Average Speed Problems

Related Pages Rate, Time, Distance Solving Speed, Time, Distance Problems Using Algebra More Algebra Lessons

In these lessons, we will learn how to solve word problems involving average speed.

There are three main types of average problems commonly encountered in school algebra: Average (Arithmetic Mean) Weighted Average and Average Speed.

How to calculate Average Speed?

The following diagram shows the formula for average speed. Scroll down the page for more examples and solutions on calculating the average speed.

Average Speed

Examples Of Average Speed Problems

Example: John drove for 3 hours at a rate of 50 miles per hour and for 2 hours at 60 miles per hour. What was his average speed for the whole journey?

Solution: Step 1: The formula for distance is

Distance = Rate × Time Total distance = 50 × 3 + 60 × 2 = 270

Step 2: Total time = 3 + 2 = 5

Step 3: Using the formula:

Answer: The average speed is 54 miles per hour.

Be careful! You will get the wrong answer if you add the two speeds and divide the answer by two.

How To Solve The Average Speed Problem?

How to calculate the average speed?

Example: The speed paradox: If I drive from Oxford to Cambridge at 40 miles per hour and then from Cambridge to Oxford at 60 miles per hour, what is my average speed for the whole journey?

How To Find The Average Speed For A Round Trip?

Example: On Alberto’s drive to his aunt’s house, the traffic was light, and he drove the 45-mile trip in one hour. However, the return trip took his two hours. What was his average trip for the round trip?

How To Find The Average Speed Of An Airplane With Good And Bad Weather?

Example: Mae took a non-stop flight to visit her grandmother. The 750-mile trip took three hours and 45 minutes. Because of the bad weather, the return trip took four hours and 45 minutes. What was her average speed for the round trip?

How To Relate Speed To Distance And Time?

If you are traveling in a car that travels 80km along a road in one hour, we say that you are traveling at an average of 80kn/h.

Average speed is the total distance divided by the total time for the trip. Therefore, speed is distance divided by time.

Instantaneous speed is the speed at which an object is traveling at any particular instant.

If the instantaneous speed of a car remains the same over a period of time, then we say that the car is traveling with constant speed.

The average speed of an object is the same as its instantaneous speed if that object is traveling at a constant speed.

How To Calculate Average Speed In Word Problems?

Example: Keri rollerblades to school, a total distance of 4.5km. She has to slow down twice to cross busy streets, but overall the journey takes her 0.65h. What is Keri’s average speed during the trip?

How To Use Average Speed To Calculate The Distance Traveled?

Example: Elle drives 169 miles from Sheffield to London. Her average speed is 65 mph. She leaves Sheffield at 6:30 a.m. Does she arrive in London by 9:00 a.m.?

How To Use Average Speed To Calculate The Time Taken?

Example: Marie Ann is trying to predict the time required to ride her bike to the nearby beach. She knows that the distance is 45 km and, from other trips, that she can usually average about 20 km/h. Predict how long the trip will take.

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

  • Number Charts
  • Multiplication
  • Long division
  • Basic operations
  • Telling time
  • Place value
  • Roman numerals
  • Fractions & related
  • Add, subtract, multiply,   and divide fractions
  • Mixed numbers vs. fractions
  • Equivalent fractions
  • Prime factorization & factors
  • Fraction Calculator
  • Decimals & Percent
  • Add, subtract, multiply,   and divide decimals
  • Fractions to decimals
  • Percents to decimals
  • Percentage of a number
  • Percent word problems
  • Classify triangles
  • Classify quadrilaterals
  • Circle worksheets
  • Area & perimeter of rectangles
  • Area of triangles & polygons
  • Coordinate grid, including   moves & reflections
  • Volume & surface area
  • Pre-algebra
  • Square Roots
  • Order of operations
  • Scientific notation
  • Proportions
  • Ratio word problems
  • Write expressions
  • Evaluate expressions
  • Simplify expressions
  • Linear equations
  • Linear inequalities
  • Graphing & slope
  • Equation calculator
  • Equation editor
  • Elementary Math Games
  • Addition and subtraction
  • Math facts practice
  • The four operations
  • Factoring and number theory
  • Geometry topics
  • Middle/High School
  • Statistics & Graphs
  • Probability
  • Trigonometry
  • Logic and proof
  • For all levels
  • Favorite math puzzles
  • Favorite challenging puzzles
  • Math in real world
  • Problem solving & projects
  • For gifted children
  • Math history
  • Math games and fun websites
  • Interactive math tutorials
  • Math help & online tutoring
  • Assessment, review & test prep
  • Online math curricula

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 8: Rational Expressions

8.8 Rate Word Problems: Speed, Distance and Time

Distance, rate and time problems are a standard application of linear equations. When solving these problems, use the relationship rate (speed or velocity) times time equals distance .

[latex]r\cdot t=d[/latex]

For example, suppose a person were to travel 30 km/h for 4 h. To find the total distance, multiply rate times time or (30km/h)(4h) = 120 km.

The problems to be solved here will have a few more steps than described above. So to keep the information in the problem organized, use a table. An example of the basic structure of the table is below:

The third column, distance, will always be filled in by multiplying the rate and time columns together. If given a total distance of both persons or trips, put this information in the distance column. Now use this table to set up and solve the following examples.

Example 8.8.1

Joey and Natasha start from the same point and walk in opposite directions. Joey walks 2 km/h faster than Natasha. After 3 hours, they are 30 kilometres apart. How fast did each walk?

