosophical Association; Retrieved September 26, 2017, from https://philpapers.org/archive/FACCTA.pdf . [ Google Scholar ]
  • Gerdeman R. D., Russell A. A., Worden K. J., Gerdeman R. D., Russell A. A., Worden K. J. (2007). Web-based student writing and reviewing in a large biology lecture course . Journal of College Science Teaching , ( 5 ), 46–52. [ Google Scholar ]
  • Greenhoot A. F., Semb G., Colombo J., Schreiber T. (2004). Prior beliefs and methodological concepts in scientific reasoning . Applied Cognitive Psychology , ( 2 ), 203–221. https://doi.org/10.1002/acp.959 . [ Google Scholar ]
  • Haaga D. A. F. (1993). Peer review of term papers in graduate psychology courses . Teaching of Psychology , ( 1 ), 28–32. https://doi.org/10.1207/s15328023top2001_5 . [ Google Scholar ]
  • Halonen J. S., Bosack T., Clay S., McCarthy M., Dunn D. S., Hill G. W., Whitlock K. (2003). A rubric for learning, teaching, and assessing scientific inquiry in psychology . Teaching of Psychology , ( 3 ), 196–208. https://doi.org/10.1207/S15328023TOP3003_01 . [ Google Scholar ]
  • Hand B., Keys C. W. (1999). Inquiry investigation . Science Teacher , ( 4 ), 27–29. [ Google Scholar ]
  • Holm S. (1979). A simple sequentially rejective multiple test procedure . Scandinavian Journal of Statistics , ( 2 ), 65–70. [ Google Scholar ]
  • Holyoak K. J., Morrison R. G. (2005). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press. [ Google Scholar ]
  • Insight Assessment. (2016a). California Critical Thinking Skills Test (CCTST) Retrieved September 26, 2017, from www.insightassessment.com/Products/Products-Summary/Critical-Thinking-Skills-Tests/California-Critical-Thinking-Skills-Test-CCTST .
  • Insight Assessment. (2016b). Sample thinking skills questions. Retrieved September 26, 2017, from www.insightassessment.com/Resources/Teaching-Training-and-Learning-Tools/node_1487 .
  • Kelly G. J., Takao A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing . Science Education , ( 3 ), 314–342. https://doi.org/10.1002/sce.10024 . [ Google Scholar ]
  • Kuhn D., Dean D., Jr. (2004). Connecting scientific reasoning and causal inference . Journal of Cognition and Development , ( 2 ), 261–288. https://doi.org/10.1207/s15327647jcd0502_5 . [ Google Scholar ]
  • Kuhn D., Iordanou K., Pease M., Wirkala C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? . Cognitive Development , ( 4 ), 435–451. https://doi.org/10.1016/j.cogdev.2008.09.006 . [ Google Scholar ]
  • Lawson A. E. (2010). Basic inferences of scientific reasoning, argumentation, and discovery . Science Education , ( 2 ), 336–364. https://doi.org/­10.1002/sce.20357 . [ Google Scholar ]
  • Meizlish D., LaVaque-Manty D., Silver N., Kaplan M. (2013). Think like/write like: Metacognitive strategies to foster students’ development as disciplinary thinkers and writers . In Thompson R. J. (Ed.), Changing the conversation about higher education (pp. 53–73). Lanham, MD: Rowman & Littlefield. [ Google Scholar ]
  • Miri B., David B.-C., Uri Z. (2007). Purposely teaching for the promotion of higher-order thinking skills: A case of critical thinking . Research in Science Education , ( 4 ), 353–369. https://doi.org/10.1007/s11165-006-9029-2 . [ Google Scholar ]
  • Moshman D. (2015). Epistemic cognition and development: The psychology of justification and truth . New York: Psychology Press. [ Google Scholar ]
  • National Research Council. (2000). How people learn: Brain, mind, experience, and school . Expanded ed. Washington, DC: National Academies Press. [ Google Scholar ]
  • Pukkila P. J. (2004). Introducing student inquiry in large introductory genetics classes . Genetics , ( 1 ), 11–18. https://doi.org/10.1534/genetics.166.1.11 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Quitadamo I. J., Faiola C. L., Johnson J. E., Kurtz M. J. (2008). Community-based inquiry improves critical thinking in general education biology . CBE—Life Sciences Education , ( 3 ), 327–337. https://doi.org/10.1187/cbe.07-11-0097 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Quitadamo I. J., Kurtz M. J. (2007). Learning to improve: Using writing to increase critical thinking performance in general education biology . CBE—Life Sciences Education , ( 2 ), 140–154. https://doi.org/10.1187/cbe.06-11-0203 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds J. A., Smith R., Moskovitz C., Sayle A. (2009). BioTAP: A systematic approach to teaching scientific writing and evaluating undergraduate theses . BioScience , ( 10 ), 896–903. https://doi.org/10.1525/bio.2009.59.10.11 . [ Google Scholar ]
  • Reynolds J. A., Thaiss C., Katkin W., Thompson R. J. (2012). Writing-to-learn in undergraduate science education: A community-based, conceptually driven approach . CBE—Life Sciences Education , ( 1 ), 17–25. https://doi.org/10.1187/cbe.11-08-0064 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds J. A., Thompson R. J. (2011). Want to improve undergraduate thesis writing? Engage students and their faculty readers in scientific peer review . CBE—Life Sciences Education , ( 2 ), 209–215. https://doi.org/­10.1187/cbe.10-10-0127 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Rhemtulla M., Brosseau-Liard P. E., Savalei V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions . Psychological Methods , ( 3 ), 354–373. https://doi.org/­10.1037/a0029315 . [ PubMed ] [ Google Scholar ]
  • Stephenson N. S., Sadler-McKnight N. P. (2016). Developing critical thinking skills using the science writing heuristic in the chemistry laboratory . Chemistry Education Research and Practice , ( 1 ), 72–79. https://doi.org/­10.1039/C5RP00102A . [ Google Scholar ]
  • Tariq V. N., Stefani L. A. J., Butcher A. C., Heylings D. J. A. (1998). Developing a new approach to the assessment of project work . Assessment and Evaluation in Higher Education , ( 3 ), 221–240. https://doi.org/­10.1080/0260293980230301 . [ Google Scholar ]
  • Timmerman B. E. C., Strickland D. C., Johnson R. L., Payne J. R. (2011). Development of a “universal” rubric for assessing undergraduates’ scientific reasoning skills using scientific writing . Assessment and Evaluation in Higher Education , ( 5 ), 509–547. https://doi.org/10.1080/­02602930903540991 . [ Google Scholar ]
  • Topping K. J., Smith E. F., Swanson I., Elliot A. (2000). Formative peer assessment of academic writing between postgraduate students . Assessment and Evaluation in Higher Education , ( 2 ), 149–169. https://doi.org/10.1080/713611428 . [ Google Scholar ]
  • Willison J., O’Regan K. (2007). Commonly known, commonly not known, totally unknown: A framework for students becoming researchers . Higher Education Research and Development , ( 4 ), 393–409. https://doi.org/10.1080/07294360701658609 . [ Google Scholar ]
  • Woodin T., Carter V. C., Fletcher L. (2010). Vision and Change in Biology Undergraduate Education: A Call for Action—Initial responses . CBE—Life Sciences Education , ( 2 ), 71–73. https://doi.org/10.1187/cbe.10-03-0044 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Zeineddin A., Abd-El-Khalick F. (2010). Scientific reasoning and epistemological commitments: Coordination of theory and evidence among college science students . Journal of Research in Science Teaching , ( 9 ), 1064–1093. https://doi.org/10.1002/tea.20368 . [ Google Scholar ]
  • Zimmerman C. (2000). The development of scientific reasoning skills . Developmental Review , ( 1 ), 99–149. https://doi.org/10.1006/drev.1999.0497 . [ Google Scholar ]
  • Zimmerman C. (2007). The development of scientific thinking skills in elementary and middle school . Developmental Review , ( 2 ), 172–223. https://doi.org/10.1016/j.dr.2006.12.001 . [ Google Scholar ]

Back Home

  • Search Search Search …
  • Search Search …

Scientific Literacy and Critical Thinking Skills: Nurturing a Better Future

Scientific Literacy and Critical Thinking Skills

Scientific literacy and critical thinking are essential components of a well-rounded education, preparing students to better understand the world we live in and make informed decisions. As science and technology continue to advance and impact various aspects of our lives, it is increasingly important for individuals to develop the ability to think critically about scientific information, fostering a deeper understanding of the implications and consequences of such advancements. By fostering scientific literacy, students become equipped with the knowledge and skills to actively engage with science-related issues in a responsible and informed manner.

The development of critical thinking skills is crucial not only within the realm of science, but across all disciplines and aspects of life. These skills enable individuals to analyze, evaluate, and synthesize information—essential attributes for navigating the modern world. As science communication and dissemination become more widespread, having the ability to critically assess validity, objectivity, and authority is paramount to being a responsible and engaged citizen.

Focusing on scientific literacy and critical thinking in education prepares students for a world where science and technology play a pivotal role across numerous fields. By cultivating these capacities, students will be better prepared to face complex issues and tasks, contribute positively to society, and pave the way for continued advancements and innovations.

Key Concepts and Principles

Science education foundations.

Scientific literacy and critical thinking are essential components of a well-rounded science education. These foundational skills equip students with the ability to understand key concepts, develop scientific reasoning, and utilize scientific knowledge for personal and social purposes as defined in Science for All Americans .

A strong science education involves:

  • Acquiring scientific knowledge and understanding the core concepts of various disciplines
  • Developing the ability to analyze and evaluate scientific claims and arguments
  • Enhancing writing and communication skills to effectively convey scientific ideas

By focusing on these elements, educators empower students to think and function as responsible citizens in an increasingly science-driven world.

Metacognition and Reflection

Metacognition, or the process of thinking about one’s own thinking, plays a crucial role in fostering critical thinking skills in science education. Cambridge highlights key steps in the critical thinking process, which include:

  • Identifying a problem and asking questions about that problem
  • Selecting information to respond to the problem and evaluating it
  • Drawing conclusions from the evidence

By incorporating metacognitive strategies and promoting reflection throughout the learning process, educators enable students to actively engage with scientific concepts, building a deeper understanding and fostering critical thinking abilities.

In summary, a well-rounded science education places emphasis on the development of scientific literacy and critical thinking skills, based on a strong foundation in core concepts and knowledge. Incorporating metacognitive strategies and promoting reflection throughout the learning process further enhances these skills, equipping students for success in their future scientific endeavors. Remember to maintain a confident, knowledgeable, neutral, and clear tone of voice when discussing these topics.

Curriculum and Pedagogy

Teaching and learning approaches.

Teaching and learning approaches play a crucial role in promoting scientific literacy and critical thinking skills among students. One effective strategy for encouraging these skills is to create a thinking-based classroom, where the learning environment is shaped to support thinking and create opportunities for students to engage in scientific concepts 1 .

Educators can achieve this by incorporating a variety of pedagogical techniques, such as:

  • Scaffolded instruction : Gradually develop students’ understanding by modeling, guided instruction, and eventually allowing students to take ownership of their learning.
  • Inquiry-based learning : Encourage exploration and questions to build understanding of scientific concepts.
  • Collaborative learning : Use group projects and discussions to inspire debate and foster interaction among students, allowing them to learn from one another’s perspectives.

Incorporating Argumentation and Experimentation

Argumentation and experimentation are key components of scientific inquiry that contribute to students’ scientific literacy and critical thinking skills:

  • Argumentation : Incorporating argumentation in the curriculum helps students learn how to construct, evaluate, and refine scientific claims based on evidence 2 . This can be done through structured debates, teaching students to craft written scientific arguments, and evaluating peer arguments in a constructive manner.
  • Experimentation : Encouraging students to engage in hands-on experimentation allows them to explore scientific concepts more deeply while fostering their critical thinking skills 3 . Providing opportunities for experimentation can include designing experiments, carrying them out, analyzing data, and drawing conclusions.

By incorporating these teaching and learning approaches, as well as focusing on argumentation and experimentation, educators can effectively promote scientific literacy and critical thinking skills in their curriculum and pedagogy.

Assessing Scientific Literacy and Critical Thinking Skills

Test instruments and procedures.

There are various test instruments designed to assess students’ scientific literacy and critical thinking skills. One such instrument is the Test of Scientific Literacy Skills (TOSLS) , which focuses on measuring skills related to essential aspects of scientific literacy, such as:

  • Recognizing and analyzing the use of methods of inquiry that lead to scientific knowledge
  • Organizing, analyzing, and interpreting quantitative data and scientific information

The TOSLS is a multiple-choice test that allows educators to evaluate students’ understanding of scientific reasoning and their ability to apply scientific concepts in real-life situations.

Apart from standardized tests, it is crucial to incorporate critical thinking into everyday learning activities. Educators may use various methods, such as discussing complex scientific problems within the context of current events and engaging students in collaborative problem-solving tasks.

International Comparisons

When evaluating scientific literacy and critical thinking skills, it is helpful to put the findings into a broader context by comparing them with international standards and benchmarks. One significant international study is the Programme for International Student Assessment (PISA) , which measures the knowledge and skills of 15-year-olds in reading, math, and science every three years. PISA assesses students based on their abilities to use their scientific knowledge for:

  • Identifying scientific issues
  • Explaining phenomena scientifically
  • Evaluating and designing scientific enquires

By evaluating and comparing students’ performance across different countries, PISA contributes to a deeper understanding of different strategies and curricula used to foster scientific literacy and critical thinking skills in different educational contexts.

In conclusion, the assessment of scientific literacy and critical thinking skills is critical for evaluating the quality of science education. By using well-validated test instruments and comparing students’ performance internationally, educators can better understand the effectiveness of different teaching strategies and work to improve science literacy and critical thinking skills for all students.

Factors Influencing Performance and Motivation

Role of gender in physics education.

Research indicates that gender plays a significant role in students’ performance and motivation in physics education. Male and female students exhibit different levels of interest and confidence in the subject, which impact their academic achievements. A correlational study found a positive relationship between critical thinking skills and scientific literacy in both genders but did not identify any significant correlation between gender and these skills.

It is essential to recognize and address these gender differences when designing curriculum and learning environments to encourage equal participation and confidence in physics education for all students.

Decision Making and Problem-Solving

Developing strong decision-making and problem-solving skills are crucial components of scientific literacy. These skills enable students to apply scientific concepts and principles in real-world situations while reinforcing a more humanistic culture based on rational thinking, as highlighted in this article .

  • Motivation : A student’s motivation to learn and engage in scientific activities plays a vital role in the development of their decision-making and problem-solving skills. High motivation levels promote curiosity, actively seeking knowledge, and persistence in solving complex problems.
  • Correlation analysis : Studies have shown a positive relationship between scientific literacy, critical thinking, and the ability to use scientific knowledge for personal and social purposes. This correlation underlines the importance of fostering these skills in the education system.