The distance travelled by both is 30 km. Therefore, the equation to be solved is:

[latex]\begin{array}{rrrrrrl} 3r&+&3(r&+&2)&=&30 \\ 3r&+&3r&+&6&=&30 \\ &&&-&6&&-6 \\ \hline &&&&\dfrac{6r}{6}&=&\dfrac{24}{6} \\ \\ &&&&r&=&4 \text{ km/h} \end{array}[/latex]

This means that Natasha walks at 4 km/h and Joey walks at 6 km/h.

Example 8.8.2

Nick and Chloe left their campsite by canoe and paddled downstream at an average speed of 12 km/h. They turned around and paddled back upstream at an average rate of 4 km/h. The total trip took 1 hour. After how much time did the campers turn around downstream?

The distance travelled downstream is the same distance that they travelled upstream. Therefore, the equation to be solved is:

[latex]\begin{array}{rrlll} 12(t)&=&4(1&-&t) \\ 12t&=&4&-&4t \\ +4t&&&+&4t \\ \hline \dfrac{16t}{16}&=&\dfrac{4}{16}&& \\ \\ t&=&0.25&& \end{array}[/latex]

This means the campers paddled downstream for 0.25 h and spent 0.75 h paddling back.

Example 8.8.3

Terry leaves his house riding a bike at 20 km/h. Sally leaves 6 h later on a scooter to catch up with him travelling at 80 km/h. How long will it take her to catch up with him?

The distance travelled by both is the same. Therefore, the equation to be solved is:

[latex]\begin{array}{rrrrr} 20(t)&=&80(t&-&6) \\ 20t&=&80t&-&480 \\ -80t&&-80t&& \\ \hline \dfrac{-60t}{-60}&=&\dfrac{-480}{-60}&& \\ \\ t&=&8&& \end{array}[/latex]

This means that Terry travels for 8 h and Sally only needs 2 h to catch up to him.

Example 8.8.4

On a 130-kilometre trip, a car travelled at an average speed of 55 km/h and then reduced its speed to 40 km/h for the remainder of the trip. The trip took 2.5 h. For how long did the car travel 40 km/h?

[latex]\begin{array}{rrrrrrr} 55(t)&+&40(2.5&-&t)&=&130 \\ 55t&+&100&-&40t&=&130 \\ &-&100&&&&-100 \\ \hline &&&&\dfrac{15t}{15}&=&\dfrac{30}{15} \\ \\ &&&&t&=&2 \end{array}[/latex]

This means that the time spent travelling at 40 km/h was 0.5 h.

Distance, time and rate problems have a few variations that mix the unknowns between distance, rate and time. They generally involve solving a problem that uses the combined distance travelled to equal some distance or a problem in which the distances travelled by both parties is the same. These distance, rate and time problems will be revisited later on in this textbook where quadratic solutions are required to solve them.

For Questions 1 to 8, find the equations needed to solve the problems. Do not solve.

  • A is 60 kilometres from B. An automobile at A starts for B at the rate of 20 km/h at the same time that an automobile at B starts for A at the rate of 25 km/h. How long will it be before the automobiles meet?
  • Two automobiles are 276 kilometres apart and start to travel toward each other at the same time. They travel at rates differing by 5 km/h. If they meet after 6 h, find the rate of each.
  • Two trains starting at the same station head in opposite directions. They travel at the rates of 25 and 40 km/h, respectively. If they start at the same time, how soon will they be 195 kilometres apart?
  • Two bike messengers, Jerry and Susan, ride in opposite directions. If Jerry rides at the rate of 20 km/h, at what rate must Susan ride if they are 150 kilometres apart in 5 hours?
  • A passenger and a freight train start toward each other at the same time from two points 300 kilometres apart. If the rate of the passenger train exceeds the rate of the freight train by 15 km/h, and they meet after 4 hours, what must the rate of each be?
  • Two automobiles started travelling in opposite directions at the same time from the same point. Their rates were 25 and 35 km/h, respectively. After how many hours were they 180 kilometres apart?
  • A man having ten hours at his disposal made an excursion by bike, riding out at the rate of 10 km/h and returning on foot at the rate of 3 km/h. Find the distance he rode.
  • A man walks at the rate of 4 km/h. How far can he walk into the country and ride back on a trolley that travels at the rate of 20 km/h, if he must be back home 3 hours from the time he started?

Solve Questions 9 to 22.

  • A boy rides away from home in an automobile at the rate of 28 km/h and walks back at the rate of 4 km/h. The round trip requires 2 hours. How far does he ride?
  • A motorboat leaves a harbour and travels at an average speed of 15 km/h toward an island. The average speed on the return trip was 10 km/h. How far was the island from the harbour if the trip took a total of 5 hours?
  • A family drove to a resort at an average speed of 30 km/h and later returned over the same road at an average speed of 50 km/h. Find the distance to the resort if the total driving time was 8 hours.
  • As part of his flight training, a student pilot was required to fly to an airport and then return. The average speed to the airport was 90 km/h, and the average speed returning was 120 km/h. Find the distance between the two airports if the total flying time was 7 hours.
  • Sam starts travelling at 4 km/h from a campsite 2 hours ahead of Sue, who travels 6 km/h in the same direction. How many hours will it take for Sue to catch up to Sam?
  • A man travels 5 km/h. After travelling for 6 hours, another man starts at the same place as the first man did, following at the rate of 8 km/h. When will the second man overtake the first?
  • A motorboat leaves a harbour and travels at an average speed of 8 km/h toward a small island. Two hours later, a cabin cruiser leaves the same harbour and travels at an average speed of 16 km/h toward the same island. How many hours after the cabin cruiser leaves will it be alongside the motorboat?
  • A long distance runner started on a course, running at an average speed of 6 km/h. One hour later, a second runner began the same course at an average speed of 8 km/h. How long after the second runner started will they overtake the first runner?
  • Two men are travelling in opposite directions at the rate of 20 and 30 km/h at the same time and from the same place. In how many hours will they be 300 kilometres apart?
  • Two trains start at the same time from the same place and travel in opposite directions. If the rate of one is 6 km/h more than the rate of the other and they are 168 kilometres apart at the end of 4 hours, what is the rate of each?
  • Two cyclists start from the same point and ride in opposite directions. One cyclist rides twice as fast as the other. In three hours, they are 72 kilometres apart. Find the rate of each cyclist.
  • Two small planes start from the same point and fly in opposite directions. The first plane is flying 25 km/h slower than the second plane. In two hours, the planes are 430 kilometres apart. Find the rate of each plane.
  • On a 130-kilometre trip, a car travelled at an average speed of 55 km/h and then reduced its speed to 40 km/h for the remainder of the trip. The trip took a total of 2.5 hours. For how long did the car travel at 40 km/h?
  • Running at an average rate of 8 m/s, a sprinter ran to the end of a track and then jogged back to the starting point at an average of 3 m/s. The sprinter took 55 s to run to the end of the track and jog back. Find the length of the track.

Answer Key 8.8

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

problem solving involving average speed

AVERAGE SPEED PROBLEMS

Problem 1 :

A person travels from New York to Washington at the rate of 45 miles per hour and comes backs to the New York at the rate of 55 miles per hour. What is his average speed for the whole journey?

Here, both the ways, he covers the same distance.

Then, the formula to find average speed is

= 2xy/(x + y)

x ----> Rate at which he travels from New York to Washington

y ----> Rate at which he travels from New York to Washington

So, the average speed is

= (2  ⋅  45  ⋅  55)/(45 + 55)

So, the average speed for the whole journey is 45 miles per hour.

Problem 2 :

A man takes 10 hours to go to a place and come back by walking both the ways. He could have gained 2 hours by riding both the ways. The distance covered in the whole journey is 18 miles. Find the average speed for the whole journey if he goes by walking and comes back by riding.

Given :  A man takes 10 hours to go to a place and come back by walking both the ways.

walking + walking = 10 hours

2  ⋅ w alking = 10 hours

walking = 5 hours

Given :   He could have gained 2 hours by riding both the ways.

riding + riding = 8 hours

2  ⋅ riding  = 8 hours

riding = 4 hours

If he goes by walking and comes back by riding, time taken by him :

walking + riding = 5 + 4

walking + riding = 9 hours

total time taken = 9 hours

total distance covered = 18 miles

= total distance/total time

So, the required average speed is 2 miles per hour.

Problem 3 :

Lily takes 3 hours to travel from place A to place B at the rate of 60 miles per hour. She takes 2 hours to travel from place B to C with 50% increased speed. Find the average speed from place A to C.

speed (from A to B) = 60 miles/hour

speed (from B to C) = 90 miles/hour (50% increased)

Formula to find distance is

= rate  ⋅  time

Distance from A to B is

= 60  ⋅  3

= 180 miles

Distance from B to C :

= 90  ⋅  2

Total distance traveled  from A to B is

= 180 + 180

= 360 miles

Total time taken from A to B is

Formula to find average speed is

So, the average speed from place A to B is 72 miles/hour.

Problem 4 :

Distance from A to B = 200 miles

Distance from B to C = 300 miles

Distance from C to D = 540 miles

The speed from B to C is 50% more than A to B. The speed from C to D is 50% more than B to C. If the speed from A to B is 40 miles per hour,  find the average speed from A to D.

speed (from A to B) = 40 miles/hour

speed (from B to C) = 60 miles/hour (50% more)

speed (from C to D) = 90 miles/hour (50% more)

Formula to find time is

= distance/time

time (A to B) = 200/40 = 5 hours

time (B to C) = 300/60 = 5 hours

time (C to D) = 540/90 = 6 hours

Total time taken from A to D is

= 5 + 5 + 6

Total distance from A to D is

= 200 + 300 + 540

= 1040 miles

So, the average speed from A to D is 65 miles per hour.

Problem 5 :

Time (A to B) = 3 hours

Time (B to C) = 5 hours

Time (C to D) = 6 hours

If the distances from A to B, B to C and C to D are equal and the speed from A to B is 70 miles per hour, find the average speed from A to D

= 70  ⋅  3

= 210 miles

Given :  Distance from A to B, B to C and C to D are equal.

= 210 + 210 + 210

= 630  miles

Total time taken A to D is

= 3 + 5 + 6

So, the average speed from A to D is 45 miles per hour.

Kindly mail your feedback to   [email protected]

We always appreciate your feedback.

© All rights reserved. onlinemath4all.com

  • Sat Math Practice
  • SAT Math Worksheets
  • PEMDAS Rule
  • BODMAS rule
  • GEMDAS Order of Operations
  • Math Calculators
  • Transformations of Functions
  • Order of rotational symmetry
  • Lines of symmetry
  • Compound Angles
  • Quantitative Aptitude Tricks
  • Trigonometric ratio table
  • Word Problems
  • Times Table Shortcuts
  • 10th CBSE solution
  • PSAT Math Preparation
  • Privacy Policy
  • Laws of Exponents

Recent Articles

RSS

Worksheet on Proving Trigonometric Identities

Nov 02, 24 11:58 PM

tutoring.png

AP Precalculus Problems and Solutions (Part - 1)

Oct 30, 24 10:07 AM

SAT Math Resources (Videos, Concepts, Worksheets and More)

Oct 29, 24 06:24 AM

Gurumuda Networks

Average speed and average velocity – problems and solutions

Solved Problems in Linear Motion –  Average speed and average velocity

1. A car travels along a straight road to the east for 100 meters in 4 seconds, then go the west for 50 meters in 1 second. Determine average speed and average velocity.