When incorporating decision-making and problem-solving skills into science education, focus should be placed on engaging students in critical thinking exercises and creating a conducive learning environment that encourages curiosity, exploration, and collaboration.

Scientific Literacy in Everyday Life

Interpreting news reports.

Scientific literacy plays a crucial role in interpreting news reports. A confident, knowledgeable, and neutral understanding of scientific principles and facts allows individuals to critically evaluate the claims made in news articles or television segments, and determine the validity of the information presented.

For example, when encountering a news report about a new health study, it is essential to consider sample size, research methodology, and potential conflicts of interest among the researchers. A clear understanding of these factors can help prevent the spread of misinformation and promote informed decision-making.

Moreover, separating scientific facts from theories enables individuals to better grasp the certainty and uncertainty surrounding the news report. This distinction is crucial for discerning the current state of scientific knowledge and identifying areas where more research is needed.

Understanding and Evaluating Scientific Facts

Maintaining a neutral and clear perspective on science allows individuals to effectively understand and evaluate scientific facts. This involves understanding the difference between facts , which are verifiable pieces of information, and theories , which are well-substantiated explanations for observable phenomena.

For instance, the recognition that the Earth revolves around the Sun is a fact, while the theory of evolution provides a comprehensive explanation of the origin and development of species. Developing the ability to analyze and contextualize scientific information is crucial for forming well-grounded opinions and engaging in informed discussions.

Moreover, the promotion of scientific literacy allows for the appreciation of the interrelatedness of scientific disciplines. This comprehensive understanding can enhance the assessment of scientific facts and their implications in various aspects of daily life, such as making informed choices about healthcare, technology, and environmental issues. Keeping these considerations in mind, fostering scientific literacy and critical thinking skills are essential for responsible citizenship and decision-making in the modern world.

Future Research Agenda

Developing scientific literacy and critical thinking skills is crucial in today’s world, both for individual success and society as a whole. Consequently, a future research agenda exploring these areas is essential, particularly in relation to high school students as they prepare to become responsible citizens.

One of the key issues to address within this agenda is the relationship between science knowledge and attitudes toward science. This includes assessing whether a significant correlation exists between improved scientific understanding and more positive attitudes towards the scientific method and scientific discovery. Gaining insights into this aspect will help guide the development of educational resources and methodologies to foster a more science-minded society.

Another area of interest is the utility of scientific literacy in various career and life contexts. This would involve studying how scientific literacy can be applied to non-science fields, and how it influences individuals’ decision-making processes and problem-solving abilities.

Moreover, research should explore the relationship between science literacy and other literacy skills , such as mathematics, reading comprehension, and writing. This may help educators develop interdisciplinary curricula that promote the growth of critical thinking abilities and scientific understanding simultaneously.

Furthermore, emphasizing the role of scientific literacy for citizens as decision-makers is crucial. It is important to examine how improved scientific literacy influences students’ capacities to evaluate information, engage in public discourse, and make informed choices on matters that involve scientific data or principles.

Lastly, it might be beneficial to investigate the impact of innovative teaching methods, such as transformative science education and futures thinking, on developing students’ scientific literacy and critical thinking abilities. By shedding light on possible approaches that foster these essential skills, researchers can contribute to the continuous evolution of science education.

In summary, focusing on these key threads in a future research agenda will be invaluable in promoting a deeper understanding of scientific literacy and critical thinking skills. By doing so, we can work towards equipping high school students with the tools required to navigate an increasingly complex and science-driven world.

Frequently Asked Questions

What are the benefits of having scientific literacy and critical thinking skills.

Scientific literacy and critical thinking skills are essential for individuals to understand the world around them and make informed decisions. These skills enable people to differentiate science from pseudoscience and evaluate the credibility of information. Moreover, scientifically literate citizens are better equipped to participate in important societal discussions and contribute to policy-making processes.

How can educators effectively teach scientific literacy and critical thinking skills?

Educators can teach these skills by designing activities that promote critical thinking and scientific inquiry. For example, teachers can create learning experiences where students identify problems and ask questions about them, select relevant information, and draw conclusions based on evidence. Furthermore, incorporating case studies, group discussions, and scientific experiments into the curriculum can help students develop these skills.

What role does digital literacy play in promoting scientific literacy and critical thinking?

Digital literacy is an essential component in fostering scientific literacy and critical thinking. In today’s technology-driven world, individuals must be capable of navigating and evaluating online resources to access accurate information. Digital literacy skills, such as determining the credibility of websites and online articles, can help learners critically assess scientific information, weighing the evidence to form well-founded opinions.

How do life and career skills relate to scientific literacy and critical thinking?

Life and career skills, such as communication, problem solving, and adaptability, are intertwined with scientific literacy and critical thinking. These abilities are crucial in equipping individuals to face real-world challenges and make informed decisions in various fields, from science and technology to business and government. An understanding of scientific principles and the ability to think critically foster the development of crucial life and career skills that are increasingly sought-after in today’s world.

What’s the connection between problem-solving skills and scientific literacy?

Problem-solving skills are closely related to scientific literacy, as they empower individuals to analyze situations, identify problems, and devise appropriate solutions. Scientific literacy involves understanding scientific ways of knowing and thinking critically about the natural world. In essence, acquiring scientific literacy enables individuals to apply the principles and methods of science to problem-solving situations in various aspects of life.

How can reflective practice enhance critical thinking in science?

Reflective practice is a valuable tool in enhancing critical thinking skills in science. It involves examining one’s thoughts, actions, and experiences to learn and improve. By engaging in reflective practice, learners can identify personal biases, recognize gaps in their understanding, and determine ways to improve their scientific knowledge and thinking abilities. This process, in turn, promotes critical thinking and a deeper understanding of scientific concepts.

  • Eight Instructional Strategies for Promoting Critical Thinking ↩
  • Fostering Scientific Literacy and Critical Thinking in Elementary Science Education ↩
  • The Biochemical Literacy Framework: Inviting pedagogical innovation in bioscience education ↩

You may also like

What is Non-Scientific Thinking

What is Non-Scientific Thinking? Exploring Unconventional Perspectives

Non-scientific thinking refers to methods of exploring knowledge and understanding without adhering strictly to the processes of the scientific method. A wide […]

Scientific Thinking Examples

Scientific Thinking Examples: A Comprehensive Guide for Practical Application

Scientific thinking is a vital skill in today’s world, helping us unravel the mysteries of the natural and physical world around us. […]

Best Books on the Scientific Thinking Method

Best Books on the Scientific Thinking Method: Your Ultimate Guide

Scientific thinking is an approach that allows individuals to critically analyze information and develop rational conclusions based on evidence. Numerous books on […]

Elements of Scientific Thinking

Elements of Scientific Thinking: A Guide to Effective Inquiry

Scientific thinking is a crucial aspect of modern-day society, as it enables individuals to approach complex situations and problems systematically and rationally. […]

Change Password

Your password must have 8 characters or more and contain 3 of the following:.

  • a lower case character, 
  • an upper case character, 
  • a special character 

Password Changed Successfully

Your password has been changed

  • Sign in / Register

Request Username

Can't sign in? Forgot your username?

Enter your email address below and we will send you your username

If the address matches an existing account you will receive an email with instructions to retrieve your username

Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers

  • Jason E. Dowd
  • Robert J. Thompson
  • Leslie A. Schiff
  • Julie A. Reynolds

*Address correspondence to: Jason E. Dowd ( E-mail Address: [email protected] ).

Department of Biology, Duke University, Durham, NC 27708

Search for more papers by this author

Department of Psychology and Neuroscience, Duke University, Durham, NC 27708

Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455

Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students’ development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference , while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc.) are not significantly related to critical-thinking skills. Science reasoning in writing is not merely a proxy for critical thinking. In linking features of students’ writing to their critical-thinking skills, this study 1) provides a bridge to prior work suggesting that engagement in science writing enhances critical thinking and 2) serves as a foundational step for subsequently determining whether instruction focused explicitly on developing critical-thinking skills (particularly inference ) can actually improve students’ scientific reasoning in their writing.

INTRODUCTION

Critical-thinking and scientific reasoning skills are core learning objectives of science education for all students, regardless of whether or not they intend to pursue a career in science or engineering. Consistent with the view of learning as construction of understanding and meaning ( National Research Council, 2000 ), the pedagogical practice of writing has been found to be effective not only in fostering the development of students’ conceptual and procedural knowledge ( Gerdeman et al. , 2007 ) and communication skills ( Clase et al. , 2010 ), but also scientific reasoning ( Reynolds et al. , 2012 ) and critical-thinking skills ( Quitadamo and Kurtz, 2007 ).

Critical thinking and scientific reasoning are similar but different constructs that include various types of higher-order cognitive processes, metacognitive strategies, and dispositions involved in making meaning of information. Critical thinking is generally understood as the broader construct ( Holyoak and Morrison, 2005 ), comprising an array of cognitive processes and dispostions that are drawn upon differentially in everyday life and across domains of inquiry such as the natural sciences, social sciences, and humanities. Scientific reasoning, then, may be interpreted as the subset of critical-thinking skills (cognitive and metacognitive processes and dispositions) that 1) are involved in making meaning of information in scientific domains and 2) support the epistemological commitment to scientific methodology and paradigm(s).

Although there has been an enduring focus in higher education on promoting critical thinking and reasoning as general or “transferable” skills, research evidence provides increasing support for the view that reasoning and critical thinking are also situational or domain specific ( Beyer et al. , 2013 ). Some researchers, such as Lawson (2010) , present frameworks in which science reasoning is characterized explicitly in terms of critical-thinking skills. There are, however, limited coherent frameworks and empirical evidence regarding either the general or domain-specific interrelationships of scientific reasoning, as it is most broadly defined, and critical-thinking skills.

The Vision and Change in Undergraduate Biology Education Initiative provides a framework for thinking about these constructs and their interrelationship in the context of the core competencies and disciplinary practice they describe ( American Association for the Advancement of Science, 2011 ). These learning objectives aim for undergraduates to “understand the process of science, the interdisciplinary nature of the new biology and how science is closely integrated within society; be competent in communication and collaboration; have quantitative competency and a basic ability to interpret data; and have some experience with modeling, simulation and computational and systems level approaches as well as with using large databases” ( Woodin et al. , 2010 , pp. 71–72). This framework makes clear that science reasoning and critical-thinking skills play key roles in major learning outcomes; for example, “understanding the process of science” requires students to engage in (and be metacognitive about) scientific reasoning, and having the “ability to interpret data” requires critical-thinking skills. To help students better achieve these core competencies, we must better understand the interrelationships of their composite parts. Thus, the next step is to determine which specific critical-thinking skills are drawn upon when students engage in science reasoning in general and with regard to the particular scientific domain being studied. Such a determination could be applied to improve science education for both majors and nonmajors through pedagogical approaches that foster critical-thinking skills that are most relevant to science reasoning.

Writing affords one of the most effective means for making thinking visible ( Reynolds et al. , 2012 ) and learning how to “think like” and “write like” disciplinary experts ( Meizlish et al. , 2013 ). As a result, student writing affords the opportunities to both foster and examine the interrelationship of scientific reasoning and critical-thinking skills within and across disciplinary contexts. The purpose of this study was to better understand the relationship between students’ critical-thinking skills and scientific reasoning skills as reflected in the genre of undergraduate thesis writing in biology departments at two research universities, the University of Minnesota and Duke University.

In the following subsections, we discuss in greater detail the constructs of scientific reasoning and critical thinking, as well as the assessment of scientific reasoning in students’ thesis writing. In subsequent sections, we discuss our study design, findings, and the implications for enhancing educational practices.

Critical Thinking

The advances in cognitive science in the 21st century have increased our understanding of the mental processes involved in thinking and reasoning, as well as memory, learning, and problem solving. Critical thinking is understood to include both a cognitive dimension and a disposition dimension (e.g., reflective thinking) and is defined as “purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considera­tions upon which that judgment is based” ( Facione, 1990, p. 3 ). Although various other definitions of critical thinking have been proposed, researchers have generally coalesced on this consensus: expert view ( Blattner and Frazier, 2002 ; Condon and Kelly-Riley, 2004 ; Bissell and Lemons, 2006 ; Quitadamo and Kurtz, 2007 ) and the corresponding measures of critical-­thinking skills ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ).

Both the cognitive skills and dispositional components of critical thinking have been recognized as important to science education ( Quitadamo and Kurtz, 2007 ). Empirical research demonstrates that specific pedagogical practices in science courses are effective in fostering students’ critical-thinking skills. Quitadamo and Kurtz (2007) found that students who engaged in a laboratory writing component in the context of a general education biology course significantly improved their overall critical-thinking skills (and their analytical and inference skills, in particular), whereas students engaged in a traditional quiz-based laboratory did not improve their critical-thinking skills. In related work, Quitadamo et al. (2008) found that a community-based inquiry experience, involving inquiry, writing, research, and analysis, was associated with improved critical thinking in a biology course for nonmajors, compared with traditionally taught sections. In both studies, students who exhibited stronger presemester critical-thinking skills exhibited stronger gains, suggesting that “students who have not been explicitly taught how to think critically may not reach the same potential as peers who have been taught these skills” ( Quitadamo and Kurtz, 2007 , p. 151).

Recently, Stephenson and Sadler-McKnight (2016) found that first-year general chemistry students who engaged in a science writing heuristic laboratory, which is an inquiry-based, writing-to-learn approach to instruction ( Hand and Keys, 1999 ), had significantly greater gains in total critical-thinking scores than students who received traditional laboratory instruction. Each of the four components—inquiry, writing, collaboration, and reflection—have been linked to critical thinking ( Stephenson and Sadler-McKnight, 2016 ). Like the other studies, this work highlights the value of targeting critical-thinking skills and the effectiveness of an inquiry-based, writing-to-learn approach to enhance critical thinking. Across studies, authors advocate adopting critical thinking as the course framework ( Pukkila, 2004 ) and developing explicit examples of how critical thinking relates to the scientific method ( Miri et al. , 2007 ).

In these examples, the important connection between writing and critical thinking is highlighted by the fact that each intervention involves the incorporation of writing into science, technology, engineering, and mathematics education (either alone or in combination with other pedagogical practices). However, critical-thinking skills are not always the primary learning outcome; in some contexts, scientific reasoning is the primary outcome that is assessed.

Scientific Reasoning

Scientific reasoning is a complex process that is broadly defined as “the skills involved in inquiry, experimentation, evidence evaluation, and inference that are done in the service of conceptual change or scientific understanding” ( Zimmerman, 2007 , p. 172). Scientific reasoning is understood to include both conceptual knowledge and the cognitive processes involved with generation of hypotheses (i.e., inductive processes involved in the generation of hypotheses and the deductive processes used in the testing of hypotheses), experimentation strategies, and evidence evaluation strategies. These dimensions are interrelated, in that “experimentation and inference strategies are selected based on prior conceptual knowledge of the domain” ( Zimmerman, 2000 , p. 139). Furthermore, conceptual and procedural knowledge and cognitive process dimensions can be general and domain specific (or discipline specific).