Distance = 100 meters + 50 meters = 150 meters

Displacement = 100 meters – 50 meters = 50 meters, to east.

Time elapsed = 4 seconds + 1 second = 5 seconds .

Average speed = Distance / time elapsed = 150 meters / 5 seconds = 30 meters/second.

Average velocity = Displacement / time elapsed = 50 meters / 5 seconds = 10 meters/second .

2. A person walks 4 meters east in 1 second, then walks 3 meters north in 1 second. Determine average speed and average velocity.

Average speed and average velocity - problems and solutions 1

Time elapsed = 1 second + 1 second = 2 seconds.

Average speed = distance / time elapsed = 7 meters / 2 seconds = 3.5 meters/second

Average velocity = displacement / time elapsed = 5 meters / 2 seconds = 2.5 meters/second

3. A runner travels around rectangle track with length = 50 meters and width = 20 meters. After travels around rectangle track two times, runner back to starting point. If time elapsed = 100 seconds, determine average speed and average velocity.

Circumference of rectangle = 2(50 meters) + 2(20 meters) = 100 meters + 40 meters = 140 meters.

Travels around rectangle 2 times = 2(140 meters) = 280 meters.

Distance = 280 meter .

Displacement = 0 meter . ( runner back to start point)

Average speed = distance / time elapsed = 280 meters / 100 seconds = 2.8 meters/second.

Average velocity = displacement / time elapsed = 0 / 100 seconds = 0.

[wpdm_package id=’505′]

[wpdm_package id=’517′]

  • Distance and displacement
  • Average speed and average velocity
  • Constant velocity
  • Constant acceleration
  • Free fall motion
  • Down motion in free fall
  • Up and down motion in free fall

Print Friendly, PDF & Email

Share this:

Leave a comment cancel reply.