With regard to conceptual knowledge, attention has been focused on the acquisition of core methodological concepts fundamental to scientists’ causal reasoning and metacognitive distancing (or decontextualized thinking), which is the ability to reason independently of prior knowledge or beliefs ( Greenhoot et al. , 2004 ). The latter involves what Kuhn and Dean (2004) refer to as the coordination of theory and evidence, which requires that one question existing theories (i.e., prior knowledge and beliefs), seek contradictory evidence, eliminate alternative explanations, and revise one’s prior beliefs in the face of contradictory evidence. Kuhn and colleagues (2008) further elaborate that scientific thinking requires “a mature understanding of the epistemological foundations of science, recognizing scientific knowledge as constructed by humans rather than simply discovered in the world,” and “the ability to engage in skilled argumentation in the scientific domain, with an appreciation of argumentation as entailing the coordination of theory and evidence” ( Kuhn et al. , 2008 , p. 435). “This approach to scientific reasoning not only highlights the skills of generating and evaluating evidence-based inferences, but also encompasses epistemological appreciation of the functions of evidence and theory” ( Ding et al. , 2016 , p. 616). Evaluating evidence-based inferences involves epistemic cognition, which Moshman (2015) defines as the subset of metacognition that is concerned with justification, truth, and associated forms of reasoning. Epistemic cognition is both general and domain specific (or discipline specific; Moshman, 2015 ).

There is empirical support for the contributions of both prior knowledge and an understanding of the epistemological foundations of science to scientific reasoning. In a study of undergraduate science students, advanced scientific reasoning was most often accompanied by accurate prior knowledge as well as sophisticated epistemological commitments; additionally, for students who had comparable levels of prior knowledge, skillful reasoning was associated with a strong epistemological commitment to the consistency of theory with evidence ( Zeineddin and Abd-El-Khalick, 2010 ). These findings highlight the importance of the need for instructional activities that intentionally help learners develop sophisticated epistemological commitments focused on the nature of knowledge and the role of evidence in supporting knowledge claims ( Zeineddin and Abd-El-Khalick, 2010 ).

Scientific Reasoning in Students’ Thesis Writing

Pedagogical approaches that incorporate writing have also focused on enhancing scientific reasoning. Many rubrics have been developed to assess aspects of scientific reasoning in written artifacts. For example, Timmerman and colleagues (2011) , in the course of describing their own rubric for assessing scientific reasoning, highlight several examples of scientific reasoning assessment criteria ( Haaga, 1993 ; Tariq et al. , 1998 ; Topping et al. , 2000 ; Kelly and Takao, 2002 ; Halonen et al. , 2003 ; Willison and O’Regan, 2007 ).

At both the University of Minnesota and Duke University, we have focused on the genre of the undergraduate honors thesis as the rhetorical context in which to study and improve students’ scientific reasoning and writing. We view the process of writing an undergraduate honors thesis as a form of professional development in the sciences (i.e., a way of engaging students in the practices of a community of discourse). We have found that structured courses designed to scaffold the thesis-­writing process and promote metacognition can improve writing and reasoning skills in biology, chemistry, and economics ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In the context of this prior work, we have defined scientific reasoning in writing as the emergent, underlying construct measured across distinct aspects of students’ written discussion of independent research in their undergraduate theses.

The Biology Thesis Assessment Protocol (BioTAP) was developed at Duke University as a tool for systematically guiding students and faculty through a “draft–feedback–revision” writing process, modeled after professional scientific peer-review processes ( Reynolds et al. , 2009 ). BioTAP includes activities and worksheets that allow students to engage in critical peer review and provides detailed descriptions, presented as rubrics, of the questions (i.e., dimensions, shown in Table 1 ) upon which such review should focus. Nine rubric dimensions focus on communication to the broader scientific community, and four rubric dimensions focus on the accuracy and appropriateness of the research. These rubric dimensions provide criteria by which the thesis is assessed, and therefore allow BioTAP to be used as an assessment tool as well as a teaching resource ( Reynolds et al. , 2009 ). Full details are available at www.science-writing.org/biotap.html .

In previous work, we have used BioTAP to quantitatively assess students’ undergraduate honors theses and explore the relationship between thesis-writing courses (or specific interventions within the courses) and the strength of students’ science reasoning in writing across different science disciplines: biology ( Reynolds and Thompson, 2011 ); chemistry ( Dowd et al. , 2015b ); and economics ( Dowd et al. , 2015a ). We have focused exclusively on the nine dimensions related to reasoning and writing (questions 1–9), as the other four dimensions (questions 10–13) require topic-specific expertise and are intended to be used by the student’s thesis supervisor.

Beyond considering individual dimensions, we have investigated whether meaningful constructs underlie students’ thesis scores. We conducted exploratory factor analysis of students’ theses in biology, economics, and chemistry and found one dominant underlying factor in each discipline; we termed the factor “scientific reasoning in writing” ( Dowd et al. , 2015a , b , 2016 ). That is, each of the nine dimensions could be understood as reflecting, in different ways and to different degrees, the construct of scientific reasoning in writing. The findings indicated evidence of both general and discipline-specific components to scientific reasoning in writing that relate to epistemic beliefs and paradigms, in keeping with broader ideas about science reasoning discussed earlier. Specifically, scientific reasoning in writing is more strongly associated with formulating a compelling argument for the significance of the research in the context of current literature in biology, making meaning regarding the implications of the findings in chemistry, and providing an organizational framework for interpreting the thesis in economics. We suggested that instruction, whether occurring in writing studios or in writing courses to facilitate thesis preparation, should attend to both components.

Research Question and Study Design

The genre of thesis writing combines the pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-­McKnight, 2016 ). However, there is no empirical evidence regarding the general or domain-specific interrelationships of scientific reasoning and critical-thinking skills, particularly in the rhetorical context of the undergraduate thesis. The BioTAP studies discussed earlier indicate that the rubric-based assessment produces evidence of scientific reasoning in the undergraduate thesis, but it was not designed to foster or measure critical thinking. The current study was undertaken to address the research question: How are students’ critical-thinking skills related to scientific reasoning as reflected in the genre of undergraduate thesis writing in biology? Determining these interrelationships could guide efforts to enhance students’ scientific reasoning and writing skills through focusing instruction on specific critical-thinking skills as well as disciplinary conventions.

To address this research question, we focused on undergraduate thesis writers in biology courses at two institutions, Duke University and the University of Minnesota, and examined the extent to which students’ scientific reasoning in writing, assessed in the undergraduate thesis using BioTAP, corresponds to students’ critical-thinking skills, assessed using the California Critical Thinking Skills Test (CCTST; August, 2016 ).

Study Sample

The study sample was composed of students enrolled in courses designed to scaffold the thesis-writing process in the Department of Biology at Duke University and the College of Biological Sciences at the University of Minnesota. Both courses complement students’ individual work with research advisors. The course is required for thesis writers at the University of Minnesota and optional for writers at Duke University. Not all students are required to complete a thesis, though it is required for students to graduate with honors; at the University of Minnesota, such students are enrolled in an honors program within the college. In total, 28 students were enrolled in the course at Duke University and 44 students were enrolled in the course at the University of Minnesota. Of those students, two students did not consent to participate in the study; additionally, five students did not validly complete the CCTST (i.e., attempted fewer than 60% of items or completed the test in less than 15 minutes). Thus, our overall rate of valid participation is 90%, with 27 students from Duke University and 38 students from the University of Minnesota. We found no statistically significant differences in thesis assessment between students with valid CCTST scores and invalid CCTST scores. Therefore, we focus on the 65 students who consented to participate and for whom we have complete and valid data in most of this study. Additionally, in asking students for their consent to participate, we allowed them to choose whether to provide or decline access to academic and demographic background data. Of the 65 students who consented to participate, 52 students granted access to such data. Therefore, for additional analyses involving academic and background data, we focus on the 52 students who consented. We note that the 13 students who participated but declined to share additional data performed slightly lower on the CCTST than the 52 others (perhaps suggesting that they differ by other measures, but we cannot determine this with certainty). Among the 52 students, 60% identified as female and 10% identified as being from underrepresented ethnicities.

In both courses, students completed the CCTST online, either in class or on their own, late in the Spring 2016 semester. This is the same assessment that was used in prior studies of critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). It is “an objective measure of the core reasoning skills needed for reflective decision making concerning what to believe or what to do” ( Insight Assessment, 2016a ). In the test, students are asked to read and consider information as they answer multiple-choice questions. The questions are intended to be appropriate for all users, so there is no expectation of prior disciplinary knowledge in biology (or any other subject). Although actual test items are protected, sample items are available on the Insight Assessment website ( Insight Assessment, 2016b ). We have included one sample item in the Supplemental Material.

The CCTST is based on a consensus definition of critical thinking, measures cognitive and metacognitive skills associated with critical thinking, and has been evaluated for validity and reliability at the college level ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ). In addition to providing overall critical-thinking score, the CCTST assesses seven dimensions of critical thinking: analysis, interpretation, inference, evaluation, explanation, induction, and deduction. Scores on each dimension are calculated based on students’ performance on items related to that dimension. Analysis focuses on identifying assumptions, reasons, and claims and examining how they interact to form arguments. Interpretation, related to analysis, focuses on determining the precise meaning and significance of information. Inference focuses on drawing conclusions from reasons and evidence. Evaluation focuses on assessing the credibility of sources of information and claims they make. Explanation, related to evaluation, focuses on describing the evidence, assumptions, or rationale for beliefs and conclusions. Induction focuses on drawing inferences about what is probably true based on evidence. Deduction focuses on drawing conclusions about what must be true when the context completely determines the outcome. These are not independent dimensions; the fact that they are related supports their collective interpretation as critical thinking. Together, the CCTST dimensions provide a basis for evaluating students’ overall strength in using reasoning to form reflective judgments about what to believe or what to do ( August, 2016 ). Each of the seven dimensions and the overall CCTST score are measured on a scale of 0–100, where higher scores indicate superior performance. Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and below) skills.

Scientific Reasoning in Writing

At the end of the semester, students’ final, submitted undergraduate theses were assessed using BioTAP, which consists of nine rubric dimensions that focus on communication to the broader scientific community and four additional dimensions that focus on the exhibition of topic-specific expertise ( Reynolds et al. , 2009 ). These dimensions, framed as questions, are displayed in Table 1 .

Student theses were assessed on questions 1–9 of BioTAP using the same procedures described in previous studies ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In this study, six raters were trained in the valid, reliable use of BioTAP rubrics. Each dimension was rated on a five-point scale: 1 indicates the dimension is missing, incomplete, or below acceptable standards; 3 indicates that the dimension is adequate but not exhibiting mastery; and 5 indicates that the dimension is excellent and exhibits mastery (intermediate ratings of 2 and 4 are appropriate when different parts of the thesis make a single category challenging). After training, two raters independently assessed each thesis and then discussed their independent ratings with one another to form a consensus rating. The consensus score is not an average score, but rather an agreed-upon, discussion-based score. On a five-point scale, raters independently assessed dimensions to be within 1 point of each other 82.4% of the time before discussion and formed consensus ratings 100% of the time after discussion.

In this study, we consider both categorical (mastery/nonmastery, where a score of 5 corresponds to mastery) and numerical treatments of individual BioTAP scores to better relate the manifestation of critical thinking in BioTAP assessment to all of the prior studies. For comprehensive/cumulative measures of BioTAP, we focus on the partial sum of questions 1–5, as these questions relate to higher-order scientific reasoning (whereas questions 6–9 relate to mid- and lower-order writing mechanics [ Reynolds et al. , 2009 ]), and the factor scores (i.e., numerical representations of the extent to which each student exhibits the underlying factor), which are calculated from the factor loadings published by Dowd et al. (2016) . We do not focus on questions 6–9 individually in statistical analyses, because we do not expect critical-thinking skills to relate to mid- and lower-order writing skills.

The final, submitted thesis reflects the student’s writing, the student’s scientific reasoning, the quality of feedback provided to the student by peers and mentors, and the student’s ability to incorporate that feedback into his or her work. Therefore, our assessment is not the same as an assessment of unpolished, unrevised samples of students’ written work. While one might imagine that such an unpolished sample may be more strongly correlated with critical-thinking skills measured by the CCTST, we argue that the complete, submitted thesis, assessed using BioTAP, is ultimately a more appropriate reflection of how students exhibit science reasoning in the scientific community.

Statistical Analyses

We took several steps to analyze the collected data. First, to provide context for subsequent interpretations, we generated descriptive statistics for the CCTST scores of the participants based on the norms for undergraduate CCTST test takers. To determine the strength of relationships among CCTST dimensions (including overall score) and the BioTAP dimensions, partial-sum score (questions 1–5), and factor score, we calculated Pearson’s correlations for each pair of measures. To examine whether falling on one side of the nonmastery/mastery threshold (as opposed to a linear scale of performance) was related to critical thinking, we grouped BioTAP dimensions into categories (mastery/nonmastery) and conducted Student’s t tests to compare the means scores of the two groups on each of the seven dimensions and overall score of the CCTST. Finally, for the strongest relationship that emerged, we included additional academic and background variables as covariates in multiple linear-regression analysis to explore questions about how much observed relationships between critical-thinking skills and science reasoning in writing might be explained by variation in these other factors.

Although BioTAP scores represent discreet, ordinal bins, the five-point scale is intended to capture an underlying continuous construct (from inadequate to exhibiting mastery). It has been argued that five categories is an appropriate cutoff for treating ordinal variables as pseudo-continuous ( Rhemtulla et al. , 2012 )—and therefore using continuous-variable statistical methods (e.g., Pearson’s correlations)—as long as the underlying assumption that ordinal scores are linearly distributed is valid. Although we have no way to statistically test this assumption, we interpret adequate scores to be approximately halfway between inadequate and mastery scores, resulting in a linear scale. In part because this assumption is subject to disagreement, we also consider and interpret a categorical (mastery/nonmastery) treatment of BioTAP variables.

We corrected for multiple comparisons using the Holm-Bonferroni method ( Holm, 1979 ). At the most general level, where we consider the single, comprehensive measures for BioTAP (partial-sum and factor score) and the CCTST (overall score), there is no need to correct for multiple comparisons, because the multiple, individual dimensions are collapsed into single dimensions. When we considered individual CCTST dimensions in relation to comprehensive measures for BioTAP, we accounted for seven comparisons; similarly, when we considered individual dimensions of BioTAP in relation to overall CCTST score, we accounted for five comparisons. When all seven CCTST and five BioTAP dimensions were examined individually and without prior knowledge, we accounted for 35 comparisons; such a rigorous threshold is likely to reject weak and moderate relationships, but it is appropriate if there are no specific pre-existing hypotheses. All p values are presented in tables for complete transparency, and we carefully consider the implications of our interpretation of these data in the Discussion section.

CCTST scores for students in this sample ranged from the 39th to 99th percentile of the general population of undergraduate CCTST test takers (mean percentile = 84.3, median = 85th percentile; Table 2 ); these percentiles reflect overall scores that range from moderate to superior. Scores on individual dimensions and overall scores were sufficiently normal and far enough from the ceiling of the scale to justify subsequent statistical analyses.

a Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and lower) skills.

The Pearson’s correlations between students’ cumulative scores on BioTAP (the factor score based on loadings published by Dowd et al. , 2016 , and the partial sum of scores on questions 1–5) and students’ overall scores on the CCTST are presented in Table 3 . We found that the partial-sum measure of BioTAP was significantly related to the overall measure of critical thinking ( r = 0.27, p = 0.03), while the BioTAP factor score was marginally related to overall CCTST ( r = 0.24, p = 0.05). When we looked at relationships between comprehensive BioTAP measures and scores for individual dimensions of the CCTST ( Table 3 ), we found significant positive correlations between the both BioTAP partial-sum and factor scores and CCTST inference ( r = 0.45, p < 0.001, and r = 0.41, p < 0.001, respectively). Although some other relationships have p values below 0.05 (e.g., the correlations between BioTAP partial-sum scores and CCTST induction and interpretation scores), they are not significant when we correct for multiple comparisons.

a In each cell, the top number is the correlation, and the bottom, italicized number is the associated p value. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

b This is the partial sum of BioTAP scores on questions 1–5.

c This is the factor score calculated from factor loadings published by Dowd et al. (2016) .

When we expanded comparisons to include all 35 potential correlations among individual BioTAP and CCTST dimensions—and, accordingly, corrected for 35 comparisons—we did not find any additional statistically significant relationships. The Pearson’s correlations between students’ scores on each dimension of BioTAP and students’ scores on each dimension of the CCTST range from −0.11 to 0.35 ( Table 3 ); although the relationship between discussion of implications (BioTAP question 5) and inference appears to be relatively large ( r = 0.35), it is not significant ( p = 0.005; the Holm-Bonferroni cutoff is 0.00143). We found no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions (unpublished data), regardless of whether we correct for multiple comparisons.

The results of Student’s t tests comparing scores on each dimension of the CCTST of students who exhibit mastery with those of students who do not exhibit mastery on each dimension of BioTAP are presented in Table 4 . Focusing first on the overall CCTST scores, we found that the difference between those who exhibit mastery and those who do not in discussing implications of results (BioTAP question 5) is statistically significant ( t = 2.73, p = 0.008, d = 0.71). When we expanded t tests to include all 35 comparisons—and, like above, corrected for 35 comparisons—we found a significant difference in inference scores between students who exhibit mastery on question 5 and students who do not ( t = 3.41, p = 0.0012, d = 0.88), as well as a marginally significant difference in these students’ induction scores ( t = 3.26, p = 0.0018, d = 0.84; the Holm-Bonferroni cutoff is p = 0.00147). Cohen’s d effect sizes, which reveal the strength of the differences for statistically significant relationships, range from 0.71 to 0.88.

a In each cell, the top number is the t statistic for each comparison, and the middle, italicized number is the associated p value. The bottom number is the effect size. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

Finally, we more closely examined the strongest relationship that we observed, which was between the CCTST dimension of inference and the BioTAP partial-sum composite score (shown in Table 3 ), using multiple regression analysis ( Table 5 ). Focusing on the 52 students for whom we have background information, we looked at the simple relationship between BioTAP and inference (model 1), a robust background model including multiple covariates that one might expect to explain some part of the variation in BioTAP (model 2), and a combined model including all variables (model 3). As model 3 shows, the covariates explain very little variation in BioTAP scores, and the relationship between inference and BioTAP persists even in the presence of all of the covariates.

** p < 0.01.

*** p < 0.001.

The aim of this study was to examine the extent to which the various components of scientific reasoning—manifested in writing in the genre of undergraduate thesis and assessed using BioTAP—draw on general and specific critical-thinking skills (assessed using CCTST) and to consider the implications for educational practices. Although science reasoning involves critical-thinking skills, it also relates to conceptual knowledge and the epistemological foundations of science disciplines ( Kuhn et al. , 2008 ). Moreover, science reasoning in writing , captured in students’ undergraduate theses, reflects habits, conventions, and the incorporation of feedback that may alter evidence of individuals’ critical-thinking skills. Our findings, however, provide empirical evidence that cumulative measures of science reasoning in writing are nonetheless related to students’ overall critical-thinking skills ( Table 3 ). The particularly significant roles of inference skills ( Table 3 ) and the discussion of implications of results (BioTAP question 5; Table 4 ) provide a basis for more specific ideas about how these constructs relate to one another and what educational interventions may have the most success in fostering these skills.

Our results build on previous findings. The genre of thesis writing combines pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). Quitadamo and Kurtz (2007) reported that students who engaged in a laboratory writing component in a general education biology course significantly improved their inference and analysis skills, and Quitadamo and colleagues (2008) found that participation in a community-based inquiry biology course (that included a writing component) was associated with significant gains in students’ inference and evaluation skills. The shared focus on inference is noteworthy, because these prior studies actually differ from the current study; the former considered critical-­thinking skills as the primary learning outcome of writing-­focused interventions, whereas the latter focused on emergent links between two learning outcomes (science reasoning in writing and critical thinking). In other words, inference skills are impacted by writing as well as manifested in writing.

Inference focuses on drawing conclusions from argument and evidence. According to the consensus definition of critical thinking, the specific skill of inference includes several processes: querying evidence, conjecturing alternatives, and drawing conclusions. All of these activities are central to the independent research at the core of writing an undergraduate thesis. Indeed, a critical part of what we call “science reasoning in writing” might be characterized as a measure of students’ ability to infer and make meaning of information and findings. Because the cumulative BioTAP measures distill underlying similarities and, to an extent, suppress unique aspects of individual dimensions, we argue that it is appropriate to relate inference to scientific reasoning in writing . Even when we control for other potentially relevant background characteristics, the relationship is strong ( Table 5 ).

In taking the complementary view and focusing on BioTAP, when we compared students who exhibit mastery with those who do not, we found that the specific dimension of “discussing the implications of results” (question 5) differentiates students’ performance on several critical-thinking skills. To achieve mastery on this dimension, students must make connections between their results and other published studies and discuss the future directions of the research; in short, they must demonstrate an understanding of the bigger picture. The specific relationship between question 5 and inference is the strongest observed among all individual comparisons. Altogether, perhaps more than any other BioTAP dimension, this aspect of students’ writing provides a clear view of the role of students’ critical-thinking skills (particularly inference and, marginally, induction) in science reasoning.

While inference and discussion of implications emerge as particularly strongly related dimensions in this work, we note that the strongest contribution to “science reasoning in writing in biology,” as determined through exploratory factor analysis, is “argument for the significance of research” (BioTAP question 2, not question 5; Dowd et al. , 2016 ). Question 2 is not clearly related to critical-thinking skills. These findings are not contradictory, but rather suggest that the epistemological and disciplinary-specific aspects of science reasoning that emerge in writing through BioTAP are not completely aligned with aspects related to critical thinking. In other words, science reasoning in writing is not simply a proxy for those critical-thinking skills that play a role in science reasoning.

In a similar vein, the content-related, epistemological aspects of science reasoning, as well as the conventions associated with writing the undergraduate thesis (including feedback from peers and revision), may explain the lack of significant relationships between some science reasoning dimensions and some critical-thinking skills that might otherwise seem counterintuitive (e.g., BioTAP question 2, which relates to making an argument, and the critical-thinking skill of argument). It is possible that an individual’s critical-thinking skills may explain some variation in a particular BioTAP dimension, but other aspects of science reasoning and practice exert much stronger influence. Although these relationships do not emerge in our analyses, the lack of significant correlation does not mean that there is definitively no correlation. Correcting for multiple comparisons suppresses type 1 error at the expense of exacerbating type 2 error, which, combined with the limited sample size, constrains statistical power and makes weak relationships more difficult to detect. Ultimately, though, the relationships that do emerge highlight places where individuals’ distinct critical-thinking skills emerge most coherently in thesis assessment, which is why we are particularly interested in unpacking those relationships.

We recognize that, because only honors students submit theses at these institutions, this study sample is composed of a selective subset of the larger population of biology majors. Although this is an inherent limitation of focusing on thesis writing, links between our findings and results of other studies (with different populations) suggest that observed relationships may occur more broadly. The goal of improved science reasoning and critical thinking is shared among all biology majors, particularly those engaged in capstone research experiences. So while the implications of this work most directly apply to honors thesis writers, we provisionally suggest that all students could benefit from further study of them.

There are several important implications of this study for science education practices. Students’ inference skills relate to the understanding and effective application of scientific content. The fact that we find no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions suggests that such mid- to lower-order elements of BioTAP ( Reynolds et al. , 2009 ), which tend to be more structural in nature, do not focus on aspects of the finished thesis that draw strongly on critical thinking. In keeping with prior analyses ( Reynolds and Thompson, 2011 ; Dowd et al. , 2016 ), these findings further reinforce the notion that disciplinary instructors, who are most capable of teaching and assessing scientific reasoning and perhaps least interested in the more mechanical aspects of writing, may nonetheless be best suited to effectively model and assess students’ writing.

The goal of the thesis writing course at both Duke University and the University of Minnesota is not merely to improve thesis scores but to move students’ writing into the category of mastery across BioTAP dimensions. Recognizing that students with differing critical-thinking skills (particularly inference) are more or less likely to achieve mastery in the undergraduate thesis (particularly in discussing implications [question 5]) is important for developing and testing targeted pedagogical interventions to improve learning outcomes for all students.

The competencies characterized by the Vision and Change in Undergraduate Biology Education Initiative provide a general framework for recognizing that science reasoning and critical-thinking skills play key roles in major learning outcomes of science education. Our findings highlight places where science reasoning–related competencies (like “understanding the process of science”) connect to critical-thinking skills and places where critical thinking–related competencies might be manifested in scientific products (such as the ability to discuss implications in scientific writing). We encourage broader efforts to build empirical connections between competencies and pedagogical practices to further improve science education.

One specific implication of this work for science education is to focus on providing opportunities for students to develop their critical-thinking skills (particularly inference). Of course, as this correlational study is not designed to test causality, we do not claim that enhancing students’ inference skills will improve science reasoning in writing. However, as prior work shows that science writing activities influence students’ inference skills ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ), there is reason to test such a hypothesis. Nevertheless, the focus must extend beyond inference as an isolated skill; rather, it is important to relate inference to the foundations of the scientific method ( Miri et al. , 2007 ) in terms of the epistemological appreciation of the functions and coordination of evidence ( Kuhn and Dean, 2004 ; Zeineddin and Abd-El-Khalick, 2010 ; Ding et al. , 2016 ) and disciplinary paradigms of truth and justification ( Moshman, 2015 ).

Although this study is limited to the domain of biology at two institutions with a relatively small number of students, the findings represent a foundational step in the direction of achieving success with more integrated learning outcomes. Hopefully, it will spur greater interest in empirically grounding discussions of the constructs of scientific reasoning and critical-thinking skills.

This study contributes to the efforts to improve science education, for both majors and nonmajors, through an empirically driven analysis of the relationships between scientific reasoning reflected in the genre of thesis writing and critical-thinking skills. This work is rooted in the usefulness of BioTAP as a method 1) to facilitate communication and learning and 2) to assess disciplinary-specific and general dimensions of science reasoning. The findings support the important role of the critical-thinking skill of inference in scientific reasoning in writing, while also highlighting ways in which other aspects of science reasoning (epistemological considerations, writing conventions, etc.) are not significantly related to critical thinking. Future research into the impact of interventions focused on specific critical-thinking skills (i.e., inference) for improved science reasoning in writing will build on this work and its implications for science education.

ACKNOWLEDGMENTS

We acknowledge the contributions of Kelaine Haas and Alexander Motten to the implementation and collection of data. We also thank Mine Çetinkaya-­Rundel for her insights regarding our statistical analyses. This research was funded by National Science Foundation award DUE-1525602.