Youtube

  • TPC and eLearning
  • What's NEW at TPC?
  • Read Watch Interact
  • Practice Review Test
  • Teacher-Tools
  • Request a Demo
  • Get A Quote
  • Subscription Selection
  • Seat Calculator
  • Ad Free Account
  • Edit Profile Settings
  • Metric Conversions Questions
  • Metric System Questions
  • Metric Estimation Questions
  • Significant Digits Questions
  • Proportional Reasoning
  • Acceleration
  • Distance-Displacement
  • Dots and Graphs
  • Graph That Motion
  • Match That Graph
  • Name That Motion
  • Motion Diagrams
  • Pos'n Time Graphs Numerical
  • Pos'n Time Graphs Conceptual
  • Up And Down - Questions
  • Balanced vs. Unbalanced Forces
  • Change of State
  • Force and Motion
  • Mass and Weight
  • Match That Free-Body Diagram
  • Net Force (and Acceleration) Ranking Tasks
  • Newton's Second Law
  • Normal Force Card Sort
  • Recognizing Forces
  • Air Resistance and Skydiving
  • Solve It! with Newton's Second Law
  • Which One Doesn't Belong?
  • Component Addition Questions
  • Head-to-Tail Vector Addition
  • Projectile Mathematics
  • Trajectory - Angle Launched Projectiles
  • Trajectory - Horizontally Launched Projectiles
  • Vector Addition
  • Vector Direction
  • Which One Doesn't Belong? Projectile Motion
  • Forces in 2-Dimensions
  • Being Impulsive About Momentum
  • Explosions - Law Breakers
  • Hit and Stick Collisions - Law Breakers
  • Case Studies: Impulse and Force
  • Impulse-Momentum Change Table
  • Keeping Track of Momentum - Hit and Stick
  • Keeping Track of Momentum - Hit and Bounce
  • What's Up (and Down) with KE and PE?
  • Energy Conservation Questions
  • Energy Dissipation Questions
  • Energy Ranking Tasks
  • LOL Charts (a.k.a., Energy Bar Charts)
  • Match That Bar Chart
  • Words and Charts Questions
  • Name That Energy
  • Stepping Up with PE and KE Questions
  • Case Studies - Circular Motion
  • Circular Logic
  • Forces and Free-Body Diagrams in Circular Motion
  • Gravitational Field Strength
  • Universal Gravitation
  • Angular Position and Displacement
  • Linear and Angular Velocity
  • Angular Acceleration
  • Rotational Inertia
  • Balanced vs. Unbalanced Torques
  • Getting a Handle on Torque
  • Torque-ing About Rotation
  • Properties of Matter
  • Fluid Pressure
  • Buoyant Force
  • Sinking, Floating, and Hanging
  • Pascal's Principle
  • Flow Velocity
  • Bernoulli's Principle
  • Balloon Interactions
  • Charge and Charging
  • Charge Interactions
  • Charging by Induction
  • Conductors and Insulators
  • Coulombs Law
  • Electric Field
  • Electric Field Intensity
  • Polarization
  • Case Studies: Electric Power
  • Know Your Potential
  • Light Bulb Anatomy
  • I = ∆V/R Equations as a Guide to Thinking
  • Parallel Circuits - ∆V = I•R Calculations
  • Resistance Ranking Tasks
  • Series Circuits - ∆V = I•R Calculations
  • Series vs. Parallel Circuits
  • Equivalent Resistance
  • Period and Frequency of a Pendulum
  • Pendulum Motion: Velocity and Force
  • Energy of a Pendulum
  • Period and Frequency of a Mass on a Spring
  • Horizontal Springs: Velocity and Force
  • Vertical Springs: Velocity and Force
  • Energy of a Mass on a Spring
  • Decibel Scale
  • Frequency and Period
  • Closed-End Air Columns
  • Name That Harmonic: Strings
  • Rocking the Boat
  • Wave Basics
  • Matching Pairs: Wave Characteristics
  • Wave Interference
  • Waves - Case Studies
  • Color Addition and Subtraction
  • Color Filters
  • If This, Then That: Color Subtraction
  • Light Intensity
  • Color Pigments
  • Converging Lenses
  • Curved Mirror Images
  • Law of Reflection
  • Refraction and Lenses
  • Total Internal Reflection
  • Who Can See Who?
  • Lab Equipment
  • Lab Procedures
  • Formulas and Atom Counting
  • Atomic Models
  • Bond Polarity
  • Entropy Questions
  • Cell Voltage Questions
  • Heat of Formation Questions
  • Reduction Potential Questions
  • Oxidation States Questions
  • Measuring the Quantity of Heat
  • Hess's Law
  • Oxidation-Reduction Questions
  • Galvanic Cells Questions
  • Thermal Stoichiometry
  • Molecular Polarity
  • Quantum Mechanics
  • Balancing Chemical Equations
  • Bronsted-Lowry Model of Acids and Bases
  • Classification of Matter
  • Collision Model of Reaction Rates
  • Density Ranking Tasks
  • Dissociation Reactions
  • Complete Electron Configurations
  • Elemental Measures
  • Enthalpy Change Questions
  • Equilibrium Concept
  • Equilibrium Constant Expression
  • Equilibrium Calculations - Questions
  • Equilibrium ICE Table
  • Intermolecular Forces Questions
  • Ionic Bonding
  • Lewis Electron Dot Structures
  • Limiting Reactants
  • Line Spectra Questions
  • Mass Stoichiometry
  • Measurement and Numbers
  • Metals, Nonmetals, and Metalloids
  • Metric Estimations
  • Metric System
  • Molarity Ranking Tasks
  • Mole Conversions
  • Name That Element
  • Names to Formulas
  • Names to Formulas 2
  • Nuclear Decay
  • Particles, Words, and Formulas
  • Periodic Trends
  • Precipitation Reactions and Net Ionic Equations
  • Pressure Concepts
  • Pressure-Temperature Gas Law
  • Pressure-Volume Gas Law
  • Chemical Reaction Types
  • Significant Digits and Measurement
  • States Of Matter Exercise
  • Stoichiometry Law Breakers
  • Stoichiometry - Math Relationships
  • Subatomic Particles
  • Spontaneity and Driving Forces
  • Gibbs Free Energy
  • Volume-Temperature Gas Law
  • Acid-Base Properties
  • Energy and Chemical Reactions
  • Chemical and Physical Properties
  • Valence Shell Electron Pair Repulsion Theory
  • Writing Balanced Chemical Equations
  • Mission CG1
  • Mission CG10
  • Mission CG2
  • Mission CG3
  • Mission CG4
  • Mission CG5
  • Mission CG6
  • Mission CG7
  • Mission CG8
  • Mission CG9