  • American Association for the Advancement of Science . ( 2011 ). Vision and change in undergraduate biology education: A call to action . Washington, DC Retrieved September 26, 2017, from https://visionandchange.org/files/2013/11/aaas-VISchange-web1113.pdf . Google Scholar
  • August, D. ( 2016 ). California Critical Thinking Skills Test user manual and resource guide . San Jose: Insight Assessment/California Academic Press. Google Scholar
  • Beyer, C. H., Taylor, E., & Gillmore, G. M. ( 2013 ). Inside the undergraduate teaching experience: The University of Washington’s growth in faculty teaching study . Albany, NY: SUNY Press. Google Scholar
  • Bissell, A. N., & Lemons, P. P. ( 2006 ). A new method for assessing critical thinking in the classroom . BioScience , 56 (1), 66–72. https://doi.org/10.1641/0006-3568(2006)056[0066:ANMFAC]2.0.CO;2 . Google Scholar
  • Blattner, N. H., & Frazier, C. L. ( 2002 ). Developing a performance-based assessment of students’ critical thinking skills . Assessing Writing , 8 (1), 47–64. Google Scholar
  • Clase, K. L., Gundlach, E., & Pelaez, N. J. ( 2010 ). Calibrated peer review for computer-assisted learning of biological research competencies . Biochemistry and Molecular Biology Education , 38 (5), 290–295. Medline ,  Google Scholar
  • Condon, W., & Kelly-Riley, D. ( 2004 ). Assessing and teaching what we value: The relationship between college-level writing and critical thinking abilities . Assessing Writing , 9 (1), 56–75. https://doi.org/10.1016/j.asw.2004.01.003 . Google Scholar
  • Ding, L., Wei, X., & Liu, X. ( 2016 ). Variations in university students’ scientific reasoning skills across majors, years, and types of institutions . Research in Science Education , 46 (5), 613–632. https://doi.org/10.1007/s11165-015-9473-y . Google Scholar
  • Dowd, J. E., Connolly, M. P., Thompson, R. J.Jr., & Reynolds, J. A. ( 2015a ). Improved reasoning in undergraduate writing through structured workshops . Journal of Economic Education , 46 (1), 14–27. https://doi.org/10.1080/00220485.2014.978924 . Google Scholar
  • Dowd, J. E., Roy, C. P., Thompson, R. J.Jr., & Reynolds, J. A. ( 2015b ). “On course” for supporting expanded participation and improving scientific reasoning in undergraduate thesis writing . Journal of Chemical Education , 92 (1), 39–45. https://doi.org/10.1021/ed500298r . Google Scholar
  • Dowd, J. E., Thompson, R. J.Jr., & Reynolds, J. A. ( 2016 ). Quantitative genre analysis of undergraduate theses: Uncovering different ways of writing and thinking in science disciplines . WAC Journal , 27 , 36–51. Google Scholar
  • Facione, P. A. ( 1990 ). Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations . Newark, DE: American Philosophical Association. Retrieved September 26, 2017, from https://philpapers.org/archive/FACCTA.pdf . Google Scholar
  • Gerdeman, R. D., Russell, A. A., Worden, K. J., Gerdeman, R. D., Russell, A. A., & Worden, K. J. ( 2007 ). Web-based student writing and reviewing in a large biology lecture course . Journal of College Science Teaching , 36 (5), 46–52. Google Scholar
  • Greenhoot, A. F., Semb, G., Colombo, J., & Schreiber, T. ( 2004 ). Prior beliefs and methodological concepts in scientific reasoning . Applied Cognitive Psychology , 18 (2), 203–221. https://doi.org/10.1002/acp.959 . Google Scholar
  • Haaga, D. A. F. ( 1993 ). Peer review of term papers in graduate psychology courses . Teaching of Psychology , 20 (1), 28–32. https://doi.org/10.1207/s15328023top2001_5 . Google Scholar
  • Halonen, J. S., Bosack, T., Clay, S., McCarthy, M., Dunn, D. S., Hill, G. W., … Whitlock, K. ( 2003 ). A rubric for learning, teaching, and assessing scientific inquiry in psychology . Teaching of Psychology , 30 (3), 196–208. https://doi.org/10.1207/S15328023TOP3003_01 . Google Scholar
  • Hand, B., & Keys, C. W. ( 1999 ). Inquiry investigation . Science Teacher , 66 (4), 27–29. Google Scholar
  • Holm, S. ( 1979 ). A simple sequentially rejective multiple test procedure . Scandinavian Journal of Statistics , 6 (2), 65–70. Google Scholar
  • Holyoak, K. J., & Morrison, R. G. ( 2005 ). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press. Google Scholar
  • Insight Assessment . ( 2016a ). California Critical Thinking Skills Test (CCTST) Retrieved September 26, 2017, from www.insightassessment.com/Products/Products-Summary/Critical-Thinking-Skills-Tests/California-Critical-Thinking-Skills-Test-CCTST . Google Scholar
  • Insight Assessment . ( 2016b ). Sample thinking skills questions. Retrieved September 26, 2017, from www.insightassessment.com/Resources/Teaching-Training-and-Learning-Tools/node_1487 . Google Scholar
  • Kelly, G. J., & Takao, A. ( 2002 ). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing . Science Education , 86 (3), 314–342. https://doi.org/10.1002/sce.10024 . Google Scholar
  • Kuhn, D., & Dean, D.Jr. ( 2004 ). Connecting scientific reasoning and causal inference . Journal of Cognition and Development , 5 (2), 261–288. https://doi.org/10.1207/s15327647jcd0502_5 . Google Scholar
  • Kuhn, D., Iordanou, K., Pease, M., & Wirkala, C. ( 2008 ). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? . Cognitive Development , 23 (4), 435–451. https://doi.org/10.1016/j.cogdev.2008.09.006 . Google Scholar
  • Lawson, A. E. ( 2010 ). Basic inferences of scientific reasoning, argumentation, and discovery . Science Education , 94 (2), 336–364. https://doi.org/­10.1002/sce.20357 . Google Scholar
  • Meizlish, D., LaVaque-Manty, D., Silver, N., & Kaplan, M. ( 2013 ). Think like/write like: Metacognitive strategies to foster students’ development as disciplinary thinkers and writers . In Thompson, R. J. (Ed.), Changing the conversation about higher education (pp. 53–73). Lanham, MD: Rowman & Littlefield. Google Scholar
  • Miri, B., David, B.-C., & Uri, Z. ( 2007 ). Purposely teaching for the promotion of higher-order thinking skills: A case of critical thinking . Research in Science Education , 37 (4), 353–369. https://doi.org/10.1007/s11165-006-9029-2 . Google Scholar
  • Moshman, D. ( 2015 ). Epistemic cognition and development: The psychology of justification and truth . New York: Psychology Press. Google Scholar
  • National Research Council . ( 2000 ). How people learn: Brain, mind, experience, and school . Expanded ed.. Washington, DC: National Academies Press. Google Scholar
  • Pukkila, P. J. ( 2004 ). Introducing student inquiry in large introductory genetics classes . Genetics , 166 (1), 11–18. https://doi.org/10.1534/genetics.166.1.11 . Medline ,  Google Scholar
  • Quitadamo, I. J., Faiola, C. L., Johnson, J. E., & Kurtz, M. J. ( 2008 ). Community-based inquiry improves critical thinking in general education biology . CBE—Life Sciences Education , 7 (3), 327–337. https://doi.org/10.1187/cbe.07-11-0097 . Link ,  Google Scholar
  • Quitadamo, I. J., & Kurtz, M. J. ( 2007 ). Learning to improve: Using writing to increase critical thinking performance in general education biology . CBE—Life Sciences Education , 6 (2), 140–154. https://doi.org/10.1187/cbe.06-11-0203 . Link ,  Google Scholar
  • Reynolds, J. A., Smith, R., Moskovitz, C., & Sayle, A. ( 2009 ). BioTAP: A systematic approach to teaching scientific writing and evaluating undergraduate theses . BioScience , 59 (10), 896–903. https://doi.org/10.1525/bio.2009.59.10.11 . Google Scholar
  • Reynolds, J. A., Thaiss, C., Katkin, W., & Thompson, R. J. ( 2012 ). Writing-to-learn in undergraduate science education: A community-based, conceptually driven approach . CBE—Life Sciences Education , 11 (1), 17–25. https://doi.org/10.1187/cbe.11-08-0064 . Link ,  Google Scholar
  • Reynolds, J. A., & Thompson, R. J. ( 2011 ). Want to improve undergraduate thesis writing? Engage students and their faculty readers in scientific peer review . CBE—Life Sciences Education , 10 (2), 209–215. https://doi.org/­10.1187/cbe.10-10-0127 . Link ,  Google Scholar
  • Rhemtulla, M., Brosseau-Liard, P. E., & Savalei, V. ( 2012 ). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions . Psychological Methods , 17 (3), 354–373. https://doi.org/­10.1037/a0029315 . Medline ,  Google Scholar
  • Stephenson, N. S., & Sadler-McKnight, N. P. ( 2016 ). Developing critical thinking skills using the science writing heuristic in the chemistry laboratory . Chemistry Education Research and Practice , 17 (1), 72–79. https://doi.org/­10.1039/C5RP00102A . Google Scholar
  • Tariq, V. N., Stefani, L. A. J., Butcher, A. C., & Heylings, D. J. A. ( 1998 ). Developing a new approach to the assessment of project work . Assessment and Evaluation in Higher Education , 23 (3), 221–240. https://doi.org/­10.1080/0260293980230301 . Google Scholar
  • Timmerman, B. E. C., Strickland, D. C., Johnson, R. L., & Payne, J. R. ( 2011 ). Development of a “universal” rubric for assessing undergraduates’ scientific reasoning skills using scientific writing . Assessment and Evaluation in Higher Education , 36 (5), 509–547. https://doi.org/10.1080/­02602930903540991 . Google Scholar
  • Topping, K. J., Smith, E. F., Swanson, I., & Elliot, A. ( 2000 ). Formative peer assessment of academic writing between postgraduate students . Assessment and Evaluation in Higher Education , 25 (2), 149–169. https://doi.org/10.1080/713611428 . Google Scholar
  • Willison, J., & O’Regan, K. ( 2007 ). Commonly known, commonly not known, totally unknown: A framework for students becoming researchers . Higher Education Research and Development , 26 (4), 393–409. https://doi.org/10.1080/07294360701658609 . Google Scholar
  • Woodin, T., Carter, V. C., & Fletcher, L. ( 2010 ). Vision and Change in Biology Undergraduate Education: A Call for Action—Initial responses . CBE—Life Sciences Education , 9 (2), 71–73. https://doi.org/10.1187/cbe.10-03-0044 . Link ,  Google Scholar
  • Zeineddin, A., & Abd-El-Khalick, F. ( 2010 ). Scientific reasoning and epistemological commitments: Coordination of theory and evidence among college science students . Journal of Research in Science Teaching , 47 (9), 1064–1093. https://doi.org/10.1002/tea.20368 . Google Scholar
  • Zimmerman, C. ( 2000 ). The development of scientific reasoning skills . Developmental Review , 20 (1), 99–149. https://doi.org/10.1006/drev.1999.0497 . Google Scholar
  • Zimmerman, C. ( 2007 ). The development of scientific thinking skills in elementary and middle school . Developmental Review , 27 (2), 172–223. https://doi.org/10.1016/j.dr.2006.12.001 . Google Scholar
  • Redesign a biology introduction course to promote life consciousness 14 May 2024 | Cogent Education, Vol. 11, No. 1
  • Gender, Equity, and Science Writing: Examining Differences in Undergraduate Life Science Majors’ Attitudes toward Writing Lab Reports 6 March 2024 | Education Sciences, Vol. 14, No. 3
  • Designing a framework to improve critical reflection writing in teacher education using action research 24 February 2022 | Educational Action Research, Vol. 32, No. 1
  • Scientific Thinking and Critical Thinking in Science Education  5 September 2023 | Science & Education, Vol. 11
  • Students Need More than Content Knowledge To Counter Vaccine Hesitancy 22 Aug 2023 | Journal of Microbiology & Biology Education, Vol. 24, No. 2
  • Critical thinking during science investigations: what do practicing teachers value and observe? 16 March 2023 | Teachers and Teaching, Vol. 29, No. 6
  • Effect of Web-Based Collaborative Learning Method with Scratch on Critical Thinking Skills of 5th Grade Students 30 March 2023 | Participatory Educational Research, Vol. 10, No. 2
  • Are We on the Way to Successfully Educating Future Citizens?—A Spotlight on Critical Thinking Skills and Beliefs about the Nature of Science among Pre-Service Biology Teachers in Germany 22 March 2023 | Behavioral Sciences, Vol. 13, No. 3
  • A Systematic Review on Inquiry-Based Writing Instruction in Tertiary Settings 30 November 2022 | Written Communication, Vol. 40, No. 1
  • An empirical analysis of the relationship between nature of science and critical thinking through science definitions and thinking skills 8 December 2022 | SN Social Sciences, Vol. 2, No. 12
  • TEACHING OF CRITICAL THINKING SKILLS BY SCIENCE TEACHERS IN JAPANESE PRIMARY SCHOOLS 25 October 2022 | Journal of Baltic Science Education, Vol. 21, No. 5
  • A Team-Based Activity to Support Knowledge Transfer and Experimental Design Skills of Undergraduate Science Students 4 May 2022 | Journal of Microbiology & Biology Education, Vol. 21
  • Curriculum Design of College Students’ English Critical Ability in the Internet Age 18 Mar 2022 | Wireless Communications and Mobile Computing, Vol. 2022
  • Exploring the structure of students’ scientific higher order thinking in science education 1 Mar 2022 | Thinking Skills and Creativity, Vol. 43
  • 2022 | The Asia-Pacific Education Researcher, Vol. 31, No. 4
  • Conspiratorial Beliefs and Cognitive Styles: An Integrated Look on Analytic Thinking, Critical Thinking, and Scientific Reasoning in Relation to (Dis)trust in Conspiracy Theories 12 October 2021 | Frontiers in Psychology, Vol. 12
  • Professional Knowledge and Self-Efficacy Expectations of Pre-Service Teachers Regarding Scientific Reasoning and Diagnostics 11 October 2021 | Education Sciences, Vol. 11, No. 10
  • Developing textbook based on scientific approach, critical thinking, and science process skills 1 Mar 2021 | Journal of Physics: Conference Series, Vol. 1839, No. 1
  • Using Models of Cognitive Development to Design College Learning Experiences 18 Jan 2021
  • 2021 | Thinking Skills and Creativity, Vol. 42
  • Assessing students’ prior knowledge on critical thinking skills in the biology classroom: Has it already been good? 1 Jan 2021
  • Critical Thinking Level among Medical Sciences Students in Iran 28 Dec 2020 | Education Research International, Vol. 2020
  • Teaching during a pandemic: Using high‐impact writing assignments to balance rigor, engagement, flexibility, and workload 12 October 2020 | Ecology and Evolution, Vol. 10, No. 22
  • Mini-Review - Teaching Writing in the Undergraduate Neuroscience Curriculum: Its Importance and Best Practices 1 Oct 2020 | Neuroscience Letters, Vol. 737
  • Developing critical thinking skills assessment for pre-service elementary school teacher about the basic concept of science: validity and reliability 1 Jun 2020 | Journal of Physics: Conference Series, Vol. 1567, No. 2
  • Challenging endocrinology students with a critical-thinking workbook 1 Mar 2020 | Advances in Physiology Education, Vol. 44, No. 1
  • Jason E. Dowd ,
  • Robert J. Thompson ,
  • Leslie Schiff ,
  • Kelaine Haas ,
  • Christine Hohmann ,
  • Chris Roy ,
  • Warren Meck ,
  • John Bruno , and
  • Rebecca Price, Monitoring Editor
  • Kari L. Nelson ,
  • Claudia M. Rauter , and
  • Christine E. Cutucache
  • Elisabeth Schussler, Monitoring Editor

Submitted: 17 March 2017 Revised: 19 October 2017 Accepted: 20 October 2017

© 2018 J. E. Dowd et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  • Open access
  • Published: 24 May 2024

Integration of case-based learning and three-dimensional printing for tetralogy of fallot instruction in clinical medical undergraduates: a randomized controlled trial

  • Jian Zhao 1   na1 ,
  • Xin Gong 1   na1 ,
  • Jian Ding 1 ,
  • Kepin Xiong 2 ,
  • Kangle Zhuang 3 ,
  • Rui Huang 1 ,
  • Shu Li 4 &
  • Huachun Miao 1  

BMC Medical Education volume  24 , Article number:  571 ( 2024 ) Cite this article

251 Accesses

Metrics details

Case-based learning (CBL) methods have gained prominence in medical education, proving especially effective for preclinical training in undergraduate medical education. Tetralogy of Fallot (TOF) is a congenital heart disease characterized by four malformations, presenting a challenge in medical education due to the complexity of its anatomical pathology. Three-dimensional printing (3DP), generating physical replicas from data, offers a valuable tool for illustrating intricate anatomical structures and spatial relationships in the classroom. This study explores the integration of 3DP with CBL teaching for clinical medical undergraduates.