  • Mission EC1
  • Mission EC10
  • Mission EC11
  • Mission EC12
  • Mission EC2
  • Mission EC3
  • Mission EC4
  • Mission EC5
  • Mission EC6
  • Mission EC7
  • Mission EC8
  • Mission EC9
  • Mission RL1
  • Mission RL2
  • Mission RL3
  • Mission RL4
  • Mission RL5
  • Mission RL6
  • Mission KG7
  • Mission RL8
  • Mission KG9
  • Mission RL10
  • Mission RL11
  • Mission RM1
  • Mission RM2
  • Mission RM3
  • Mission RM4
  • Mission RM5
  • Mission RM6
  • Mission RM8
  • Mission RM10
  • Mission LC1
  • Mission RM11
  • Mission LC2
  • Mission LC3
  • Mission LC4
  • Mission LC5
  • Mission LC6
  • Mission LC8
  • Mission SM1
  • Mission SM2
  • Mission SM3
  • Mission SM4
  • Mission SM5
  • Mission SM6
  • Mission SM8
  • Mission SM10
  • Mission KG10
  • Mission SM11
  • Mission KG2
  • Mission KG3
  • Mission KG4
  • Mission KG5
  • Mission KG6
  • Mission KG8
  • Mission KG11
  • Mission F2D1
  • Mission F2D2
  • Mission F2D3
  • Mission F2D4
  • Mission F2D5
  • Mission F2D6
  • Mission KC1
  • Mission KC2
  • Mission KC3
  • Mission KC4
  • Mission KC5
  • Mission KC6
  • Mission KC7
  • Mission KC8
  • Mission AAA
  • Mission SM9
  • Mission LC7
  • Mission LC9
  • Mission NL1
  • Mission NL2
  • Mission NL3
  • Mission NL4
  • Mission NL5
  • Mission NL6
  • Mission NL7
  • Mission NL8
  • Mission NL9
  • Mission NL10
  • Mission NL11
  • Mission NL12
  • Mission MC1
  • Mission MC10
  • Mission MC2
  • Mission MC3
  • Mission MC4
  • Mission MC5
  • Mission MC6
  • Mission MC7
  • Mission MC8
  • Mission MC9
  • Mission RM7
  • Mission RM9
  • Mission RL7
  • Mission RL9
  • Mission SM7
  • Mission SE1
  • Mission SE10
  • Mission SE11
  • Mission SE12
  • Mission SE2
  • Mission SE3
  • Mission SE4
  • Mission SE5
  • Mission SE6
  • Mission SE7
  • Mission SE8
  • Mission SE9
  • Mission VP1
  • Mission VP10
  • Mission VP2
  • Mission VP3
  • Mission VP4
  • Mission VP5
  • Mission VP6
  • Mission VP7
  • Mission VP8
  • Mission VP9
  • Mission WM1
  • Mission WM2
  • Mission WM3
  • Mission WM4
  • Mission WM5
  • Mission WM6
  • Mission WM7
  • Mission WM8
  • Mission WE1
  • Mission WE10
  • Mission WE2
  • Mission WE3
  • Mission WE4
  • Mission WE5
  • Mission WE6
  • Mission WE7
  • Mission WE8
  • Mission WE9
  • Vector Walk Interactive
  • Name That Motion Interactive
  • Kinematic Graphing 1 Concept Checker
  • Kinematic Graphing 2 Concept Checker
  • Graph That Motion Interactive
  • Two Stage Rocket Interactive
  • Rocket Sled Concept Checker
  • Force Concept Checker
  • Free-Body Diagrams Concept Checker
  • Free-Body Diagrams The Sequel Concept Checker
  • Skydiving Concept Checker
  • Elevator Ride Concept Checker
  • Vector Addition Concept Checker
  • Vector Walk in Two Dimensions Interactive
  • Name That Vector Interactive
  • River Boat Simulator Concept Checker
  • Projectile Simulator 2 Concept Checker
  • Projectile Simulator 3 Concept Checker
  • Hit the Target Interactive
  • Turd the Target 1 Interactive
  • Turd the Target 2 Interactive
  • Balance It Interactive
  • Go For The Gold Interactive
  • Egg Drop Concept Checker
  • Fish Catch Concept Checker
  • Exploding Carts Concept Checker
  • Collision Carts - Inelastic Collisions Concept Checker
  • Its All Uphill Concept Checker
  • Stopping Distance Concept Checker
  • Chart That Motion Interactive
  • Roller Coaster Model Concept Checker
  • Uniform Circular Motion Concept Checker
  • Horizontal Circle Simulation Concept Checker
  • Vertical Circle Simulation Concept Checker
  • Race Track Concept Checker
  • Gravitational Fields Concept Checker
  • Orbital Motion Concept Checker
  • Angular Acceleration Concept Checker
  • Balance Beam Concept Checker
  • Torque Balancer Concept Checker
  • Aluminum Can Polarization Concept Checker
  • Charging Concept Checker
  • Name That Charge Simulation
  • Coulomb's Law Concept Checker
  • Electric Field Lines Concept Checker
  • Put the Charge in the Goal Concept Checker
  • Circuit Builder Concept Checker (Series Circuits)
  • Circuit Builder Concept Checker (Parallel Circuits)
  • Circuit Builder Concept Checker (∆V-I-R)
  • Circuit Builder Concept Checker (Voltage Drop)
  • Equivalent Resistance Interactive
  • Pendulum Motion Simulation Concept Checker
  • Mass on a Spring Simulation Concept Checker
  • Particle Wave Simulation Concept Checker
  • Boundary Behavior Simulation Concept Checker
  • Slinky Wave Simulator Concept Checker
  • Simple Wave Simulator Concept Checker
  • Wave Addition Simulation Concept Checker
  • Standing Wave Maker Simulation Concept Checker
  • Color Addition Concept Checker
  • Painting With CMY Concept Checker
  • Stage Lighting Concept Checker
  • Filtering Away Concept Checker
  • InterferencePatterns Concept Checker
  • Young's Experiment Interactive
  • Plane Mirror Images Interactive
  • Who Can See Who Concept Checker
  • Optics Bench (Mirrors) Concept Checker
  • Name That Image (Mirrors) Interactive
  • Refraction Concept Checker
  • Total Internal Reflection Concept Checker
  • Optics Bench (Lenses) Concept Checker
  • Kinematics Preview
  • Velocity Time Graphs Preview
  • Moving Cart on an Inclined Plane Preview
  • Stopping Distance Preview
  • Cart, Bricks, and Bands Preview
  • Fan Cart Study Preview
  • Friction Preview
  • Coffee Filter Lab Preview
  • Friction, Speed, and Stopping Distance Preview
  • Up and Down Preview
  • Projectile Range Preview
  • Ballistics Preview
  • Juggling Preview
  • Marshmallow Launcher Preview
  • Air Bag Safety Preview
  • Colliding Carts Preview
  • Collisions Preview
  • Engineering Safer Helmets Preview
  • Push the Plow Preview
  • Its All Uphill Preview
  • Energy on an Incline Preview
  • Modeling Roller Coasters Preview
  • Hot Wheels Stopping Distance Preview
  • Ball Bat Collision Preview
  • Energy in Fields Preview
  • Weightlessness Training Preview
  • Roller Coaster Loops Preview
  • Universal Gravitation Preview
  • Keplers Laws Preview
  • Kepler's Third Law Preview
  • Charge Interactions Preview
  • Sticky Tape Experiments Preview
  • Wire Gauge Preview
  • Voltage, Current, and Resistance Preview
  • Light Bulb Resistance Preview
  • Series and Parallel Circuits Preview
  • Thermal Equilibrium Preview
  • Linear Expansion Preview
  • Heating Curves Preview
  • Electricity and Magnetism - Part 1 Preview
  • Electricity and Magnetism - Part 2 Preview
  • Vibrating Mass on a Spring Preview
  • Period of a Pendulum Preview
  • Wave Speed Preview
  • Slinky-Experiments Preview
  • Standing Waves in a Rope Preview
  • Sound as a Pressure Wave Preview
  • DeciBel Scale Preview
  • DeciBels, Phons, and Sones Preview
  • Sound of Music Preview
  • Shedding Light on Light Bulbs Preview
  • Models of Light Preview
  • Electromagnetic Radiation Preview
  • Electromagnetic Spectrum Preview
  • EM Wave Communication Preview
  • Digitized Data Preview
  • Light Intensity Preview
  • Concave Mirrors Preview
  • Object Image Relations Preview
  • Snells Law Preview
  • Reflection vs. Transmission Preview
  • Magnification Lab Preview
  • Reactivity Preview
  • Ions and the Periodic Table Preview
  • Periodic Trends Preview
  • Chemical Reactions Preview
  • Intermolecular Forces Preview
  • Melting Points and Boiling Points Preview
  • Bond Energy and Reactions Preview
  • Reaction Rates Preview
  • Ammonia Factory Preview
  • Stoichiometry Preview
  • Nuclear Chemistry Preview
  • Gaining Teacher Access
  • Task Tracker Directions
  • Conceptual Physics Course
  • On-Level Physics Course
  • Honors Physics Course
  • Chemistry Concept Builders
  • All Chemistry Resources
  • Users Voice
  • Tasks and Classes
  • Webinars and Trainings
  • Subscription
  • Subscription Locator
  • 1-D Kinematics
  • Newton's Laws
  • Vectors - Motion and Forces in Two Dimensions
  • Momentum and Its Conservation
  • Work and Energy
  • Circular Motion and Satellite Motion
  • Thermal Physics
  • Static Electricity
  • Electric Circuits
  • Vibrations and Waves
  • Sound Waves and Music
  • Light and Color
  • Reflection and Mirrors
  • Measurement and Calculations
  • Elements, Atoms, and Ions
  • Compounds,Names, and Formulas
  • The Modern Atomic Model
  • Chemical Bonding
  • About the Physics Interactives
  • Task Tracker
  • Usage Policy
  • Newtons Laws
  • Vectors and Projectiles
  • Forces in 2D
  • Momentum and Collisions
  • Circular and Satellite Motion
  • Balance and Rotation
  • Electromagnetism
  • Waves and Sound
  • Atomic Physics
  • Forces in Two Dimensions
  • Work, Energy, and Power
  • Circular Motion and Gravitation
  • Sound Waves
  • 1-Dimensional Kinematics
  • Circular, Satellite, and Rotational Motion
  • Einstein's Theory of Special Relativity
  • Waves, Sound and Light
  • QuickTime Movies
  • About the Concept Builders
  • Pricing For Schools
  • Directions for Version 2
  • Measurement and Units
  • Relationships and Graphs
  • Rotation and Balance
  • Vibrational Motion
  • Reflection and Refraction
  • Teacher Accounts
  • Kinematic Concepts
  • Kinematic Graphing
  • Wave Motion
  • Sound and Music
  • About CalcPad
  • 1D Kinematics
  • Vectors and Forces in 2D
  • Simple Harmonic Motion
  • Rotational Kinematics
  • Rotation and Torque
  • Rotational Dynamics
  • Electric Fields, Potential, and Capacitance
  • Transient RC Circuits
  • Light Waves
  • Units and Measurement
  • Stoichiometry
  • Molarity and Solutions
  • Thermal Chemistry
  • Acids and Bases
  • Kinetics and Equilibrium
  • Solution Equilibria
  • Oxidation-Reduction
  • Nuclear Chemistry
  • Newton's Laws of Motion
  • Work and Energy Packet
  • Static Electricity Review
  • NGSS Alignments
  • 1D-Kinematics
  • Projectiles
  • Circular Motion
  • Magnetism and Electromagnetism
  • Graphing Practice
  • About the ACT
  • ACT Preparation
  • For Teachers
  • Other Resources
  • Solutions Guide
  • Solutions Guide Digital Download
  • Motion in One Dimension
  • Work, Energy and Power
  • Chemistry of Matter
  • Measurement and the Metric System
  • Early Atomic Models
  • Names and Formulas
  • Algebra Based On-Level Physics
  • Honors Physics
  • Conceptual Physics
  • Other Tools
  • Frequently Asked Questions
  • Purchasing the Download
  • Purchasing the Digital Download
  • About the NGSS Corner
  • NGSS Search
  • Force and Motion DCIs - High School
  • Energy DCIs - High School
  • Wave Applications DCIs - High School
  • Force and Motion PEs - High School
  • Energy PEs - High School
  • Wave Applications PEs - High School
  • Crosscutting Concepts
  • The Practices
  • Physics Topics
  • NGSS Corner: Activity List
  • NGSS Corner: Infographics
  • About the Toolkits
  • Position-Velocity-Acceleration
  • Position-Time Graphs
  • Velocity-Time Graphs
  • Newton's First Law
  • Newton's Second Law
  • Newton's Third Law
  • Terminal Velocity
  • Projectile Motion
  • Forces in 2 Dimensions
  • Impulse and Momentum Change
  • Momentum Conservation
  • Work-Energy Fundamentals
  • Work-Energy Relationship
  • Roller Coaster Physics
  • Satellite Motion
  • Electric Fields
  • Circuit Concepts
  • Series Circuits
  • Parallel Circuits
  • Describing-Waves
  • Wave Behavior Toolkit
  • Standing Wave Patterns
  • Resonating Air Columns
  • Wave Model of Light
  • Plane Mirrors
  • Curved Mirrors
  • Teacher Guide
  • Using Lab Notebooks
  • Current Electricity
  • Light Waves and Color
  • Reflection and Ray Model of Light
  • Refraction and Ray Model of Light
  • Teacher Resources
  • Subscriptions