Sixty senior clinical medical undergraduates were randomly assigned to the CBL group and the CBL-3DP group. Computed tomography imaging data from a typical TOF case were exported, processed, and utilized to create four TOF models with a color 3D printer. The CBL group employed CBL teaching methods, while the CBL-3DP group combined CBL with 3D-printed models. Post-class exams and questionnaires assessed the teaching effectiveness of both groups.

The CBL-3DP group exhibited improved performance in post-class examinations, particularly in pathological anatomy and TOF imaging data analysis ( P  < 0.05). Questionnaire responses from the CBL-3DP group indicated enhanced satisfaction with teaching mode, promotion of diagnostic skills, bolstering of self-assurance in managing TOF cases, and cultivation of critical thinking and clinical reasoning abilities ( P  < 0.05). These findings underscore the potential of 3D printed models to augment the effectiveness of CBL, aiding students in mastering instructional content and bolstering their interest and self-confidence in learning.

The fusion of CBL with 3D printing models is feasible and effective in TOF instruction to clinical medical undergraduates, and worthy of popularization and application in medical education, especially for courses involving intricate anatomical components.

Peer Review reports

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease(CHD) [ 1 ]. Characterized by four structural anomalies: ventricular septal defect (VSD), pulmonary stenosis (PS), right ventricular hypertrophy (RVH), and overriding aorta (OA), TOF is a focal point and challenge in medical education. Understanding anatomical spatial structures is pivotal for learning and mastering TOF [ 2 ]. Given the constraints of course duration, medical school educators aim to provide students with a comprehensive and intuitive understanding of the disease within a limited timeframe [ 3 ].

The case-based learning (CBL) teaching model incorporates a case-based instructional approach that emphasizes typical clinical cases as a guide in student-centered and teacher-facilitated group discussions [ 4 ]. The CBL instructional methods have garnered widespread attention in medical education as they are particularly appropriate for preclinical training in undergraduate medical education [ 5 , 6 ]. The collection of case data, including medical records and examination results, is essential for case construction [ 7 ]. The anatomical and hemodynamic consequences of TOF can be determined using ultrasonography, computed tomography (CT), and magnetic resonance imaging techniques. However, understanding the anatomical structures from imaging data is a slow and challenging psychological reconstruction process for undergraduate medical students [ 8 ]. Three-dimensional (3D) visualization is valuable for depicting anatomical structures [ 9 ]. 3D printing (3DP), which creates physical replicas based on data, facilitates the demonstration of complex anatomical structures and spatial relationships in the classroom [ 10 ].

During the classroom session, 3D-printed models offer a convenient means for hands-on demonstration and communication, similar to facing a patient, enhancing the efficiency and specificity of intra-team communication and discussion [ 11 ]. In this study, we printed TOF models based on case imaging data, integrated them into CBL teaching, and assessed the effectiveness of classroom instruction.

Research participants

The study employed a prospective, randomized controlled design which received approval from the institutional ethics committee. Senior undergraduate students majoring in clinical medicine at Wannan Medical College were recruited for participation based on predefined inclusion criteria. The researchers implemented recruitment according to the recruitment criteria by contacting the class leaders of the target classes they had previously taught. Notably, these students were in their third year of medical education, with anticipation of progressing to clinical courses in the fourth year, encompassing Internal Medicine, Surgery, Obstetrics, Gynecology, and Pediatrics. Inclusion criteria for participants encompassed the following: (1) proficient communication and comprehension abilities, (2) consistent attendance without absenteeism or truancy, (3) absence of failing grades in prior examinations, and (4) capability to conscientiously fulfill assigned learning tasks. Exclusion criteria were (1) absence from lectures, (2) failure to complete pre-and post-tests, and (3) inadequate completion of questionnaires. For their participation in the study, Students were provided access to the e-book “Localized Anatomy,” authored by the investigators, as an incentive for their participation. Voluntary and anonymous participation was emphasized, with participants retaining the right to withdraw from the study at any time without providing a reason.

The study was conducted between May 1st, 2023, and June 30, 2023, from recruitment to completion of data collection. Drawing upon insights gained from a previous analogous investigation which yielded an effect size of 0.95 [ 10 ]. Sample size was computed, guided by a statistical consultant, with the aim of 0.85 power value, predicated on an effect size of 0.8 and a margin of error set at 0.05. A minimum of 30 participants per group was calculated using G*Power software (latest ver. 3.1.9.7; Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany), resulting in the recruitment of a total of 60 undergraduate students. Each participant was assigned an identification number, with codes placed in boxes. Codes drawn from the boxes determined allocation to either the CBL group or the CBL-3DP group. Subsequently, participants were randomly assigned to either the CBL group, receiving instruction utilizing the CBL methodology, or the CBL-3DP group, which received instruction integrating both CBL and 3D Printed models.

Printing of TOF models

Figure  1 A shows the printing flowchart of the TOF models. A typical TOF case was collected from the Yijishan Hospital of Wannan Medical College. The CT angiography imaging data of the case was exported. Mimics Research 20.0 software (Mimics Innovation Suite version 20, Materialize, Belgium) was used for data processing. The cardiovascular module of the CT-Heart tool was employed to adjust the threshold range, independently obtain the cardiac chambers and vessels, post-process the chambers and vessels to generate a hollow blood pool, and merge it with the myocardial volume to construct a complete heart model. The file was imported into Magics 24.0 software (version 24.0; Materialize, Belgium) for correction using the Shell tool page. After repairs, the model entered the smoothing page, where tools such as triangular surface simplification, local smoothing, refinement and smoothing, subdivision of components, and mesh painting were utilized to achieve varying degrees of smoothness. Finally, optimized data were obtained and exported as stereolithography (STL) files. An experienced cardiothoracic surgeon validated the anatomical accuracy of the digital model.

The STL files were imported into a 3D printer (J401Pro; Sailner 3D Technology, China) for model printing. This printer can produce full-color medical models using different materials. The models were fabricated using two distinct materials: rigid and flexible. Both materials are suitable for the observational discussion of the teaching objectives outlined in our study. From the perspective of observing pathological changes in the TOF, there is no significant difference between the two materials.

figure 1

Experimental flow chart of this study. A TOF model printing flow chart. B The instructional framework

Teaching implementation

Figure  1 B illustrates the instructional framework employed in this study. One week preceding the class session, all the students were tasked with a 30-minute self-study session, focusing on the theoretical content related to TOF as outlined in the Pediatrics and Surgery textbooks, along with a review of pertinent academic literature. Both groups received co-supervision from two basic medicine lecturers boasting over a decade of teaching experience, alongside a senior cardiothoracic surgeon. Teaching conditions remained consistent across groups, encompassing uniform assessment criteria and adherence to predefined teaching time frames, all conducted in a Project-Based Learning (PBL) classroom at Wannan Medical College. Additionally, a pre-course examination was administered to gauge students’ preparedness for self-study.

In adherence to the curriculum guidelines, the teaching objectives aimed to empower students to master TOF’s clinical manifestations, diagnostic modalities, and differential diagnoses, while acquainting them with treatment principles and surgical methodologies. Additionally, the objectives sought to cultivate students’ clinical reasoning abilities and problem-solving skills. the duration of instruction for the TOF theory session was standardized to 25 min. The didactic content was integrated with the TOF case study to construct a coherent pedagogical structure.

During the instructional session, both groups underwent teaching utilizing the CBL methodology. Clinical manifestations and case details of TOF cases were presented to stimulate students’ interest and curiosity. Subsequently, the theory of TOF, including its etiology, pathogenesis, pathologic anatomy, clinical manifestations, diagnostic methods, and therapeutic interventions, was briefly elucidated. Emphasis was then placed on the case, wherein selected typical TOF cases were explained, guiding students in analysis and discussion. Students were organized into four teams under the instructors’ supervision, fostering cooperative learning and communication, thereby deepening their understanding of the disease through continuous inquiry and exploration (Fig.  2 L). In the routinely equipped PBL classroom with standard heart models (Fig.  2 J, K), all students had prior exposure to human anatomy and were familiar with these models. Both groups were provided with four standard heart models for reference, while the CBL-3DP group received additional four 3D-printed models depicting TOF anomalies, enriching their learning experience (Fig.  2 D, G). After the lesson, summarization, and feedback sessions were conducted to consolidate group discussions’ outcomes, evaluate teaching effectiveness, and assess learning outcomes.

figure 2

Heart models utilized in instructional sessions. A External perspective of 3D digital models. B, C Cross-sectional views following trans-septal sagittal dissection of the 3D digital model (PS: Pulmonary Stenosis; OA: Overriding Aorta; VSD: Ventricular Septal Defect; RVH: Right Ventricular Hypertrophy). D External depiction of rigid 3D printed model. E, F Sagittal sections of the rigid 3D printed model. G External portrayal of flexible 3D printed model. H, I Sagittal sections of the flexible 3D printed model. J, K The normal heart model employed in the instruction of the CBL group. L Ongoing classroom session

Teaching effectiveness assessment

Following the instructional session, participants from the two groups underwent a theoretical examination to assess their comprehension of the taught material. This assessment covered domains such as pathological anatomy, clinical manifestations, imaging data interpretation, diagnosis, and treatment relevant to TOF. Additionally, structured questionnaires were administered to evaluate the efficacy of the pedagogical approach employed. The questionnaire consisted of six questions designed to gauge participants’ understanding of the teaching content, enhancement of diagnostic skills, cultivation of critical thinking and clinical reasoning abilities, bolstering of confidence in managing TOF cases, satisfaction with the teaching mode, and satisfaction with the CBL methodology.

The questionnaire employed a 5-point Likert scale to gauge responses, with 5 indicating “strongly satisfied/agree,” 4 for “satisfied/agree,” 3 denoting “neutral,” 2 reflecting “dissatisfied/disagree,” and 1 indicating “strongly dissatisfied/disagree.” It comprised six questions, with the initial two probing participants’ knowledge acquisition, questions 3 and 4 exploring satisfaction regarding enhanced competence, and the final two assessing satisfaction with teaching methods and modes. Additionally, participants were encouraged to provide suggestions at the end of the questionnaire. To ensure the questionnaire’s validity, five esteemed lecturers in basic medical sciences with more than 10 years of experience verified its content and assessed its Content Validity Ratio and Content Validity Index to ensure alignment with the study’s objectives.

Statistical analysis

Statistical analyses were conducted utilizing GraphPad Prism 9.0 software. Aggregate score data for both groups were presented as mean ± standard deviation (x ± s). The gender comparisons were analyzed with the chi-square (χ2) test, while the other variables were compared using the Mann-Whitney U test. The threshold for determining statistical significance was set at P  < 0.05.

Three-dimensional printing models

After configuring the structural colors of each component (Fig.  2 A, B, C), we printed four color TOF models using both rigid and flexible materials, resulting in four life-sized TOF models. Two color TOF models were created using rigid materials (Fig.  2 D, E, F). These models, exhibiting resistance to deformation, and with a firm texture, smooth and glossy surface, and good transparency, allowing visibility of the internal structures, were deemed conducive to teaching and observation. We also fabricated two color TOF models using flexible materials (Fig.  2 G, H, I), characterized by soft texture, opacity, and deformability, allowing for easy manipulation and cutting. It has potential utility beyond observational purposes. It can serve as a valuable tool for simulating surgical interventions and may be employed to create tomographic anatomical specimens. In this study, both material models were suitable for observation in the classroom. The participants were able to discern the four pathological changes characteristic of TOF from surface examination or cross-sectional analysis.

Baseline characteristics of the students

In total, 60 students were included in this study. The CBL group comprised 30 students (14 males and 16 females), with an average age of (21.20 ± 0.76) years. The CBL-3DP group consisted of 30 students (17 males and 13 females) with an average age of 20.96 years. All the students completed the study procedures. There were no significant differences in age, sex ratio, or pre-class exam scores between the two groups ( P  > 0.05), indicating that the baseline scores between the two groups were comparable (Table  1 ).

Theoretical examination results

All students completed the research procedures as planned. The post-class theoretical examination encompassed assessment of pathological anatomy, clinical presentations, imaging data interpretation, diagnosis, and treatment pertinent to TOF. Notably, no statistically significant disparities were observed in the scores on clinical manifestations, diagnosis and treatment components between the cohorts, as delineated in Table  2 . Conversely, discernible distinctions were evident whereby the CBL-3DP group outperformed the CBL group notably in pathological anatomy, imaging data interpretation, and overall aggregate scores ( P  < 0.05).

Results of the questionnaires

All the 60 participants submitted the questionnaire. Comparing the CBL and CBL-3DP groups, the scores from the CBL-3DP group showed significant improvements in many areas. This included satisfaction with the teaching mode, promotion of diagnostic skills, bolstering of self-assurance in managing TOF cases, and cultivation of critical thinking and clinical reasoning abilities (Fig.  3 B, C, D, E). All of which improved significantly ( P  < 0.05 for the first aspects and P  < 0.01 for the rest). However, the two groups were not comparable ( P  > 0.05) in terms of understanding of the teaching content and Satisfaction with the CBL methodology (Fig.  3 A, F).

Upon completion of the questionnaires, participants were invited to proffer recommendations. Notably, in the CBL group, seven students expressed challenges in comprehending TOF and indicated a need for additional time for consolidation to enhance understanding. Conversely, within the CBL-3DP group, twelve students advocated for the augmentation of model repertoire and the expansion of disease-related data collection to bolster pedagogical efficacy across other didactic domains.

figure 3

Five-point Likert scores of students’ attitudes in CBL ( n  = 30) and CBL-3DP ( n  = 30) groups. A Understanding of teaching content. B Promotion of diagnostic skills. C Cultivation of critical thinking and clinical reasoning abilities. D Bolstering of self-assurance in managing TOF cases. E Satisfaction with the teaching mode. F Satisfaction with the CBL methodology. ns No significant difference, * p  < 0.05, ** p  < 0.01, *** p  < 0.001

TOF presents a significant challenge in clinical practice, necessitating a comprehensive understanding for effective diagnosis and treatment [ 12 ]. Traditional teaching methods in medical schools have relied on conventional resources such as textbooks, 2D illustrations, cadaver dissections, and radiographic materials to impart knowledge about complex conditions like TOF [ 13 ]. However, the limitations of these methods in fully engaging students and bridging the gap between theoretical knowledge and practical application have prompted a need for innovative instructional approaches.

CBL has emerged as a valuable tool in medical education, offering students opportunities to engage with authentic clinical cases through group discussions and inquiry-based learning [ 14 ]. By actively involving students in problem-solving and decision-making processes, CBL facilitates the application of theoretical knowledge to real-world scenarios, thus better-preparing students for future clinical practice [ 15 ]. Our investigation revealed that both groups of students exhibited comparable levels of satisfaction with the CBL methodology, devoid of discernible disparities.