problem solving involving average speed

  • Newton's Laws
  • Einstein's Theory of Special Relativity
  • About Concept Checkers
  • School Pricing
  • Newton's Laws of Motion
  • Newton's First Law
  • Newton's Third Law

Mission KC6: Average Speed Computations

Mission KC6 pertains to the relationship between the distance traveled, the time of travel, and the average speed.  Questions involve calculations. The mission consists of 14 questions organized into 7 Question Groups. You must answer one question from each Question Group to complete the mission. The learning outcomes for this mission are ...  

Learning Outcomes

  • The student should be able to use the average speed equation to perform simple computations and solve word problems.

Launch Mission KC6

Getting help.

If you are not familiar with this topic, then you should first learn about the topic using our written Tutorial or our Video Tutorial: The Physics Classroom, One-Dimensional Kinematics Unit, Lesson 1, Part d

  • How can the average speed equation be used to solve problems involving distance, time and speed?

Video Tutorial: Speed vs. Velocity  

Question-Specific Help

Each Question Group has its own Help page with information specific to the question. You can access the Help page from within the mission by tapping on the Help Me! icon (textbook). For your convenience, links to those pages are provided below:

JEE-IIT-NCERT Physics & Math

Widget atas posting, average velocity and average speed problems and solutions.

 Problem#1

Post a Comment for "Average Velocity and Average Speed Problems and Solutions"

IMAGES

  1. Solving Problems Calculating the Average Speed of an Object

    problem solving involving average speed

  2. Average Velocity Problem Solving animation

    problem solving involving average speed

  3. Average Speed Word Problems

    problem solving involving average speed

  4. Solved Calculating Average Speed Calculating Average Speed

    problem solving involving average speed

  5. Calculating Average Speed: Formula & Practice Problems

    problem solving involving average speed

  6. Problem solving about average speed

    problem solving involving average speed

VIDEO

  1. Problem Solving Involving Sequence (Geometric) Part 2

  2. Problem Solving Involving Sequence (Arithmetic) Part 1

  3. Calculates speed, distance and time with problem solving (Taglish)

  4. Mathematics 6 Quarter 3 Week 5B

  5. Problem Solving involving the volume of the Cylinder

  6. Interesting statistics worded problem (with simple solution) involving average of maths exam scores

COMMENTS

  1. Average Speed Problems - Online Math Help And Learning Resources

    Average Speed Word Problems: Word Problems Involving Average Speed, How to solve the average speed problem, How to find the average speed for a round trip, How to use average speed to calculate the distance traveled or time taken, with video lessons, examples and step-by-step solutions.

  2. Average Velocity and Average Speed Problems and Solutions

    Given: time t = 20 s and radius r = 14 m. (a) average speed is the ratio of total distance to total time taken. So, distance convered in one revolution. s = 2π r = 2 x 22/7 x 14 m = 88 m. average speed = s/t = 88/20 = 4,4 m/s. (b) in one complete revolution displacement of car is zero.

  3. Speed, time, and distance problems worksheets - Homeschool Math

    Make customizable worksheets about constant (or average) speed, time, and distance for pre-algebra and algebra 1 courses (grades 6-9). Both PDF and html formats are available. You can choose the types of word problems in the worksheet, the number of problems, metric or customary units, the way time is expressed (hours/minutes, fractional hours ...

  4. 8.8 Rate Word Problems: Speed, Distance and Time

    When solving these problems, use the relationship rate (speed or velocity) times time equals distance. [latex]r\cdot t=d[/latex] For example, suppose a person were to travel 30 km/h for 4 h. To find the total distance, multiply rate times time or (30km/h)(4h) = 120 km. The problems to be solved here will have a few more steps than described above.

  5. Average Speed Word Problems Worksheet with Answers

    Problem 1 : A person travels from New York to Washington at the rate of 45 miles per hour and comes backs to the New York at the rate of 55 miles per hour. What is his average speed for the whole journey? Problem 2 : An automobile travels 130 miles in 2.5 hours and 150 miles in 3.5 hours. What is its average velocity over the entire distance ...

  6. AVERAGE SPEED PROBLEMS - onlinemath4all

    average speed problems Problem 1 : A person travels from New York to Washington at the rate of 45 miles per hour and comes backs to the New York at the rate of 55 miles per hour.

  7. Average speed and average velocity – problems and solutions

    Average speed and average velocity – problems and solutions. Solved Problems in Linear Motion – Average speed and average velocity. 1. A car travels along a straight road to the east for 100 meters in 4 seconds, then go the west for 50 meters in 1 second. Determine average speed and average velocity.

  8. Average Speed | Definition, Formula & Calculation - Lesson ...

    What is average speed and how is average speed calculated? Give the average speed equation, explain its terms and its application with some examples.

  9. Minds on Physics: Kinematic Concepts - Average Speed Computations

    How can the average speed equation be used to solve problems involving distance, time and speed? Video Tutorial: Speed vs. Velocity . Question-Specific Help. Each Question Group has its own Help page with information specific to the question. You can access the Help page from within the mission by tapping on the Help Me! icon (textbook).

  10. Average Velocity and Average Speed Problems and Solutions

    Compute your average velocity in the following two cases: (a) You walk 73.2 m at a speed of 1.22 m/s and then run 73.2 m at a speed of 3.05 m/s along a straight track. (b) You walk for 1.00 min at a speed of 1.22 m/s and then run for 1.00 min at 3.05 m/s along a straight track.