CHD presents a formidable challenge due to the intricate nature of anatomical anomalies, the diverse spectrum of conditions, and individual variations [ 16 ]. Utilizing 3D-printed physical models, derived from patient imaging data, can significantly enhance comprehension of complex anatomical structures [ 17 ]. These models have proven invaluable in guiding surgical planning, providing training for junior or inexperienced pediatric residents, and educating healthcare professionals and parents of patients [ 18 ]. Studies indicate that as much as 50% of pediatric surgical decisions can be influenced by the insights gained from 3D printed models [ 19 ]. By providing tangible, anatomically accurate models, 3D printing offers a unique opportunity for people to visualize complex structures and enhance their understanding of anatomical intricacies. Our study utilized full-color, to-scale 3D printed models to illustrate the structural abnormalities associated with TOF, thereby enriching classroom sessions and facilitating a deeper comprehension of the condition.

Comparative analysis between the CBL-3DP group and the CBL group revealed significant improvements in post-test performance, particularly in pathological anatomy and imaging data interpretation. Additionally, questionnaire responses indicated higher levels of satisfaction and confidence among students in the CBL-3DP group, highlighting the positive impact of incorporating 3D printed models into the learning environment, improving the effectiveness of CBL classroom instruction. Despite the merits, our study has limitations. Primarily, participants were exclusively drawn from the same grade level within a single college, possibly engendering bias owing to shared learning backgrounds. Future research could further strengthen these findings by expanding the sample size and including long-term follow-up to assess the retention of knowledge and skills. Additionally, the influence of the 3D models depicting a normal heart on the learning process and its potential to introduce bias into the results warrants consideration, highlighting a need for scrutiny in subsequent studies.

As medical science continues to advance, the need for effective teaching methods becomes increasingly paramount. Our study underscores the potential of combining active learning approaches like CBL with innovative technologies such as 3D printing to enhance teaching effectiveness, improve knowledge acquisition, and foster students’ confidence and enthusiasm in pursuing clinical careers. Moving forward, further research and integration of such methodologies are essential for meeting the evolving demands of medical education, especially in areas involving complex anatomical understanding.

Conclusions

Integrating 3D-printed models with the CBL method is feasible and effective in TOF instruction. The demonstrated success of this method warrants broad implementation in medical education, particularly for complex anatomical topics.

Data availability

All data supporting the conclusions of this research are available upon reasonable request from the corresponding author.

Apitz C, Webb GD, Redington AN. Tetralogy of Fallot. Lancet. 2009;374:1462–71.

Article   Google Scholar  

Ghosh RM, Jolley MA, Mascio CE, Chen JM, Fuller S, Rome JJ, et al. Clinical 3D modeling to guide pediatric cardiothoracic surgery and intervention using 3D printed anatomic models, computer aided design and virtual reality. 3D Print Med. 2022;8:11.

Chakrabarti R, Wardle K, Wright T, Bennie T, Gishen F. Approaching an undergraduate medical curriculum map: challenges and expectations. BMC Med Educ. 2021;21:341.

Donkin R, Yule H, Fyfe T. Online case-based learning in medical education: a scoping review. BMC Med Educ. 2023;23:564.

Novack JP. Designing cases for case-based immunology teaching in large medical school classes. Front Immunol. 2020;11:995.

Chen HC, Van Den Broek WES, Ten Cate O. The case for use of entrustable professional activities in undergraduate medical education. Acad Med. 2015;90:431–6.

Wang M, Sun Z, Jia M, Wang Y, Wang H, Zhu X, et al. Intelligent virtual case learning system based on real medical records and natural language processing. BMC Med Inf Decis Mak. 2022;22:60.

Yoo S-J, Thabit O, Kim EK, Ide H, Yim D, Dragulescu A, et al. 3D printing in medicine of congenital heart diseases. 3D Print Med. 2015;2:3.

Yammine K, Violato C. A meta-analysis of the educational effectiveness of three-dimensional visualization technologies in teaching anatomy. Anat Sci Educ. 2015;8:525–38.

Miao H, Ding J, Gong X, Zhao J, Li H, Xiong K, et al. Application of 3D-printed pulmonary segment specimens in experimental teaching of sectional anatomy. BMC Surg. 2023;23:109.

Sun Z, Wong YH, Yeong CH. Patient-specific 3D-printed low-cost models in medical education and clinical practice. Micromachines (Basel). 2023;14:464.

Downing TE, Kim YY. Tetralogy of Fallot: general principles of management. Cardiol Clin. 2015;33:531–41. vii–viii.

Jia X, Zeng W, Zhang Q. Combined administration of problem- and lecture-based learning teaching models in medical education in China: a meta-analysis of randomized controlled trials. Med (Baltim). 2018;97:e11366.

McLean SF. Case-based learning and its application in medical and health-care fields: a review of worldwide literature. J Med Educ Curric Dev. 2016;3:JMECD.S20377.

Zeng N, Lu H, Li S, Yang Q, Liu F, Pan H, et al. Application of the combination of CBL teaching method and SEGUE framework to improve the doctor-patient communication skills of resident physicians in otolaryngology department. Bmc Med Educ. 2024;24:201.

Sun Z. Patient-specific 3D-printed models in pediatric congenital heart disease. Children. 2023;10:319.

Meyer-Szary J, Luis MS, Mikulski S, Patel A, Schulz F, Tretiakow D, et al. The role of 3D printing in planning complex medical procedures and training of medical professionals—cross-sectional multispecialty review. IJERPH. 2022;19:3331.

Sun Z, Wee C. 3D printed models in cardiovascular disease: an exciting future to deliver personalized medicine. Micromachines-basel. 2022;13:1575.

Valverde I, Gomez-Ciriza G, Hussain T, Suarez-Mejias C, Velasco-Forte MN, Byrne N, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur J Cardio-thorac. 2017;52:1139–48.

Download references

Acknowledgements

We extend our sincere appreciation to the instructors and students whose invaluable participated in this study.

This paper received support from the Education Department of Anhui Province, China (Grant Numbers 2022jyxm1693, 2022jyxm1694, 2022xskc103, 2018jyxm1280).

Author information

Jian Zhao and Xin Gong are joint first authors.

Authors and Affiliations

Department of Human Anatomy, Wannan Medical College, No.22 West Wenchang Road, Wuhu, 241002, China

Jian Zhao, Xin Gong, Jian Ding, Rui Huang & Huachun Miao

Department of Cardio-Thoracic Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China

Kepin Xiong

Zhuhai Sailner 3D Technology Co., Ltd., Zhuhai, China

Kangle Zhuang

School of Basic Medical Sciences, Wannan Medical College, Wuhu, China

You can also search for this author in PubMed   Google Scholar

Contributions

Jian Zhao and Huachun Miao designed the research. Jian Zhao, Xin Gong, Jian Ding, Kepin Xiong designed the tests and questionnaires. Kangle Zhuang processed the imaging data and printed the models. Xing Gong and Kepin Xiong implemented the teaching. Jian Zhao and Rui Huang collected the data and performed the statistical analysis. Jian Zhao and Huachun Miao prepared the manuscript. Shu Li and Huachun Miao revised the manuscript. Shu Li provided the Funding acquisition. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Shu Li or Huachun Miao .

Ethics declarations

Ethics approval and consent to participate.

This investigation received ethical approval from the Ethical Committee of School of Basic Medical Sciences, Wannan Medical College (ECBMSWMC2022-1-12). All methodologies adhered strictly to established protocols and guidelines. Written informed consent was obtained from the study participants to take part in the study.

Consent for publication

Written informed consent was obtained from the individuals for the publication of any potentially identifiable images or data included in this article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary material 2, supplementary material 3, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Zhao, J., Gong, X., Ding, J. et al. Integration of case-based learning and three-dimensional printing for tetralogy of fallot instruction in clinical medical undergraduates: a randomized controlled trial. BMC Med Educ 24 , 571 (2024). https://doi.org/10.1186/s12909-024-05583-z

Download citation

Received : 03 March 2024

Accepted : 21 May 2024

Published : 24 May 2024

DOI : https://doi.org/10.1186/s12909-024-05583-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Medical education
  • Case-based learning
  • 3D printing
  • Tetralogy of fallot
  • Medical undergraduates

BMC Medical Education

ISSN: 1472-6920

3 central components of scientific and critical thinking

SEP logo

  • Table of Contents
  • New in this Archive
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment. Political and business leaders endorse its importance.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o'clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68-69; 1933: 91-92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot's position, it must appear to project far out in front of the boat. Morevoer, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69-70; 1933: 92-93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond line from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009), others on the resulting judgment (Facione 1990a), and still others on the subsequent emotive response (Siegel 1988).

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in frequency in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the frequency of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Critical thinking dispositions can usefully be divided into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started) (Facione 1990a: 25). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), and Black (2012).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work.

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? Abrami et al. (2015) found that in the experimental and quasi-experimental studies that they analyzed dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), and Bailin et al. (1999b).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Casserly, Megan, 2012, “The 10 Skills That Will Get You Hired in 2013”, Forbes , Dec. 10, 2012. Available at https://www.forbes.com/sites/meghancasserly/2012/12/10/the-10-skills-that-will-get-you-a-job-in-2013/#79e7ff4e633d ; accessed 2017 11 06.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; accessed 2017 09 26.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; accessed 2018 04 09.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; accessed 2018 04 14.
  • Dumke, Glenn S., 1980, Chancellor’s Executive Order 338 , Long Beach, CA: California State University, Chancellor’s Office. Available at https://www.calstate.edu/eo/EO-338.pdf ; accessed 2017 11 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”. Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; accessed 2017 12 02.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://drive.google.com/file/d/0BzUoP_pmwy1gdEpCR05PeW9qUzA/view ; accessed 2017 12 01.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • Obama, Barack, 2014, State of the Union Address , January 28, 2014. [ Obama 2014 available online ]
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Information available at http://www.ocr.org.uk/qualifications/as-a-level-gce-critical-thinking-h052-h452/ ; accessed 2017 10 12.
  • OECD [Organization for Economic Cooperation and Development] Centre for Educational Research and Innovation, 2018, Fostering and Assessing Students’ Creative and Critical Thinking Skills in Higher Education , Paris: OECD. Available at http://www.oecd.org/education/ceri/Fostering-and-assessing-students-creative-and-critical-thinking-skills-in-higher-education.pdf ; accessed 2018 04 22.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; accessed 2017 11 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; accessed 2017 11 29.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2011, Curriculum for the Compulsory School, Preschool Class and the Recreation Centre , Stockholm: Ordförrådet AB. Available at http://malmo.se/download/18.29c3b78a132728ecb52800034181/pdf2687.pdf ; accessed 2017 11 16.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up this entry topic at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Center for Teaching Thinking (CTT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach (criticalTHINKING.net)
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2018 by David Hitchcock < hitchckd @ mcmaster . ca >

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

Stanford Center for the Study of Language and Information

The Stanford Encyclopedia of Philosophy is copyright © 2016 by The Metaphysics Research Lab , Center for the Study of Language and Information (CSLI), Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

The Roles of Epistemic Understanding and Research Skills in Students’ Views of Scientific Thinking

  • First Online: 22 September 2019

Cite this chapter

3 central components of scientific and critical thinking

  • Heidi Salmento 3 &
  • Mari Murtonen 4 , 5  

1145 Accesses

3 Citations

Scientific thinking is about understanding the ways knowledge is produced, used and justified in our society. It is also about what knowledge itself is. Thus, students’ epistemic understanding and their understanding of research play central roles in the development of scientific thinking. This chapter sheds light on the phenomena of epistemic understanding and research-based thinking from the viewpoints of students. We present data on how students conceptualise scientific thinking and the roles that epistemic understanding and research-based thinking play in their views. We see epistemic understanding and research-based thinking as cornerstones of scientific thinking and argue that in addition to developing research methodology teaching, more attention should be paid to increase both university teachers’ and students’ awareness of epistemic understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Balloo, K., Pauli, R., & Worrell, M. (2016). Individual differences in psychology undergraduates’ development of research methods knowledge and skills. Procedia—Social and Behavioral Sciences, 217, 790–800. https://doi.org/10.1016/j.sbspro.2016.02.147 .

Article   Google Scholar  

Balloo, K., Pauli, R., & Worrell, M. (2018). Conceptions of research methods learning among psychology undergraduates: A Q methodology study. Cognition and Instruction, 36 (4), 279–296. https://doi.org/10.1080/07370008.2018.1494180 .

Berland, L. K., Schwarz, C. W., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2016). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53 (7), 1082–1112. https://doi.org/10.1002/tea.21257 .

Bråten, I., Muis, K., & Reznitskaya, A. (2017). Teachers’ epistemic cognition in the context of dialogic practice: A question of calibration? Educational Psychologist, 52 (4), 253–269. https://doi.org/10.1080/00461520.2017.1341319 .

Bråten, I., Strømsø, H., & Samuelstuen, M. (2008). Are sophisticated students always better? The role of topic-specific personal epistemology in the understanding of multiple expository texts. Contemporary Educational Psychology, 33, 814–840. https://doi.org/10.1016/j.cedpsych.2008.02.001 .

Brownlee, J., Ferguson, L., & Ryan, M. (2017). Changing teachers’ epistemic cognition: A new conceptual framework for epistemic reflexivity. Educational Psychologist, 52 (4), 242–252. https://doi.org/10.1080/00461520.2017.1333430 .

Brownlee, J., Schraw, G., & Berthelsen, D. (2011). Personal epistemology and teacher education: An emerging field of research. In J. Brownlee, G. Schraw, & D. Berthelsen (Eds.), Personal epistemology and teacher education (pp. 3–24). New York: Routledge.

Google Scholar  

Feucht, F., Brownlee, J., & Schraw, G. (2017). Moving beyond reflection: Reflexivity and epistemic cognition in teaching and teacher education. Educational Psychologist, 52 (4), 234–241. https://doi.org/10.1080/00461520.2017.1350180 .

Greene, J. A., Sandoval, W. A., & Bråten, I. (Eds.). (2016). Handbook of epistemic cognition . New York, NY: Routledge.

Hofer, B. (2000). Dimensionality and disciplinary differences in personal epistemology. Contemporary Educational Psychology, 25 (4), 378–405. https://doi.org/10.1006/ceps.1999.1026 .

Hofer, B. (2016). Epistemic cognition as a psychological construct: Advancements and challenges. In J. Greene, W. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 19–38). New York, NY: Routledge.

Hofer, B. (2017). Shaping the epistemology of teacher practice through reflection and reflexivity. Educational Psychologist, 52 (4), 299–306. https://doi.org/10.1080/00461520.2017.1355247 .

Hofer, B., & Pintrich, P. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67 (1), 88–140. https://doi.org/10.2307/1170620 .

Hofer, B., & Pintrich, P. (Eds.). (2002). Personal epistemology: The psychology of beliefs about knowledge and knowing . Mahwah, NJ: Lawrence Erlbaum Associates.

Kelly, G. (2016). Methodological considerations for interactional perspectives on epistemic cognition. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 392–408). New York: Routledge.

King, P., & Kitchener, K. (2002). The reflective judgement model: Twenty years of research on epistemic cognition. In B. Hofer & P. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 37–62). Mahwah, New Jersey: Lawrence Erlbaum Associates.

Kuhn, D. (2009). Adolescent thinking. In R. Lerner & L. Steinberg (Eds.), Handbook of adolescent psychology (pp. 152–186). Hoboken, NJ: Wiley.

Kuhn, D., Arvidsson, T. S., Lesperance, R., & Corprew, R. (2017). Can engaging in science practices promote deep understanding of them? Science Education, 101 (2), 232–250. https://doi.org/10.1002/sce.21263 .

Kuhn, D., & Weinstock, M. (2002). What is epistemological thinking and why does it matter? In B. Hofer & P. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 121–144). Mahwah, NJ: Lawrence Erlbaum Associates.

Madjar, N., Weinstock, M., & Kaplan, A. (2017). Epistemic beliefs and achievement goal orientations: Relations between constructs versus personal profiles. The Journal of Educational Research, 110 (1), 32–49. https://doi.org/10.1080/00220671.2015.1034353 .

Marra, R. M., & Palmer, B. (2011). Personal epistemologies and pedagogy in higher education. Did we really mean to say that to our students? In J. Brownlee, G. Schraw, & D. Berthelsen (Eds.), Personal Epistemology and Teacher Education (pp. 129–145). New York: Routledge.

Merk, S., Rosman, T., Muis, K., Kelava, A., & Bohl, T. (2018). Topic specific epistemic beliefs: Extending the theory of integrated domains in personal epistemology. Learning and Instruction, 56, 84–97. https://doi.org/10.1016/j.learninstruc.2018.04.008 .

Moore, W. (2002). Understanding learning in postmodern world: Reconsidering the Perry scheme of ethical and intellectual development. In B. Hofer & P. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 17–36). Mahwah, NJ: Lawrence Erlbaum Associates.

Muis, K. (2004). Personal epistemology and mathematics: A critical review and synthesis of research. Review of Educational Research, 74 (3), 317–377. https://doi.org/10.3102/00346543074003317 .

Muis, K. (2007). The role of epistemic beliefs in self-regulated learning. Educational Psychologist, 42 (3), 173–190. https://doi.org/10.1080/00461520701416306 .

Muis, K., Chevrier, R., & Singh, A. (2018). The role of epistemic emotions in personal epistemology and self-regulated learning. Educational Psychologist, 53 (3), 165–184. https://doi.org/10.1080/00461520.2017.1421465 .

Muis, K., Trevors, G., & Chevrier, M. (2016). Epistemic climate for epistemic change. In J. Greene, W. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 331–359). New York: Routledge.

Murtonen, M. (2015). University students’ understanding of the concepts empirical, theoretical, qualitative, and quantitative research. Teaching in Higher Education, 20 (7), 684–698. https://doi.org/10.1080/13562517.2015.1072152 .

Murtonen, M., & Lehtinen, E. (2003). Difficulties experienced by education and sociology students in quantitative methods courses. Studies in Higher education, 28 (2), 171–185.

Murtonen, M., Olkinuora, E., Tynjälä, P., & Lehtinen, E. (2008). Do I need research skills in working life?: University students’ motivation and difficulties in quantitative method courses. Higher Education, 56, 599–612. https://doi.org/10.1007/s10734-008-9113-9 .

Nussbaum, E., Sinatra, G., & Poliquin, A. (2008). Role of epistemic beliefs and scientific argumentation in science learning. International Journal of Science Education, 30 (15), 1977–1999. https://doi.org/10.1080/09500690701545919 .

Perry, W. (1968). Patterns of development in thought and values of students in a liberal arts college: A validation of a scheme (Final Report, Project No. 5-0825, Contract No. SAE-8973). Washington, DC: Department of Health, Education, and Welfare.

Perry, W. (1970). Forms of intellectual and ethical development in the college years: A scheme . Troy, MO: Holt, Rinehart & Winston.

Sandoval, W. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12 (1), 5–51. https://doi.org/10.1207/S15327809JLS1201_2 .

Sandoval, W. (2014). Science education’s need for a theory of epistemological development. Science Education, 98 (3), 383–387. https://doi.org/10.1002/sce.21107 .

Sandoval, W., Greene, J., & Bråten, I. (2016). Understanding and promoting thinking about knowledge: Origins, issues, and future directions of research on epistemic cognition. Review of Research in Education, 40 (1), 457–496. https://doi.org/10.3102/0091732X16669319 .

Schraw, G., Bendixen, L., & Dunkle, M. (2002). Development and validation of the Epistemic Belief Inventory (EBI). In B. Hofer & P. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 261–276). Mahwah, NJ: Lawrence Erlbaum Associates.

Sinatra, G. M., & Taasoobshirazi, G. (2018). The self-regulation of learning and conceptual change in science: Research, theory, and educational applications. In D. Schunk & J. Greene (Eds.), Educational psychology handbook series. Handbook of self-regulation of learning and performance (pp. 153–165). New York: Routledge.

Strømsø, H., & Bråten, I. (2011). Personal epistemology in higher education: Teachers’ beliefs and the role of faculty training programs. In J. Brownlee, G. Schraw, & D. Berthelsen (Eds.), Personal epistemology and teacher education (pp. 54–67). New York: Routledge.

Strømsø, H., Bråten, I., Britt, M., & Ferguson, L. (2013). Spontaneous sourcing among students reading multiple documents. Cognition and Instruction, 31 (2), 176–203. https://doi.org/10.1080/07370008.2013.769994 .

Trevors, G., Feyzi-Behnagh, R., Azevedo, R., & Bouchet, F. (2016). Self-regulated learning processes vary as a function of epistemic beliefs and contexts: Mixed method evidence from eye tracking and concurrent and retrospective reports. Learning and Instruction, 42, 31–46. https://doi.org/10.1016/j.learninstruc.2015.11.003 .

Weinstock, M., & Roth, G. (2011). Teachers’ personal epistemologies as predictors of support for their students’ autonomy. In J. Brownlee, G. Schraw, & D. Berthelsen (Eds.), Personal epistemology and teacher education (pp. 165–179). New York: Routledge.

Yadav, A., Herron, M., & Samarapungavan, A. (2011). Personal epistemology in preservice teacher education. In J. Brownlee, G. Schraw, & D. Berthelsen (Eds.), Personal epistemology and teacher education (pp. 25–39). New York: Routledge.

Download references

Author information

Authors and affiliations.

University of Turku, Turku, Finland

Heidi Salmento

Faculty of Education and Culture, Tampere University, Tampere, Finland

Mari Murtonen

Department of Teacher Education, University of Turku, Turku, Finland

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Heidi Salmento .

Editor information

Editors and affiliations.

Department of Higher Education, University of Surrey, Guildford, UK

Kieran Balloo

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Salmento, H., Murtonen, M. (2019). The Roles of Epistemic Understanding and Research Skills in Students’ Views of Scientific Thinking. In: Murtonen, M., Balloo, K. (eds) Redefining Scientific Thinking for Higher Education. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-24215-2_2

Download citation

DOI : https://doi.org/10.1007/978-3-030-24215-2_2

Published : 22 September 2019

Publisher Name : Palgrave Macmillan, Cham

Print ISBN : 978-3-030-24214-5

Online ISBN : 978-3-030-24215-2

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. Critical Thinking Components Diagram, Outline Symbols Vector

    3 central components of scientific and critical thinking

  2. Components of Critical Thinking

    3 central components of scientific and critical thinking

  3. Components of Critical Thinking Stock Illustration

    3 central components of scientific and critical thinking

  4. How to Improve Critical Thinking

    3 central components of scientific and critical thinking

  5. Scientific Thinking Components of Scientific Thinking F19 Bb.pdf

    3 central components of scientific and critical thinking

  6. What are the main elements of Critical Thinking?

    3 central components of scientific and critical thinking

VIDEO

  1. Create a mind map for how critical thinking is used as a nurse based on the major components of crit

  2. Critical Thinking: Why bother?

  3. Introduction to Scientific Thinking

  4. Scientific Thinking

  5. 8 Characteristics of Critical Thinkers

  6. Critical Thinking on the Job

COMMENTS

  1. Scientific Thinking and Critical Analysis

    What are the three central components of scientific critical thinking? The three central components of scientific critical thinking are skepticism, objectivity, and curiosity. Skepticism involves questioning assumptions and being open to changing one's beliefs based on new evidence. Objectivity involves being unbiased and minimizing personal ...

  2. Steven D. Schafersman's Introduction to Science

    The Three Central Components of Scientific and Critical Thinking. What is scientific thinking? At this point, it is customary to discuss questions, observations, data, hypotheses, testing, and theories, which are the formal parts of the scientific method, but these are NOT the most important components of the scientific method.

  3. PDF The Nature of Scientific Thinking

    Scientific Thinking is More Than "the Scientific Method" Students in many science classrooms are presented with the scientific method as the fundamental plan scientists use to gain their understandings. Scientists throughout history have come to their conclusions in a variety of ways, not always following such a specific method.

  4. The Relationship Between Scientific Method & Critical Thinking

    Critical thinking initiates the act of hypothesis. In the scientific method, the hypothesis is the initial supposition, or theoretical claim about the world, based on questions and observations. If critical thinking asks the question, then the hypothesis is the best attempt at the time to answer the question using observable phenomenon.

  5. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  6. Science and the Spectrum of Critical Thinking

    Both the scientific method and critical thinking are applications of logic and related forms of rationality that date to the Ancient Greeks. The full spectrum of critical/rational thinking includes logic, informal logic, and systemic or analytic thinking. This common core is shared by the natural sciences and other domains of inquiry share, and ...

  7. Scientific Thinking and Critical Thinking in Science Education

    Scientific thinking and critical thinking are two intellectual processes that are considered keys in the basic and comprehensive education of citizens. For this reason, their development is also contemplated as among the main objectives of science education. However, in the literature about the two types of thinking in the context of science education, there are quite frequent allusions to one ...

  8. 35 Scientific Thinking and Reasoning

    Under this view, scientific thinking involves the same general-purpose cognitive processes—such as induction, deduction, analogy, problem solving, and causal reasoning—that humans apply in nonscientific domains. These processes are covered in several different chapters of this handbook: Rips, Smith, & Medin, Chapter 11 on induction; Evans ...

  9. Broadening the Theory of Scientific Thinking for Higher Education

    The components of this broad scientific thinking are: (1) Critical thinking and understanding the basics of science, (2) Epistemic understanding, (3) Research skills, (4) Evidence-based reasoning skills and (5) Contextual understanding. The new theory offers a basis for further research on the development of higher-order thinking skills during ...

  10. Critical Thinking in Science: Fostering Scientific Reasoning Skills in

    Critical thinking is essential in science. It's what naturally takes students in the direction of scientific reasoning since evidence is a key component of this style of thought. It's not just about whether evidence is available to support a particular answer but how valid that evidence is. It's about whether the information the student ...

  11. Critical Thinking and Scientific Thinking

    Critical thinkers prioritize objectivity to analyze a problem, deduce logical solutions, and examine what the ramifications of those solutions are. While scientific thinking often relies heavily on critical thinking, scientific inquiry is more dedicated to acquiring knowledge rather than mere abstraction. There are a lot of nuances between ...

  12. Chapter 12

    When the stakes are sufficiently high, we can engage in more critical thinking. We conceptualize critical thinking as scientific reasoning, an array of human inventions specifically designed to overcome the limitations and biases inherent to the efficient but error-prone System 1 thinking. We organize this discussion of critical thinking around ...

  13. 3 Core Critical Thinking Skills Every Thinker Should Have

    Improving critical thinking using web-based argument mapping exercises with automated feedback. Australasian Journal of Educational Technology, 25, 2, 268-291. Dwyer, C.P. (2011).

  14. Understanding the Complex Relationship between Critical Thinking and

    Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students' development of these constructs, and it offers a unique window into studying how they relate.

  15. Science, method and critical thinking

    scientific method is to try and answer those. The way in which questions emerge is a subject in itself. This is not addressed here, but this should also be the subject of critical thinking (Yanai & Lercher, 2019). The basis for scientific investigation accepts that, while the truth of the world exists in itself ('relativism'

  16. Understanding the Complex Relationship between Critical Thinking and

    Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships ... Both the cognitive skills and dispositional components of critical thinking have been recognized as important to science education (Quitadamo and Kurtz, 2007 ...

  17. Critical thinking

    Theorists have noted that such skills are only valuable insofar as a person is inclined to use them. Consequently, they emphasize that certain habits of mind are necessary components of critical thinking. This disposition may include curiosity, open-mindedness, self-awareness, empathy, and persistence. Although there is a generally accepted set of qualities that are associated with critical ...

  18. Scientific Literacy and Critical Thinking Skills- Critical Thinking Secrets

    Scientific literacy and critical thinking are essential components of a well-rounded education, preparing students to better understand the world we live in and make informed decisions. As science and technology continue to advance and impact various aspects of our lives, it is increasingly important for individuals to develop the ability to think critically about scientific information ...

  19. Enhancing Scientific Thinking Through the Development of Critical

    Research publications, policy papers and reports have argued that higher education cannot only facilitate learning of domain-specific knowledge and skills, but it also has to promote learning of thinking skills for using that knowledge in action (e.g. Greiff et al., 2014; Shavelson, 2010a; Strijbos, Engels, & Struyven, 2015).The focus on critical thinking arises, in part, because of higher ...

  20. Understanding the Complex Relationship between Critical Thinking and

    Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students' development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in ...

  21. the three central components of scientific and critical thin

    the three central components of scientific and critical thin by Alexandra GOmez on Prezi. Blog. April 18, 2024. Use Prezi Video for Zoom for more engaging meetings. April 16, 2024. Understanding 30-60-90 sales plans and incorporating them into a presentation. April 13, 2024. How to create a great thesis defense presentation: everything you need ...

  22. Integration of case-based learning and three-dimensional printing for

    Background Case-based learning (CBL) methods have gained prominence in medical education, proving especially effective for preclinical training in undergraduate medical education. Tetralogy of Fallot (TOF) is a congenital heart disease characterized by four malformations, presenting a challenge in medical education due to the complexity of its anatomical pathology. Three-dimensional printing ...

  23. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking ...

  24. The Roles of Epistemic Understanding and Research Skills in ...

    Scientific thinking is critical thinking formed on the basis of research and sources that is usually taken into use in academic research. Scientific thinking becomes broader and more demanding during university studies as we learn research skills and acquire new information about the research topics. (123)